
Symmetry Detection in General Game Playing

Stephan Schiffel
Department of Computer Science
Dresden University of Technology
stephan.schiffel@inf.tu-dresden.de

Abstract

We develop a method for detecting symmetries in arbitrary
games and exploiting these symmetries when using tree
search to play the game. Games in the General Game Playing
domain are given as a set of logic based rules defining legal
moves, their effects and goals of the players. The presented
method transforms the rules of a game into a vertex-labeled
graph such that automorphisms of the graph correspond with
symmetries of the game. The algorithm detects many kinds
of symmetries that often occur in games, e.g., rotation and
reflection symmetries of boards, interchangeable objects, and
symmetric roles. A transposition table is used to efficiently
exploit the symmetries in many games.

Introduction

Exploiting symmetries of the underlying domain is an im-
portant optimization technique for all kinds of search algo-
rithms. Typically, symmetries increase the search space and
thus the cost for finding a solution to the problem exponen-
tially. There is a lot of research on symmetry breaking in do-
mains like CSP (Puget 2005), Planning (Fox & Long 1999)
or SAT-solving (Aloul et al. 2002). However, the methods
developed in these domains are either limited in the types of
symmetries that are handled or are hard to adapt to the Gen-
eral Game Playing domain because of significant differences
in the structure of the problem.

General game playing is concerned with the development
of systems that can play well an arbitrary game solely by
being given the rules of the game. This raises a number of
issues different from traditional research in game playing,
where it is assumed that the rules of a game are known to
the programmer. Systems able to play arbitrary, unknown
games can not be given game-specific knowledge. They
rather need to be endowed with high-level cognitive abili-
ties such as general strategic thinking and abstract reasoning.
To exploit symmetries in a general game playing domain,
the system must be able to automatically detect symmetries
based on the rules of the game.

We present an approach to transform the rules of a game
into a vertex-labeled graph such that automorphisms of the
graph correspond with symmetries of the game and prove

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that the approach is sound. The algorithm detects many
kinds of symmetries that often occur in games, e.g., rota-
tion and reflection symmetries of boards, interchangeable
objects, and symmetric roles. Furthermore, we present an
extension for search algorithms that exploits the symmetries
to prune the search space.

Games and Symmetries

Games in the general game playing domain are usually mod-
eled as finite state machines. A state of the state machine is
a state of the game and actions of the players correspond to
transitions of the state machine. In this paper we use the def-
initions of (Schiffel & Thielscher 2009) and model a game
as a multiagent environment.

Definition (Game (multiagent environment)). Let Σ be a
countable set of ground (i.e., variable-free) symbolic expres-
sions (terms), S a set of states, and A a set of actions. A
(discrete, synchronous, deterministic) game Γ is a structure
(R, s0, t, l, u, g), where

• R ⊆ Σ finite (the agents, or roles);

• s0 ∈ S (the initial state);

• t ⊆ S finite (the terminal states);

• l ⊆ R ×A× S finite (the action preconditions);

• u : (R 7→ A) × S 7→ S finite (the update function);

• g ⊆ R × N × S finite (the utility, or goal relation).

For the sake of simplicity no distinction is made between
symbols for roles, objects, state components, actions, etc.

That means, we define actions as ground terms A
def
= Σ and

states as finite sets of ground terms S
def
= 2Σ. The legal-

ity relation l(r, a, s) defines a to be a legal action for role
r in state s. The update function u takes an action for each
role and (synchronously) applies the joint actions to a cur-
rent state, resulting in the updated state.

Several kinds of symmetries may be present in such a
game, e.g., symmetries of states, moves, roles, and se-
quences of moves. Intuitively, symmetries of a game can be
understood as mappings between objects such that the struc-
ture of the game is preserved. E.g., two states of a game
are symmetric if the same actions (or symmetric ones) are
legal in both states, either both or none of them is a termi-
nal state, for each role both states have the same goal value

980

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

and executing symmetric joint actions in both states yields
symmetric successor states.

