
A General Game Description Language
for Incomplete Information Games

Michael Thielscher
School of Computer Science and Engineering
The University of New South Wales, Australia

mit@cse.unsw.edu.au

Abstract

A General Game Player is a system that can play previously
unknown games given nothing but their rules. The Game
Description Language (GDL) has been developed as a high-
level knowledge representation formalism for axiomatising
the rules of any game, and a basic requirement of a General
Game Player is the ability to reason logically about a given
game description. In this paper, we address the fundamen-
tal limitation of existing GDL to be confined to deterministic
games with complete information about the game state. To
this end, we develop an extension of GDL that is both simple
and elegant yet expressive enough to allow to formalise the
rules of arbitrary (discrete and finite) n-player games with
randomness and incomplete state knowledge. We also show
that this extension suffices to provide players with all infor-
mation they need to reason about their own knowledge as well
as that of the other players up front and during game play.

Introduction

General Game Playing (GGP) is concerned with the devel-
opment of systems that understand the rules of previously
unknown games and learn to play these games well with-
out human intervention. Identified as a Grand Challenge
for Artificial Intelligence, this endeavour requires to com-
bine methods from a variety of sub-disciplines, including
automated reasoning, search, game playing, and learning
(Pell 1993). The annual AAAI GGP Competition has been
established in 2005 to foster research in this area (Gene-
sereth, Love, and Pell 2005). This has lead to a number
of successful approaches, including (Kuhlmann, Dresner,
and Stone 2006; Clune 2007; Schiffel and Thielscher 2007;
Finnsson and Björnsson 2008). The first international work-
shop on General Game Playing at IJCAI’09 also serves as a
witness for the rapid growth of this research field.

Representing and reasoning about knowledge is a core
technique in GGP. A formal Game Description Language
is used to represent the rules of n-player games (n ≥ 1)
in such a way that they can be automatically processed by
a general game player (Love et al. 2006). The emphasis is
on high-level, declarative descriptions. This allows success-
ful players to reason about the rules of an unknown game
in order to extract game-specific knowledge (Schiffel and

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Thielscher 2009a) and to automatically design evaluation
functions (Kuhlmann, Dresner, and Stone 2006; Clune 2007;
Schiffel and Thielscher 2007).

A fundamental limitation of the existing Game Descrip-
tion Language (GDL), and therefore of contemporary GGP
systems, is the restriction to deterministic games with com-
plete information about the game state. While a game may
involve simultaneous moves, players are immediately in-
formed about the moves by their opponents and have com-
plete knowledge of the game model and the current posi-
tion throughout the game (Schiffel and Thielscher 2009b).
This applies to a variety of classical games such as Chess,
Go, Chinese Checkers, etc. On the other hand, the exist-
ing limitation excludes games with elements of chance like
Backgammon, games with information asymmetry such as
Bridge or Poker, and games which involve private commu-
nication among cooperating players like in Bughouse Chess,
or in the form of negotiations like in Diplomacy. Moreover,
envisaged applications for General Game Playing systems,
like automated trading agents, are usually characterised by
imperfect information.

In this paper, we lay the foundations for truly General
Game Playing by developing a fundamental extension of
the existing description language, called GDL-II (for: Game
Description Language with Incomplete Information).1 We
show that the addition of just two keywords suffices to ob-
tain the desired generality: One, called random, denotes
a special player who chooses moves randomly and can thus
be used to model dice rolling, card shuffling, etc. The sec-
ond new keyword, called sees, is used to control the in-
formation that each player gets. We provide the formal
syntax and semantics of this new representation language.
We then show that despite its conceptual simplicity and el-
egance, GDL-II gives rise to an intricate epistemic model,
which provides players with sufficient information to enable
them to reason about their own knowledge and the knowl-
edge of their opponents, to predict how their knowledge will
evolve, and to reason about what players know about other

1When naming the new language we had to cope with an un-
fortunate clash of terminology: in AI, an agent who does not know
the full state of the environment is said to have incomplete infor-
mation; in Game Theory, when a player does not know the full
state when called upon to move, the game is said to be of imperfect
information. We decided to stick with the standard AI terminology.

