
Learning Simulation Control in General Game-Playing Agents

Hilmar Finnsson and Yngvi Björnsson
School of Computer Science

Reykjavı́k University
{hif,yngvi}@ru.is.

Abstract

The aim of General Game Playing (GGP) is to create intel-
ligent agents that can automatically learn how to play many
different games at an expert level without any human inter-
vention. One of the main challenges such agents face is to
automatically learn knowledge-based heuristics in real-time,
whether for evaluating game positions or for search guidance.
In recent years, GGP agents that use Monte-Carlo simulations
to reason about their actions have become increasingly more
popular. For competitive play such an approach requires an
effective search-control mechanism for guiding the simula-
tion playouts. In here we introduce several schemes for au-
tomatically learning search guidance based on both statistical
and reinforcement learning techniques. We compare the dif-
ferent schemes empirically on a variety of games and show
that they improve significantly upon the current state-of-the-
art in simulation-control in GGP. For example, in the chess-
like game Skirmish, which has proved a particularly challeng-
ing game for simulation-based GGP agents, an agent employ-
ing one of the proposed schemes achieves 97% winning rate
against an unmodified agent.

Introduction
From the inception of the field of Artificial Intelligence

(AI), over half a century ago, games have played an impor-
tant role as a test-bed for advancements in the field. Artifi-
cial intelligence researchers have over the decades worked
on building high-performance game-playing systems for
games of various complexity capable of matching wits with
the strongest humans in the world. These highly specialized
game-playing system are engineered and optimized towards
playing the particular game in question.

In General Game Playing (GGP) the goal is to create in-
telligent agents that can automatically learn how to skillfully
play a wide variety of games, given only the descriptions of
the game rules. This requires that the agents learn diverse
game-playing strategies without any game-specific knowl-
edge being provided by their developers. A successful re-
alization of this task poses interesting research challenges
for artificial intelligence, involving sub-disciplines such as
knowledge representation, agent-based reasoning, heuristic
search, computational intelligence, and machine learning.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The traditional way GGP agents reason about their actions
is to use a minimax-based game-tree search along with its
numerous accompanying enhancements. The most success-
ful GGP players used to be based on that approach (Schif-
fel and Thielscher 2007; Clune 2007; Kuhlmann, Dresner,
and Stone 2006). Unlike agents which play one specific
board game, GGP agents are additionally augmented with
a mechanism to automatically learn an evaluation func-
tion for assessing the merits of the leaf positions in the
search tree. In recent years, however, a new paradigm for
game-tree search has emerged, the so-called Monte-Carlo
Tree Search (MCTS) (Coulom 2006; Kocsis and Szepesvári
2006). In the context of game playing, Monte-Carlo sim-
ulations were first used as a mechanism for dynamically
evaluating the merits of leaf nodes of a traditional minimax-
based search (Abramson 1990; Bouzy and Helmstetter 2003;
Brügmann 1993), but under the new paradigm MCTS has
evolved into a full-fledged best-first search procedure that
can replace minimax-based search altogether. MCTS has in
the past few years substantially advanced the state-of-the-art
in several game domains where minimax-based search has
had difficulties, most notably in computer Go. Instead of re-
lying on an evaluation function for assessing game positions,
pre-defined search-control knowledge is used for effectively
guiding the simulation playouts (Gelly and Silver 2007).

The MCTS approach offers several attractive properties
for GGP agents, in particular, it avoids the need to con-
struct a game-specific evaluation function in real-time for
a newly seen game. Under this new paradigm the main fo-
cus is instead on online learning of effective search-control
heuristics for guiding the simulations. Although still a chal-
lenging task, it is in some ways more manageable, because
such heuristics do not depend on game-specific properties.
In contrast, automatically learned heuristic evaluation func-
tions that fail to capture essential game properties result in
the evaluations becoming highly inaccurate and, in the worst
case, even causing the agent to strive for the wrong objec-
tives. GGP agents that apply the MCTS approach are now
becoming increasingly mainstream, in part inspired by the
success of CADIAPLAYER (Björnsson and Finnsson 2009).