Definition (Symmetry). A mapping σ : Σ 7→ Σ is a sym-
metry of a game Γ = (R, s0, t, l, u, g) iff the following con-
ditions hold

• r ∈ R ≡ σ(r) ∈ R

• (∀r, a, s) l(r, a, s) ≡ l(σ(r), σ(a), σs(s))

• (∀A, s) u(σa(A), σs(s)) = σs(u(A, s))

• s ∈ t ≡ σs(s) ∈ t

• (∀r, n, s) g(σ(r), n, σs(s)) ≡ g(r, n, s)

Here, σs(s)
def
= {σ(x)|x ∈ s} and σa(A)

def
=

{(σ(r), σ(a))|(r, a) ∈ A}. We will omit the superscripts
in the rest of the paper.

A symmetry of a game expresses role, state, and action
symmetries at the same time. That means there can be a
symmetry σ of a game with σ(s1) = s2 and σ(r1) = r2

which means that a state s1 is symmetric to a state s2, but
only if the roles r1 and r2 are swapped. This is not what one
would expect the term “symmetric states” to mean. There-
fore, we give more intuitive definitions for symmetric states
and joint actions here.

Definition (Symmetric States and Actions). Let Γ =
(R, s0, t, l, u, g) be a game with symbolic expressions Σ. A
symmetry σ of Γ is a state symmetry of Γ iff (∀r ∈ R)σ(r) =
r. Two states s1, s2 are called symmetric if there is a state
symmetry σ with σ(s1) = s2. Two joint actions A1, A2 are
called symmetric in a state s ⊆ Σ iff there is a state symme-
try σ of Γ with σ(s) = s and σ(A1) = A2.

That means a state symmetry maps each role to itself and
two states are symmetric if there is a symmetry mapping
one state to the other without affecting the roles. Since the
result of an actions depend on the state they are applied in,
it only makes sense to talk about symmetric actions wrt. one
particular state. From the definition of symmetry it follows
that the states resulting from the execution of two symmetric
joint actions are symmetric.

Notice that, the symmetries of a game are independent of
the initial state. As a consequence, all games that only differ
in the initial state have the same set of symmetries.

Rules of games in General Game Playing are typically
described in the Game Description Language(Love et al.
2008) (GDL). GDL is an extension of Datalog with func-
tions, equality, some syntactical restrictions to preserve
finiteness, and some predefined keywords. The following
is a partial encoding of a Tic-tac-toe game. We use Prolog
syntax where words starting with uppercase letters stand for
variables and the remaining words are constants.

1 role(xplayer). role(oplayer).

2 init(cell(a,1,blank)). init(cell(a,2,blank)).

3 init(cell(a,3,blank)). ...

4 init(cell(c,3,blank)). init(control(xplayer)).

5 legal(P,mark(X,Y)) :-

6 true(control(P)), true(cell(X,Y,blank)).

7 legal(P,noop) :- role(P), not true(control(P)).

8 next(cell(M,N,x)) :- does(xplayer,mark(M,N)).

9 next(cell(M,N,o)) :- does(oplayer,mark(M,N)).

10 next(cell(M,N,C)) :- true(cell(M,N,C)),

11 does(P,mark(X,Y)), (X \= M ; Y \= N).

12 goal(xplayer,100) :- line(x).

13 ...

14 terminal :- line(x) ; line(o) ; not open.

15 line(P) :- true(cell(a,Y,P)),

16 true(cell(b,Y,P)), true(cell(c,Y,P)).

17 ...

18 open :- true(cell(X,Y,blank)).

The first line declares the roles of the game. The unary
predicate init defines the properties that are true in the
initial state. Lines 5-7 define the legal moves of the
game, e.g., mark(X,Y) is a legal move for role P if
it is P’s turn (control(P)) and the cell X,Y is blank
(cell(X,Y,blank)). The rules for predicate next de-
fine the properties that hold in the successor state, e.g.,
cell(M,N,x) holds if xplayer marked the cell M,N.
Lines 12 to 14 define the rewards of the players and the con-
dition for terminal states. The rules for both contain auxil-
iary predicates line(P) and open which encode the con-
cept of a line-of-three and the existence of a blank cell, re-
spectively. Besides the keywords, which are printed in bold
face, all predicates, functions, and constants of the game de-
scription are game specific and do not carry a special mean-
ing. That means, replacing any of them by some other word
consistently in the whole game description does not change
the game.