994

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

role(R) R is a player
init(F) F holds in the initial position
true(F) F holds in the current position

legal(R,M) R can do move M in the current position
does(R,M) player R does move M
next(F) F holds in the next position

terminal the current position is terminal
goal(R,N) R gets N points in the current position

sees(R,P) R perceives P in the next position
random the random player

Table 1: GDL-II keywords: the top eight comprise standard
GDL while the last two are added in view of incomplete state
knowledge and elements of chance.3

player’s knowledge.
The rest of the paper is organised as follows. In the next

section, we introduce GDL-II as an extension of GDL, show
various examples, and give a precise definition of the syn-
tax of this new representation language. In the section that
follows, we formally define its semantics. Finally, we show
that the language is sufficiently expressive to give rise to an
intricate multi-agent epistemic model.

From GDL to GDL-II

General Game Playing requires a formal language for de-
scribing the rules of arbitrary games. A complete game de-
scription includes: knowledge of the players and the initial
position; the legal moves, and how they affect the position;
and the terminating and winning criteria. The description
language GDL has been developed for this purpose (Gene-
sereth, Love, and Pell 2005; Love et al. 2006). The empha-
sis is on high-level, declarative game rules that are easy to
understand and maintain. At the same time, GDL has a pre-
cise semantics and is fully machine-processable. Moreover,
background knowledge is not required—a set of rules is all
a player needs to know in order to be able to play a hitherto
unknown game.

GDL is based on the standard syntax and semantics of
Logic Programming (including the principle of negation by
failure). A few special keywords are used for the differ-
ent elements of a game description mentioned above. The
eight keywords that comprise GDL are shown in the top
of Table 1. GDL is suitable for describing any finite, syn-
chronous, and deterministic n-player game.4 The execu-
tion model (Genesereth, Love, and Pell 2005) entails full
information symmetry: the initial position is fully specified,
and the players are immediately informed about each other’s
moves with all (joint) moves being deterministic.

Although GDL was developed for complete-information
games only, a surprisingly simple extension to its syntax suf-

3The keywords are accompanied by the auxiliary, pre-defined
predicate distinct(X,Y), meaning the syntactic inequality of
the two arguments (Love et al. 2006).

4Synchronous means that all players move simultaneously. In
this setting, turn-taking games are modelled by allowing players
only one legal move, without effect, if it is not their turn.

fices to generalise it to arbitrary (discrete and finite) games
with information asymmetry and random moves. A single
new keyword sees(R,P) is needed for specifying the
conditions under which player R receives information (i.e.,
“perceives”) P. This will be accompanied by a modified
execution model, in which players are no longer informed
about each other’s moves by default; rather, they only get to
see what the game rules entail about their percepts. A second
new keyword, random, is introduced as a special role. It
is assumed that this “player” always makes a purely random
choice among its legal moves in a position. This allows to
model games with elements of chance, such as rolling dice
or shuffling cards. We again refer to Table 1 for the complete
list of keywords that comprise the new language GDL-II.

Prior to giving the precise definition of syntax and seman-
tics of GDL-II, let us illustrate the expressiveness of this ex-
tended, general Game Description Language with examples.

Example 1. (Simple Card Game) Figure 1 depicts a com-
plete GDL-II description of a very simple card game. Two
players jane and rick are accompanied by an anonymous
dealer, modelled by the special role random. There are
eight cards, named 7, 8, . . ., king, ace. The game con-
sists of just two rounds, starting with a dealingRound.

The possible moves are specified by the rules with head
legal: In the first round, the dealer randomly selects two
different cards, one for each player. In the second round,
indicated by state feature bettingRound, both players
have the choice between two moves, allIn and fold.

The clauses with head sees specify the conditions un-
der which the players will get some information about the
game state. Each of them will know their own card (but not
the opponent’s card) once it has been dealt to them. After
the second round, they will be informed about each other’s
bet. Finally, they will get to see each other’s hand, but only
in case both went all-in. These rules are accompanied by
the clauses for next, which define the effects of the vari-
ous moves by giving a complete account of the state features
that hold after a (joint) move.

The remaining rules say that after betting the game ends
as follows. In case both players went all-in, the one with the
higher card wins it all (payout 100 vs. 0). If one player went
all-in while the opponent folded, then the payout is 75 vs.
25, and if both folded, then the game ends in a draw.

This complete description shows the two new features in
GDL-II: The special role random is used to model na-
ture, who chooses her moves randomly. The keyword sees

controls the information that players have about the game
state. Hence, despite full initial information, both incom-
plete knowledge about later states and asymmetry of infor-
mation result from the individual and partial percepts.