In this paper we investigate several domain-independent
search-control learning mechanisms in CADIAPLAYER. The
main contributions are new search-control learning schemes
for GGP agents as well as an extensive empirical evalua-

954

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Figure 1: An overview of a single simulation.

tion of different search-control mechanisms, both old and
new. There is no single scheme that dominates the others
on all the games tested. We instead contrast their relative
strengths and weaknesses and pinpoint game-specific char-
acteristics that influence their effectiveness. We also show
that by combining them one can improve upon the current
state-of-the-art of simulation-based search-control in GGP.

The paper is structured as follows. In the next section
we give a brief overview of the MCTS approach and its im-
plementation in CADIAPLAYER. Next we introduce several
different search-control mechanism, which we then empiri-
cally evaluate using four different games. Finally, we survey
related work before concluding and discussing future work.

Monte-Carlo Tree Search GGP Player
Monte-Carlo Tree Search (MCTS) continually runs simula-
tions to play entire games, using the result to gradually build
a game tree in memory where it keeps track of the average
return of the state-action pairs played, Q(s, a). When the
deliberation time is up, the method chooses between the ac-
tions at the root of the tree based on which one has the high-
est average return value.

Fig. 1 depicts the process of running a single simulation:
the start state is denoted with S and the terminal state with T .
Each simulation consists of four strategic steps: selection,
playout, expansion, and back-propagation. The selection
step is performed at a beginning of a simulation for choosing
actions while still in the tree (upper half of figure), while the
playout step is used for choosing actions once the simulated
episode falls out of the tree and until the end of the game
(bottom half of figure). The expansion step controls how the
game tree is grown. Finally, in the back-propagation step,
the result value of the simulation is used to update Q(s, a)
as well as other relevant information if applicable.

The Upper Confidence Bounds applied to Trees (UCT) al-
gorithm (Kocsis and Szepesvári 2006) is commonly used in
the selection step, as it offers an effective and a sound way to
balance the exploration versus exploration tradeoff. At each
visited node in the tree the action a∗ taken is selected by:

a∗ = argmaxa∈A(s)

{
Q(s, a) + C

√
lnN(s)
N(s, a)

}
The N(s) function returns the number of simulation visits
to a state, and the N(s, a) function the number of times an
action in a state has been sampled. A(s) is the set of pos-
sible actions in state s and if it contains an action that has
never been sampled before it is selected by default as it has
no estimated value. If more than one action is still without
an estimate a random tie-breaking scheme is used to select
the next action. The term added toQ(s, a) is called the UCT
bonus. It is used to provide a balance between exploiting the
perceived best action and exploring the less favorable ones.
Every time an action is selected the bonus goes down for
that action becauseN(s, a) is incremented, while its siblings
have their UCT bonuses raised asN(s) is incremented. This
way, when good actions have been sampled enough to give
an estimate with some confidence, the bonus of the subopti-
mal ones may have increased enough for them to get picked
again for further exploration. If a suboptimal action is found
to be good, it needs a smaller bonus boost (if any) to be
picked again, but if it still looks the same or worse it will
have to wait longer. The C parameter is used to tune how
much influence the UCT bonus has on the action selection
calculations.

In the playout step there are no Q(s, a) values available
for guiding the action selection, so in the most straightfor-
ward case one would choose between available actions uni-
formly at random. However, there exists several more so-
phisticated schemes for biasing the selection in an informed
way, as discussed in the next section.

The expansion step controls how the search tree grows. A
typical strategy is to append only one new node to the tree
in each simulation: the first node encountered after stepping
out of the tree (Coulom 2006). This is done to avoid using
excessive memory, in particular if simulations are fast. In
Fig. 1 the newly added node in this episode is labeled as N .

For details on the MCTS search in CADIAPLAYER
see (Finnsson 2007; Björnsson and Finnsson 2009).