In the following we will interpret a GDL game description
as a set of clauses. The game for a game description is the
multiagent environment that is its semantics.

Definition (Game for a game description). Let D be a
valid GDL game description, whose signature determines
the set of ground terms Σ. The game for D is the game
(R, s0, t, l, u, g), where

• R = {r ∈ Σ|D |= role(r)}

• s0 = {f ∈ Σ|D |= init(f)}

• t = {s ∈ S|D ∪ strue |= terminal}

• l = {(r, a, s) ∈ R ×A× S|D ∪ strue |= legal(r, a)}

• u(A, s) = {f ∈ Σ|D ∪ Adoes ∪ strue |= next(f)}

• g = {(r, n, s) ∈ R × N × S|D ∪ strue |= goal(r, n)}

Here strue def
= {true(f)|f ∈ s} axiomatizing s as the cur-

rent state and Adoes def
= {does(r, a)|r ∈ R, a = A(r)}

axiomatizes A as a joint action.

Rule Graphs

It is not a new idea to use graph automorphisms to compute
symmetries of a problem. This approach has been success-
fully applied to CSPs(Puget 2005) and SAT solving(Aloul
et al. 2002), among others. However, a key for using this
method is to have a graph representation of the problem such
that the graph has the same symmetries.

Unrelated to symmetries in games, (Kuhlmann & Stone
2007) describes a mapping of GDL game descriptions to so
called “rule graphs” such that two rule graphs are isomor-
phic if and only if the game descriptions are identical up

981

to renaming of non-keyword constants and variables. Ba-
sically, rule graphs contain vertices for all predicates, func-
tions, constants, and variables in the game and connections
between them that match the structure of the rules. The
nodes of rule graphs are colored such that isomorphisms can
only map constants to other constants, variables to variables,
etc.

We argue that these graphs can be used to compute sym-
metries of games. If there is an automorphisms of such a rule
graph, that means an isomorphism of the graph to itself, then
there is a scrambling of the game description that does not
change the rules of the game. Since constants of the game
description refer to objects in the game, a mapping between
constants that does not change the rules describes configu-
rations of objects that are interchangeable in the game. E.g.,
it can easily be seen that consistently interchanging the con-
stants a and c (or 1 and 3) in the rules of Tic-tac-toe above
yields the same set of rules which means that the “objects”
referred to by these constants are interchangeable. Because
in this example the objects stand for coordinates of a board,
swapping of a and c or 1 and 3 corresponds to horizontal
or vertical reflection of the board, respectively.

However, rotation symmetry of the board can not be ex-
pressed by a mapping between constants of the game, if
the typical representation of a board, cell(X,Y,_), is
used. A rotation of the board would correspond to a suit-
able mapping between the coordinates plus the swapping of
the row and column argument of the cell-function. The
rule graphs from (Kuhlmann & Stone 2007) do not allow
this kind of mapping. Therefore, we propose enhanced rule
graphs, which differ from the rule graphs from (Kuhlmann
& Stone 2007) mainly by replacing the ordering edges be-
tween arguments with argument index vertices.

Definition (Enhanced Rule Graph). Let D be a valid GDL
game description. The enhanced rule graph of D is the
smallest vertex labeled graph G = (V, E, l) with the fol-
lowing properties:

• For every n-ary non-keyword relation symbol or func-
tion symbol p in D, p/n, pi ∈ V , (p, pi) ∈ E, l(p) =
symbolconst, and l(pi) = arg for i ∈ [1, n].

• For every variable symbol v in D, vs ∈ V , and l(v) =
symbolvar.

Furthermore, for every part v of D:

• If v = h : −b1, . . . , bn is a rule then v ∈ V , (v, b1), . . .,
(v, bn), (v, h), (h, b1), . . . , (h, bn) ∈ E and l(r) = rule.

• If v = not a is a negative literal then v ∈ V , (v, a) ∈ E
and l(n) = not.