Example 2. (Kriegspiel) In standard chess, players see their
opponent’s move. For GDL-II, this means that the usual
rules of chess5 are augmented by the two clauses

sees(white,M)⇐ does(black,M)

sees(black,M)⇐ does(white,M)

Without these clauses, moves are hidden from the opponent.
This chess variant is commonly called Kriegspiel (Pritchard

5See games.stanford.edu for a GDL axiomatisation of chess.

995

role(jane). role(rick). role(random).
card(7). . . . card(ace).
succ(7,8). . . . succ(king,ace).
init(dealingRound).

legal(random,deal(C,D)) ⇐ true(dealingRound)∧ card(C) ∧ card(D) ∧ distinct(C,D)

legal(random,noop) ⇐ true(bettingRound)

legal(R,noop) ⇐ true(dealingRound)∧ role(R) ∧ distinct(R,random)

legal(R,allIn) ⇐ true(bettingRound)∧ role(R) ∧ distinct(R,random)

legal(R,fold) ⇐ true(bettingRound)∧ role(R) ∧ distinct(R,random)

sees(jane,yourCard(C)) ⇐ does(random,deal(C,D))

sees(rick,yourCard(D)) ⇐ does(random,deal(C,D))

sees(jane,ricksBid(B)) ⇐ does(rick,B) ∧ true(bettingRound)

sees(rick,janesBid(B)) ⇐ does(jane,B) ∧ true(bettingRound)

sees(jane,ricksCard(C)) ⇐ does(jane,allIn) ∧ does(rick,allIn)∧ true(hasCard(rick,C))

sees(rick,janesCard(C)) ⇐ does(jane,allIn) ∧ does(rick,allIn)∧ true(hasCard(jane,C))

next(hasCard(jane,C)) ⇐ does(random,deal(C,D))

next(hasCard(rick,D)) ⇐ does(random,deal(C,D))

next(bet(R,C,allIn)) ⇐ does(R,allIn) ∧ true(hasCard(R,C))

next(bet(R,C,fold)) ⇐ does(R,fold) ∧ true(hasCard(R,C))

next(bettingRound) ⇐ true(dealingRound)

terminal ⇐ ¬true(dealingRound)∧ ¬true(bettingRound)
goal(R,100) ⇐ true(bet(R,C,allIn))∧ true(bet(S,D,allIn))∧ beats(C,D)

goal(R, 75) ⇐ true(bet(R,C,allIn))∧ true(bet(S,D,fold))

goal(R, 50) ⇐ true(bet(R,C,fold))∧ true(bet(S,D,fold))∧ distinct(R,S)

goal(R, 25) ⇐ true(bet(R,C,fold))∧ true(bet(S,D,allIn))

goal(R, 0) ⇐ true(bet(R,C,allIn))∧ true(bet(S,C,allIn))∧ beats(D,C)

beats(C,D) ⇐ succ(D,C)

beats(C,D) ⇐ succ(X,C)∧ beats(X,D)

Figure 1: A complete, formal description in GDL-II of a simple card game.

1994). Actually, in order to play this game effectively, an ar-
biter is needed who collects all moves and informs the play-
ers whenever they intend to make an invalid move. This may
be specified in GDL-II as follows:

sees(R,badMoveTryAgain)⇐ does(R,M)∧
¬validMove(M)

sees(black,yourMoveNow)⇐ does(white,M)∧
validMove(M)

sees(white,yourMoveNow)⇐ does(black,M)∧
validMove(M)

where validMove(M) should be axiomatised as test
whether M is a correct chess move in the current position.6

Example 3. (Coloured Trails) This class of games is a pop-
ular research test-bed for decision-making and negotiation
in a competitive setting (Grosz et al. 2004). Each specific
game comes with one or more fixed protocols defining pos-
sible interactions among the players. For example, a simple
negotiation may consist of player R offering player S to
trade one of its chips C for another one, D. This may be

6It is important to note the difference between legal and valid
moves in Kriegspiel: each attempt to make a move is considered
legal, but only those chess moves that are actually possible in the
current position are accepted as valid. For practical play, a rule
should be added that does not allow players to resubmit a previ-
ously rejected move.

formalised by these GDL-II clauses:

legal(R,propose(S,exchangeChips(C,D)))⇐
true(hasChip(R,C))∧ true(hasChip(S,D))∧
distinct(R,S) ∧ distinct(C,D)

sees(S,proposal(R,S,C,D))⇐
does(R,propose(S,exchangeChips(C,D)))

Under these rules, the communication is private: only the
addressee gets to see the proposal.