Search Controls
In this section we describe five search-control mechanisms
for guiding simulation runs in MCTS. The first one, MAST,
is the one used in the 2008 version of CADIAPLAYER; the
next one, TO-MAST, is identical to the first except that it
is more restrictive about its learning. The third one, PAST,
is more sophisticated about how it generalizes the learned
control information. The fourth method, RAVE, is an estab-
lished technique to expedite search-control learning in Go
programs. Finally we describe a new method, FAST, that
uses temporal-difference learning (Sutton 1988) to generate
knowledge for search control.

Move-Average Sampling Technique
Move-Average Sampling Technique (MAST) (Finnsson and
Björnsson 2008) is the search-control method used by CA-
DIAPLAYER when winning the AAAI 2008 GGP competi-

955

tion. The method learns search-control information during
the back-propagations step, which it then uses in future play-
out steps to bias the random action selection towards choos-
ing more promising moves. More specifically, when a return
value of a simulation is backed up from T to S (see Fig. 1),
then for each action a on the path a global (over all simula-
tions) average for the action a, Qh(a), is incrementally cal-
culated and kept in a lookup table. Moves found to be good
on average, independent of a game state, will get higher val-
ues. The rational is that such moves are more likely to be
good whenever they are available, e.g. placing a piece in
one of the corner cells in Othello. In the playout step, the
action selections are biased towards selecting such moves.
This is done using the Gibbs (or Boltzmann) distribution as
below:

P(a) =
eQh(a)/τ

Σnb=1e
Qh(b)/τ

where P(a) is the probability that action a will be chosen in
the current playout state andQh(a) is the average of all val-
ues backed up in any state when action a has been selected.
This results in actions with a high Qh(a) value becoming
more likely to be chosen. One can stretch or flatten the above
distribution using the τ parameter (τ → 0 stretches the dis-
tribution, whereas higher values make it more uniform).

Tree-Only MAST
Tree-Only MAST (TO-MAST) is a slight variation of MAST.
Instead of updating the Qh(a) for an entire simulation
episode, it does so only for the part within the game tree
(from state N back to S). This scheme is thus more selec-
tive about which action values to update, and because the
actions in the tree are generally more informed than those
in the playout part, this potentially leads to decisions based
on more robust and less variance data. In short this method
prefers quality of data over sample quantity for controlling
the search.

Predicate-Average Sampling Technique
Predicate-Average Sampling Technique (PAST) has a finer
granularity of its generalization than the previous schemes.
As the name implies, it uses the predicates encountered in
the states to discriminate how to generalize.1

This method works as MAST except that now predicate-
action pair values are maintained, Qp(p, a), instead of ac-
tion values Qh(a). During the back-propagation, in a state
s where action a was taken, Qp(p, a) is updated for all
p ∈ P (s) where P (s) is the set of predicates that are true
in state s. In the playout step, an action is chosen as in
MAST except that in the P(a) distribution Qh(a) is sub-
stituted with Qp(p′, a), where p′ is the predicate in the state
s with the maximum predicate-action value for a.

Whereas MAST concentrates on moves that are good on
average, PAST can realize that a given move is good only
in a given context, e.g. when there is a piece on a certain

1A game positions, i.e. a state, is represented as a list of predi-
cates that hold true in the state.

square. To ignore PAST values with unacceptably high vari-
ance, they are returned as the average game value until a
certain threshold of samples is reached.

Rapid Action Value Estimation
Rapid Action Value Estimation (RAVE) (Gelly and Silver
2007) is a method to speed up the learning process inside
the game tree. In Go this method is known as all-moves-as-
first heuristic because it uses returns associated with moves
further down the simulation path to get more samples for
duplicate moves available, but not selected, in the root state.
When this method is applied to a tree structure as in MCTS
the same is done for all levels of the tree. When backing up
the value of a simulation, we update in the tree not only the
value for the action taken, Q(s, a), but also sibling action
values,QRAV E(s, a′), if and only if action a′ occurs further
down the path being backed up (s to T).