• If v = p(t1, . . . , tn) is an atom and p is a keyword
(true, does, legal, . . .) then v ∈ V , (v, t1), . . ., (v, tn),
(t1, t2), . . ., (tn−1, tn) ∈ E and l(v) = p.

• If v = (t1 6= t2) then v ∈ V , (v, t1), (v, t2) ∈ E and
l(v) = 6=.

• If v = p(t1, . . . , tn) is an atom and p is not a
GDL keyword then v ∈ V , l(v) = predicate and
(v, t1), . . . , (v, tn), (p, v), (p1, t1), . . . , (p

n, tn) ∈ E.

• If v = f(t1, . . . , tn) is a function then v ∈ V ,
(v, t1), . . . , (v, tn), (f, v), (f1, t1), . . . , (f

n, tn) ∈ E and
l(v) = function.

• If v is a variable then v ∈ V , (vs, v) ∈ E and l(v) =
variable.

In the definition we considered only game descriptions
without disjunctions and where only atomic formulas are al-
lowed to occur negated. Variables in different clauses should
be named differently. Every game description can be easily
transformed into an equivalent one which meets these re-
quirements. There is a vertex v in the rule graph for every
formula and term in a game description. Additionally, there
are vertices for every relation and function symbol (vertices
p and f), where constants are treated as nullary functions.
The vertex of a relation symbol is connected to every vertex
for an atom of this relation symbol and the vertex of a func-
tion symbol is connected to every vertex for function term
with this function symbol. Furthermore for every argument
position i of relation symbol p (or function symbol f) there
is a vertex pi (or f i) which is connected to every term that
occurs in the i-th argument of p (or f) somewhere in the
game description. Note that every occurrence of an atom or
term is treated as a different atom or term. That means if the
same term occurs twice in the rules there are two vertices,
one for each occurrence.

In the following figure you can see the (enhanced1)
rule graph for the rule next(cell(M,N,x)) :-

does(xplayer,mark(M,N)). Different labels are
depicted by different shapes.

Theoretic Results

Our first theorem describes the connection between auto-
morphisms of rule graphs and scramblings of game descrip-
tion. In order to reflect the reordering of arguments we ex-
tend the definition of a scrambling of a game description
from (Kuhlmann & Stone 2007).

Definition (Scrambling of a game description). A scram-
bling of a game description D is a one-to-one function over
function, relation and variable symbols and argument in-
dices of function symbols and non-keyword relation symbols
in D.

Theorem 1 (Scramblings and Automorphisms). Let D be
a game description, G = (V, E, l) its rule graph and H the

set of automorphisms of G. Let h1 ∼ h2

def
=

1In the remainder of the paper we write “rule graph” instead of
“enhanced rule graph”. All results apply to enhanced rule graphs.

982

l(v) ∈ {symbolconst, symbolvar, arg} ⊃ h1(v) = h2(v)
That means two automorphisms h1, h2 of H are considered
equivalent exactly if they agree on the mapping of all symbol
vertices and argument index vertices. There is a one-to-one
mapping between the quotient set H/ ∼ and scramblings
that map D to D.

Proof Sketch. The rule graph construction algorithm adds
exactly one symbol label vertex to the graph for each sym-
bol in D, and exactly one argument index vertex for each
argument index of all function symbols and non-keyword re-
lation symbols in D. That means, there are one-to-one map-
pings between symbols of D and symbol vertices Vs, and
between argument indices and argument index vertices Va.
The remaining proof follows the structure of the proof in
(Kuhlmann & Stone 2007) but is adapted to deal with ar-
gument reorderings.

One implication of the theorem is that we can compute all
scramblings mapping a game description to itself by com-
puting all automorphisms of its rule graph.

Theorem 2 (Symmetries and Automorphisms). Let Γ be
the game for a game description D, h be an automorphism
of the rule graph of D, and σ be a scrambling of D corre-
sponding to h. Intuitively, σ can be understood as a bijective
mapping between arbitrary terms of D. Then σ is a symme-
try of Γ corresponding to h.