Formal Syntax of GDL-II

Game descriptions in GDL-II use the standard syntax of
logic programs, including negation. We adopt the Prolog
convention of denoting variables by uppercase letters while
predicate and function symbols start with a lowercase let-
ter. From its predecessor, GDL-II inherits general restric-
tions on a set of clauses with the intention to ensure that all
relevant derivations are finite. Specifically, a valid game de-
scription must be stratified (Apt, Blair, and Walker 1987)
and allowed (Lloyd and Topor 1986); for details we must
refer to (Love et al. 2006) for space reasons. Stratified logic
programs are known to admit a specific standard model;
see (Apt, Blair, and Walker 1987) for details. We also im-
poses restrictions on the use of the keywords in GDL-II:

• role only appears in the head of facts;

• init only appears as head of clauses and does not de-
pend on any of true, legal, does, next, sees,
terminal, goal;

996

• true only appears in the body of clauses;

• does only appears in the body of clauses and does not
depend on any of legal, terminal, goal;

• next and sees only appear as head of clauses.

These restrictions are imposed in order to ensure that a set
of GDL-II rules can be effectively and unambiguously inter-
preted by a state transition system as a formal game model.
This is the topic of the next section.

Semantics: A Game Model for GDL-II

State transition systems are the natural model for (dis-
crete) games. Any game description in GDL-II uses a
domain-dependent set of ground symbolic expressions Σ.
Specifically, the players, the moves, and the percepts are
all represented by individual ground terms like jane,
allIn, yourCard(queen), etc. Game positions (i.e.,
states) are represented by subsets of Σ since they are
composed of individual features like dealingRound,
hasCard(jane,ace), etc. Accordingly, we define a
game to be composed of 7

• R ⊆ Σ (the roles);

• s1 ⊆ Σ (the initial position);

• t ⊆ 2Σ (the terminal positions);

• l ⊆ R × Σ × 2Σ (the legality relation);

• u : (R 7→ Σ) × 2Σ 7→ 2Σ (the update function);

• I ⊆ R × (R 7→ Σ) × 2Σ × Σ (the information relation);

• g ⊆ R × N × 2Σ (the goal relation);

• π : (R \ {random} 7→ Σ) × 2Σ 7→ P(2Σ).

Some explanatory words: Legality relation l(r, m, S) de-
fines m to be a legal move for player r in position S .
The update function takes a move for each player and (syn-
chronously) applies the joint action M : (R 7→ Σ) to a cur-
rent position S , resulting in the updated position u(M, S).
Likewise, relation I(r, M, S, p) defines p to be a percept
for player r when joint move M is taken in position S .
Goal relation g(r, n, S) defines natural number n to be the
goal value for player r in position S . Finally, π(M, S)
is a probability measure over the resulting states after joint
move M (by all but the randomised player) is taken in S .

Based on the concept of a formal game, a GDL-II spec-
ification is to be understood as follows. Any valid game
description G contains a finite set of function symbols, in-
cluding constants, which implicitly determines a (usually in-
finite) set of ground terms. This set constitutes the symbol
base Σ in the game model for G. The syntactic restrictions
in GDL-II ensure finite derivability, so that the set of roles,
the reachable states, etc. are all finite subsets of Σ.

The derivable instances of role(R) define the players.
The initial state is composed of the derivable instances of
init(F). In order to determine the legal moves of a player
in any given state, this state has to be encoded first, using the
keyword true. More precisely, let S = {f1, . . . , fn} be

7Below, 2
Σ denotes the finite subsets of Σ.

a position (e.g., the derivable instances of init(F) at the
beginning), then G is extended by the facts

true(f1). . . . true(fn).

Let these clauses be denoted by Strue. Those instances of
legal(R,M) which are derivable from G∪Strue define
all legal moves M for player R in position S . In the same
way, the clauses for terminal and goal(R,N) define
termination and goalhood (of value N for player R) relative
to the encoding of a given position.

Determining a position update and the percepts of the
players requires the encoding of the current position along
with clauses representing a joint move. Specifically, if play-
ers r1, . . . , rk make moves m1, . . . , mk , then G ∪ Strue

is further extended by the facts

does(r1, m1). . . . does(rk, mk).

Let these clauses be denoted by Mdoes. The instances of
next(F) that are derivable from G∪Mdoes∪Strue com-
pose the updated position; likewise, the derivable instances
of sees(R,P) describe what a player perceives when the
given joint move is done in the given position.

Finally, the probability measure is built into the concept
of the special random role. If this role does not occur in
a game description, then the update function determines a
unique resulting state of a joint move by all players. Other-
wise, the probability is uniformly distributed over all legal
moves of random in the given position.8 All of the above
is summarised in the following definition, where entailment
(|=) is via the standard model of a stratified set of clauses.

Definition 1. Let G be a valid GDL specification, whose
signature determines the set of ground terms Σ. The seman-
tics of G is the game (R, s1, t, l, u, I, g, π) given by

• R = {r ∈ Σ : G |= role(r)};

• s1 = {f ∈ Σ : G |= init(f)};

• t = {S ∈ 2Σ : G ∪ Strue |= terminal};

• l = {(r, m, S) : G ∪ Strue |= legal(r, m)}, for all
r ∈ R, m ∈ Σ, and S ∈ 2Σ;

• u(M, S) = {f ∈ Σ : G ∪ Mdoes ∪ Strue |= next(f)},
for all M : (R 7→ Σ) and S ∈ 2Σ;

• I = {(r, M, S, p) : G ∪ Mdoes ∪ Strue |= sees(r, p)},
for all r ∈ R \ {random}, M : (R 7→ Σ), S ∈ 2Σ, and
p ∈ Σ;

• g = {(r, n, S) : G ∪ Strue |= goal(r, n)}, for all
r ∈ R \ {random}, n ∈ N, and S ∈ 2Σ;

• for all M : (R \ {random} 7→ Σ) and S, T ∈ 2Σ,

– if random 6∈ R then

π(M, S)(T) =

{

1 if T = u(M, S)
0 otherwise

8Note that this does not necessarily mean that all resulting states
have equal probability. For example, tossing an unfair coin that
shows head just with probability 1

3
may be axiomatised in GDL-II

by three legal actions for random, two of which have the same ef-
fect (the coin showing tails). It should be stressed that basic GDL-II
could easily be extended by means for specifying a non-uniform
transition probability.

997

– else π(M, S) assigns this probability to state T :

|{m ∈ L : T = u(M ∪ {random 7→ m}, S)}|

|L|

where L = {m : G ∪ Strue |= l(random, m, S)}.

This definition provides a formal semantics for GDL-II in
terms of an abstract game model. Finite derivability in valid
GDL-II specifications implies that the entailment relation is
decidable, which in turn ensures that the definition of the
semantics is effective.

The additional elements in GDL-II and the modified se-
mantics require a new execution model for games with in-
complete state information and randomness: Starting in the
initial position, in each state S each player r chooses a
move m that satisfies l(r, m, S). As a consequence the
game state changes to u(M, S), where M is the joint
move. In contrast to the execution model for GDL (Gene-
sereth, Love, and Pell 2005; Love et al. 2006), the play-
ers are not informed about the joint move; rather each
role r ∈ R \ {random} gets to see any p that satis-
fies I(r, M, S, p). The game ends as soon as a terminal
state S ∈ t is reached, and then the goal relation g(r, n, S)
determines the result for each player (except random).

This execution model is simple enough to allow a straight-
forward implementation of a Game Controller:

1. Send each r ∈ R \ {random} the GDL-II descrip-
tion and inform them about their individual roles r (e.g.,
jane or rick). Set S := s1 .

2. After the appropriate time, collect the individual moves
from each player and, in case random ∈ R, choose ran-
domly (with uniform probability) an element from the set
{m : (random, m, S) ∈ l}. Set M := ‘joint move’.

3. Send to each r ∈ R \ {random} the set of percepts
{p : (r, M, S, p) ∈ I}. Set S := u(M, S).

4. Repeat 2. and 3. until S ∈ t. Determine the result n for
r ∈ R \ {random} by (r, n, S) ∈ g .

In this setup the control program knows all moves and hence
can always compute all percepts and also determine the end
of a match and the resulting goal values for the players.

The Implicit Epistemic Model of GDL-II

The transition-based execution model we have just given for
GDL-II is simple and can easily be implemented on a Game
Master to control a game. On the other hand, despite its
conceptual simplicity our language extension determines an
intricate epistemic model. This model can be used by play-
ers to reason about their own knowledge, both up front and
during game play, as well as about the other player’s knowl-
edge and about what a player knows about the knowledge
of a third player, etc. For example, as soon as player jane
gets to see the GDL-II rules of Figure 1, she can derive that
she does not know up front which card she will be dealt, but
that she will know her card after random’s first move. She
can also conclude that rick won’t know her card at this
point.