Proof Sketch. The proof uses the construction of the game
Γ from the game description D to show that σ satisfies the
defining properties of a symmetry. E.g., one has to prove
that s ∈ t ≡ σ(s) ∈ t, where t is the set of terminal states
of Γ. By the construction of a game from a game descrip-
tion σ(s) ∈ t is equivalent to D ∪ {true(f)|f ∈ σ(s)} |=
terminal. This is equivalent to D∪σ({true(f)|f ∈ s}) |=
terminal, because true is a keyword and keywords are
mapped to themselves by σ. Now since σ(D) = D and
terminal is a keyword, this is equivalent to D ∪ strue |=
terminal, which is the definition of s ∈ t. The remaining
properties of a symmetry can be shown in a similar fashion.

If we use the rule graph of the complete game description
D to compute symmetries, we only get symmetries that are
present in the initial state of the game. However, there may
be so called “dynamic symmetries”, i.e., symmetries that oc-
cur only in some states of the game but are not present in the
initial state. To also find these symmetries, we use the rule
graph of D′ = D \ {init(F) ∈ D}, i.e., the rules of D
except for the initial state description. Observe that, D can
contain function symbols or constants that are not included
in D′. If so, these symbols are only part of the initial state
description and do not occur anywhere else in the rules of
the game. Therefore, they refer to objects of the game that
are interchangeable and can be arbitrarily mapped to each
other by the symmetry.

With minor changes, the approach can be used for com-
puting only certain types of symmetries. E.g., only state
symmetries are computed by assigning each node belong-
ing to a role-fact a different label. Symmetries of a par-
ticular state s, can be computed by using the rule graph of
D′ ∪ strue.

Exploiting Symmetries
Standard tools, like nauty (http://cs.anu.edu.au/
˜bdm/nauty/), are able to compute the automorphisms of
a rule graph and thus the symmetries of a game efficiently
(at most a few seconds, even for large games). Which leaves
the question of how to exploit the symmetries to improve the
game play. Because all current players employ some kind of
search to play general games, we present a way to use the
symmetries for pruning the search space. Depending on the
approach used in the general game player, other uses of the
symmetries may exist, e.g., for speeding up analyzation of
the game’s properties or improving the evaluation function.

One way of pruning the search space is to prune sym-
metric joint actions in node expansion. It is clear that it is
sufficient to use only one joint action of each set of sym-
metric joint actions in a state for node expansion because
symmetric joint actions lead to symmetric states and yield
the same value in game tree search. However, this does not
use the full potential of the available information. In par-
ticular, there may be two non-symmetric sequences of joint
actions leading to symmetric states. The expansion of the
second state is not avoided since the action sequences are
not symmetric. E.g., the two action sequences of Tic-tac-toe
depicted in the following figure are non-symmetric but lead
to symmetric states.

A common reason for this are transpositions. E.g., in our
formulation of Tic-tac-toe the order in which the actions
are executed is unimportant for the resulting state. There-
fore, every transposition of a symmetric action sequence
also leads to a symmetric state.

We propose to use a transposition table to detect those
symmetric states before expanding a node. That means be-
fore we evaluate or expand a state in the game tree we check
whether this state or any state that is symmetric to this one
has an entry in the transposition table. If so, we just use the
value stored in the transposition table without expanding the
state. It is clear, that the algorithm does not use any addi-
tional memory compared to normal search. On the contrary,
the transposition table may get smaller because symmetric
states are not stored. However, the time for node expansion
is increased by the time for computing the symmetric states
and checking whether some symmetric state is in the trans-
position table.

Therefore, it is essential to be able to compute hash val-
ues of states and symmetric states very efficiently. We use
Zobrist hashing (Zobrist 1970) where each ground fluent is
mapped to a randomly generated hash value and the hash
value of a state is the bit-wise exclusive disjunction of the
hash values of its fluents. For efficiently computing sym-
metric states all ground fluents are numbered consecutively
and the symmetry mappings are tabulated for the fluents. In

983

Figure 1: The chart shows the time savings of using search with pruning symmetric moves and pruning symmetric states
compared to normal search, i.e., without using any symmetry information. The adjoining table shows the depth-limit that we
used for each game, the runtime of the normal search, the number of states expanded by the normal search and the number of
symmetries found in the game.

our implementation the time to compute all symmetric states
for some state depends on the game and ranges from 1

50
to

3 times the time for expanding a state for the 13 games we
tried. The time depends on the complexity of the legal
and next rules, the size of the state and the number of sym-
metries in the game.

We conducted experiments on a selection of games where
we measured the time it took to do a depth-limited search
in every state on a path through the game. We compared
normal search with a transposition table but without check-
ing for symmetric states (“normal search”), the approach
where only symmetric moves were pruned (“prune symmet-
ric moves”) and the approach where we check all symmetric
states before expanding a state (“check symmetric states”).
In figure 1 the time savings for search with symmetry prun-
ing compared to “normal search” are shown. The adjoining
table shows runtimes of the “normal search” and the depth
limits we used for the games.

It can be seen that for the majority of games exploiting
the symmetries improves the performance. Also, in most
cases the additional effort of transposition table look-up for
all symmetric states pays off compared to pruning only sym-
metric moves. This is not too surprising because for pruning
symmetric moves in a state we have to compute the symme-
tries that map the state to itself. In many cases this is only
slightly faster then computing all symmetric states.

For some games the overhead of checking for symmetric
states is higher than the gain, most notably asteroidsparal-
lel, which is just two instances of asteroids played in par-
allel. The bad result has several reasons. One problem is
that because of the rather large number of symmetries, com-
puting all symmetric states is quite expensive. In knight-
move the problem is that many symmetric states can only
be reached after action sequences that are longer than the

depth-limit. Additionally, because of the very simple rules
of the game, computing state expansion is fast compared
to computing symmetric states. For tictactoe and tictictoe
the results are near optimal. Because every symmetric state
is indeed reachable from the initial state and the complete
game tree was searched about 7

8
= 87.5% of the states were

not explored. The reason for the large number of symme-
tries in asteroidsparallel and tictactoeparallel is that these
games consist of two independent instances of the same
game. These games could be played much more efficiently
by decomposing them (Zhao, Schiffel, & Thielscher 2009)
and looking for symmetries in each subgame separately.

It should be noted that the experiments were run with
blind search, i.e., without a heuristic evaluation of non-
terminal leaf nodes. If heuristic search is used, the saved
time is increased by the saved heuristic evaluation time,
which may be considerable, depending on the complexity
of the heuristic function. In our game player that means that
even in games like 8puzzle and pentago exploiting symme-
tries pays off.

In order to avoid big negative impact like in asteroidspar-
allel or knightmove we keep track of the number nsaved of
saved state expansions by counting the state expansions in
each subtree during search and storing this number for each
state in the transposition table. Whenever a symmetric state
is found, we add the stored number to nsaved. We estimate
the saved time tsaved = nsaved ∗ texp −ntotal ∗ tsym, where
texp is the average time for expanding a state, ntotal is the
total number of expanded states and tsym is the average time
for computing all symmetric states for a state. Both, texp and
tsym can be estimated by averaging over times measured for
a number or random states of the game. If tsaved < −tlimit,
we switch to normal search thereby limiting the negative im-
pact to tlimit.

984

Discussion
The presented method can be used to detect and exploit
many symmetries that often occur in games, e.g., object
symmetries (functionally equivalent objects), configuration
symmetries (symmetries between collections of objects and
their relations to each other), and action symmetries (actions
leading to symmetric states). This includes the typical sym-
metries of board games, like rotation, and reflection, as well
as symmetric roles.

None of the tested games contained object symmetries.
This type of symmetries leads to a number of symmetries
exponential in the number of functionally equivalent ob-
jects and should therefore be handled more efficiently than
with our approach. The method described in (Fox & Long
2002) for planning can be easily adapted to the general game
playing domain. Plan permutation symmetries, that are ex-
ploited in e.g., (Long & Fox 2003), are not to be confused
with our symmetric action sequences. Symmetric plan per-
mutations are permutations of a plan that lead to the same
state, whereas symmetric action sequences are sequences
of element-wise symmetric joint actions. Plan permutation
symmetries are typically exploited in a game playing pro-
gram by a transposition table without any symmetry detec-
tion.