In the following, we will formally show what the exe-
cution model entails about the knowledge of the individual

players before and during game play. To this end, we first
define the notion of a development as a legal sequence of
moves starting in initial position s1 :

(s1, m1), . . . , (sn−1, mn−1), sn

where n ≥ 1 and for all i ∈ {1, . . . , n − 1} we have
that (r, mi(r), si) ∈ l for all r ∈ R (that is, players make
legal moves) and si+1 = u(mi, si) (position update). Fur-
thermore, {s1, . . . , sn−1} ∩ t = ∅ (only the last state may
be terminal). The following theorem characterises precisely
what our execution model for GDL-II specified at the end of
the previous section entails about the information a player r
has at a specific stage in the course of a game.

Theorem 1. Let δ = 〈(s1, m1), . . . , (sn−1, mn−1), sn〉
and δ′ = 〈(s′1, m

′

1), . . . , (s
′

n−1, m
′

n−1), s
′

n〉 be two devel-
opments. A player r ∈ R \ {random} cannot distinguish
δ from δ′ at step k if, and only if,

1. {p : (r, mi, si, p) ∈ I} = {p′ : (r, m′

i, s
′

i, p
′) ∈ I} for

all i ∈ {1, . . . , k − 1}, and

2. mj(r) = m′

j(r) for all j ∈ {1, . . . , n − 1}.

Proof. (Sketch) According to the execution model, play-
ers know the game model as given in Definition 1. In each
step they choose their own moves and receive information as
given in I . Hence, the two developments are indistinguish-
able if until step k they entail the same percepts for r (first
item) and r always takes the same move (second item).

Consider, e.g., a development with random’s first move
being deal(king,7) and one with deal(ace,7) in-
stead. For jane these two are indistinguishable at step
1 but no longer so at step 2. For rick, however, they are
indistinguishable at step 2, too, as for him they both entail
the same percept, yourCard(7).

(In-)distinguishable developments can also be used to en-
sure that game descriptions obey desirable properties.

Proposition 2. A game description entails that all players
always know their legal moves iff for all r ∈ R\{random}
there are no two developments δ, δ′ leading to states sn, s′n
such that {m : (r, m, sn) ∈ l} 6= {m′ : (r, m′, s′n) ∈ l}
and δ, δ′ are indistinguishable for r at n.

Proposition 3. A game description entails that all players
know both the end of a game and their own result iff for all
r ∈ R \ {random} there are no two developments δ, δ′

leading to states sn, s′n such that

sn ∈ t, s′n 6∈ t or {sn, s′n} ⊆ t, g(r, , sn) 6= g(r, , s′n)

and δ, δ′ are indistinguishable for r at n.

It is also easy to prove that GDL-II truly extends GDL
since games with complete state information can be speci-
fied thus:

Theorem 4. Consider a game with random 6∈ R and

sees(R1,moves(R,M))⇐ role(R1)∧ does(R,M)

the only clause for predicate sees. Then there are no two
developments δ, δ′ leading to states sn, s′n such that δ and
δ′ are indistinguishable for any r ∈ R at n.

998

Knowledge at the object level, as we have considered thus
far, can be lifted to higher levels so as to determine what a
player can know about the knowledge of other players (in-
cluding his or her own). This is made possible by the fact
that the GDL-II specification of a game provides all play-
ers with the complete rules—so that a player is able to de-
rive which information each other player gets to see under
any (hypothetical) development.9 Formalising this requires
to construct a suitable epistemic structure based on possible
developments. Consider, to this end, for every δ the func-
tion Kδ that maps every pair (r, i) onto the set of devel-
opments that player r at state i cannot distinguish from δ.
Meta-level knowledge is then obtained as follows.

Theorem 5. If the game develops according to δ1 , then
as far as player r knows at step n, all functions Kδ2 are
possible where δ2 is indistinguishable from δ1 for r at n.

Put in words, meta-level knowledge is characterised by a
set of possible sets of developments. It follows that a player
knows what holds in all K-sets she considers possible. Lack
of space prevents us from going into the formal details, but
the process can be iterated inductively to determine arbitrary
levels of meta-knowledge. The epistemic model for GDL-II
thus obtained allows to apply standard formalisms like (Fa-
gin et al. 1995) to be used by players to infer the truth of
arbitrary knowledge expressions involving their own as well
as the other player’s knowledge.