A previous approach to symmetry detection in general
games is (Banerjee, Kuhlmann, & Stone 2006). The paper
informally describes a method to detect certain symmetries
in board games that is potentially very expensive, because
it requires to enumerate all states of a game. Furthermore,
it only works under the assumption that one can detect the
board in the game. Our approach is typically much cheaper
because it is based on the game rules instead of the states,
and more general because it is not limited to board games.

Because the symmetry detection is based on the game de-
scription instead of the game graph itself, it can only detect
symmetries that are apparent in the game description. Con-
sequently, symmetry detection based on different game de-
scriptions for the same game may lead to different results.
E.g., adding the tautological rule p(a) :- a\=a. to the
Tic-tac-toe example, would mean that interchanging a and
c results in a different game description. Therefore the sym-
metry between a and c wouldn’t be detected. Consequently,
our approach may benefit from removing superfluous rules
and transforming the game description to some normal form.

Another limitation of the approach is that it does not allow
to map arbitrary terms to each other. E.g., the approach can
not detect the symmetry in a variant of Tic-tac-toe, where
we rename a to f(a), because an automorphism only maps
single vertices to each other but f(a) is not represented by
a single vertex in the rule graph, while c is. It is in principle
possible to overcome this limitation by propositionalizing a
game description and using one vertex per proposition. The
resulting rule graphs would be very similar to propositional
automata and could in addition be used to improve reasoning
speed(Schkufza, Love, & Genesereth 2008). However, this
is only feasible for small games because the ground repre-
sentation of the game rules can be exponentially larger than
the original one. Not only does propositionalizing of large
game descriptions take valuable time, but computing auto-

morphisms of the resulting large rule graphs is also more
expensive. Therefore, we are working on partially ground-
ing the game rules in order to limit the size of the description
but still benefit from the advantages of propositional repre-
sentations when possible.

Summary
We presented a sound method to compute symmetries of a
game whose rules are given in the Game Description Lan-
guage. Symmetries are computed by transforming the rules
of the game into a vertex-colored graph and computing au-
tomorphisms of this graph. Depending on the game descrip-
tion our method is able to detect many of the typical sym-
metries that occur in games and planning problems. Addi-
tionally, we presented an approach that is able to exploit the
detected symmetries efficiently in many games.

References
Aloul, F. A.; Ramani, A.; Markov, I. L.; and Sakallah, K. A.
2002. Solving difficult sat instances in the presence of sym-
metry. In Design Automation Conference. University of
Michigan.

Banerjee, B.; Kuhlmann, G.; and Stone, P. 2006. Value func-
tion transfer for general game playing. In ICML workshop
on Structural Knowledge Transfer for Machine Learning.

Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI), 956–961.

Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. In Proceedings of AIPS’02.

Kuhlmann, G., and Stone, P. 2007. Graph-based domain
mapping for transfer learning in general games. In Proceed-
ings of The European Conference on Machine Learning.

Long, D., and Fox, M. 2003. Symmetries in planning prob-
lems. In Proceedings of SymCon’03 (CP Workshop).

Love, D.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2008. General Game Playing: Game Description
Language Specification. Stanford Logic Group.

Puget, J.-F. 2005. Automatic detection of variable and value
symmetries. In van Beek, P., ed., CP, volume 3709 of Lec-
ture Notes in Computer Science, 475–489. Springer.

Schiffel, S., and Thielscher, M. 2009. A multiagent se-
mantics for the game description language. In International
Conference on Agents and Artificial Intelligence (ICAART).
Springer.

Schkufza, E.; Love, N.; and Genesereth, M. R. 2008.
Propositional automata and cell automata: Representational
frameworks for discrete dynamic systems. In Australasian
Conference on Artificial Intelligence. Springer.

Zhao, D.; Schiffel, S.; and Thielscher, M. 2009. Decom-
position of multi-player games. In Proceedings of the Aus-
tralasian Joint Conference on Artificial Intelligence.

Zobrist, A. L. 1970. A new hashing method with applica-
tion for game playing. Technical Report 88, University of
Wisconsin.

985