Conclusion

We have presented a conceptually simple yet fundamental
extension of the Game Description Language that allows to
represent and reason about the rules of general games with
information asymmetry and random moves. We have also
shown that GDL-II, despite its syntactic elegance and sim-
plicity, gives rise to an intricate epistemic model and thus
suffices to provide players with all information they need to
reason about their own knowledge as well as that of the other
players up front and during game play.

The new language GDL-II is the first extension of the ex-
isting GDL that allows to describe games with incomplete
state information and elements of chance. The concept of
General Game Playing goes back to Pitrat (1968) and Pell
(1993). Both define formal languages to describe whole
classes of games, but these languages are even less gen-
eral than basic GDL. The work (Koller and Pfeffer 1997)
includes the definition of Gala (for: Game Language) which
allows to describe general games with imperfect informa-
tion. The main differences to GDL-II are: (1) Gala requires
an explicit enumeration of the sequence of steps from the
beginning to the end of a game; (2) a Gala description is un-
derstood by an execution tree, which corresponds to a game
tree in so-called extensive form—hence, the semantics of

9We remark that common knowledge of the rules does not im-
ply common knowledge of other players. To see this, the interested
reader may try a small exercise: construct a 3-player GDL-II game
in which a situation may arise where (1) player P1 knows f and
(2) player P2 knows that P1 knows about f while player P3

considers it possible that P1 knows nothing about f . (We thank
an anonymous reviewer for suggesting this scenario.)

Gala is procedural rather than declarative; (3) understanding
a Gala “program” requires to build the entire execution tree
for this program, which is unsuitable as a basis for GGP re-
search where the main focus is on learning how to play well
games that cannot be searched completely. Finally, it should
be mentioned that GDL-II draws from concepts that have
been used in Action Languages, e.g. (Lobo, Mendez, and
Taylor 2001), to represent effects of actions in the presence
of incomplete knowledge. GDL-II can be seen as generalis-
ing this line of work to multi-agent and competitive settings.

References
Apt, K.; Blair, H. A.; and Walker, A. 1987. Towards a the-
ory of declarative knowledge. In Foundations of Deductive
Databases and Logic Programming, 89–148.

Clune, J. 2007. Heuristic evaluation functions for general
game playing. In AAAI, 1134–1139.

Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Rea-
soning About Knowledge. MIT Press.

Finnsson, H., and Björnsson, Y. 2008. Simulation-based
approach to general game playing. In AAAI, 259–264.

Genesereth, M.; Love, N.; and Pell, B. 2005. General game
playing: Overview of the AAAI competition. AI Magazine
26(2):62–72.

Grosz, B.; Kraus, S.; Talman, S.; Stossel, B.; and Havlin,
M. 2004. The influence of social dependencies on decision-
making: Initial investigations with a new game. In Proc. of
AAMAS, 782–789.

Koller, D., and Pfeffer, A. 1997. Representations and so-
lutions for game-theoretic problems. Artificial Intelligence
94(1):167–215.

Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Automatic
heuristic construction in a complete general game player. In
AAAI, 1457–1462.

Lloyd, J., and Topor, R. 1986. A basis for deductive database
systems II. J. of Logic Programming 3(1):55–67.

Lobo, J.; Mendez, G.; and Taylor, S. R. 2001. Knowledge
and the action description language A . Theory and Practice
of Logic Programming 1(2):129–184.

Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2006. General Game Playing: Game Descrip-
tion Language Specification. Technical Report LG–2006–
01, Stanford University. Available at games.stanford.edu.

Pell, B. 1993. Strategy Generation and Evaluation for Meta-
Game Playing. Ph.D. University of Cambridge.

Pitrat, J. 1968. Realization of a general game playing pro-
gram. In Proc. of IFIP Congress, 1570–1574.

Pritchard, D. 1994. The Encyclopedia of Chess Variants.

Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In AAAI, 1191–1196.

Schiffel, S., and Thielscher, M. 2009a. Automated theorem
proving for general game playing. In IJCAI, 911–916.

Schiffel, S., and Thielscher, M. 2009b. A multiagent se-
mantics for the Game Description Language. In Agents and
Artificial Intelligence: Proc. of ICAART. Springer.

999