As this presents bias into the average values, which is
mainly good initially when the sampled data is still unre-
liable, these rapidly learned estimates should only be used
for high variance state-action values. With more simulations
the state-action averages Q(s, a) become more reliable, and
should be trusted more than the RAVE value QRAV E(s, a).
To accomplish this the method stores the RAVE value sepa-
rately from the actual state-action values, and then weights
them linearly as:

β (s)×QRAV E(s, a) + (1− β (s))×Q(s, a)

where

β (s) =

√
k

3n (s) + k

The parameter k is called the equivalence parameter and
controls how many state visits are needed for both estimates
to be weighted equal. The function n(s) tells how many
times state s has been visited.

Features-to-Action Sampling Technique
The aforementioned schemes use generic concepts such as
actions and predicates as atomic features for their learning.
This seems simplistic in contrast to human players, which
also use high-level features such as piece types and board ge-
ometry in their reasoning. Although it has the benefit of al-
lowing effective deployment over a large range of disparate
games, the lack of understanding of high-level game con-
cepts does severely handicap GGP players in certain types
of games, for example chess-like games where a good un-
derstanding of the different piece type values is essential for
competitive play. GDL, the language for writing GGP game
descriptions, does not allow for pieces or board geometry to
be explicitly stated; nonetheless, with careful analysis such
concepts can be inferred from game descriptions. Now we
describe a new search-control learning scheme that can be
used in such cases.

With Features-to-Action Sampling Technique (FAST) we
use template matching to identify common board game fea-
tures, currently detecting two such: piece types and cells
(squares). Piece type is the dominant feature set, but it is
only judged relevant if it can take on more than one value;

956

if not, we instead consider cell locations as our feature set.
We use TD(λ) (Sutton 1988) to learn the relative importance
of the detected features, e.g. the values of the different type
of pieces or the value of placing a piece on a particular cell.
Each simulation, both on the start- and play-clock, generates
an episode s1 → s2 → ... → sn that the agent learns from
by applying the delta rule to each state st in the episode:

~δ = ~δ + α[Rλt − V (st)]5~θ V (st)

whereRλt is the λ-return (average of exponentially weighted
n-step TD returns), V (s) is our value function, and5~θV (s)
is its gradient. A reward is given at the end of the episode,
as the difference of the players’ goal values. The ~δ is then
used in between episodes to update the weight vector ~θ used
by the value function to linearly weigh and combine the de-
tected features ~f(s):

V (s) =
|~f |∑
i=1

θi ∗ fi(s)

In games with different piece types, each feature fi(s) rep-
resents the number of pieces of a given type in state s (we do
not detect piece symmetry, so a white rook is considered dif-
ferent from a black one). In games where cell-based features
are instead detected each feature is binary, telling whether a
player has a piece in a given cell (i.e. a two-player game
with N cells would result in 2N features).

The value function is not used directly to evaluate states in
our playouts. Although that would be possible, it would re-
quire executing not only the actions along the playout path,
but also all sibling actions. This would cause a considerable
slowdown as executing actions is a somewhat time consum-
ing operation in GGP . So, instead we map the value function
into the sameQ(a) framework as used by the other schemes.
This is done somewhat differently depending on type of de-
tected features and actions. For example, for piece-type fea-
tures in games where pieces move around the mapping is:

Q(a) =
{
−(2 ∗ θPce(to) + θPce(from)), if capture move
−100 otherwise

where θPce(from) and θPce(to) are the learned values of the
pieces on the from and to squares, respectively. This way
capture moves get added attention when available and cap-
turing a high ranking piece with a low ranking one is pre-
ferred. For the cell features the mapping is:

Q(a) = c ∗ θp,to
where θp,to is the weight for the feature of player p having a
piece on square to and c is a positive constant. Now that we
have established a way to calculate Q(a) the P(a) distribu-
tion may be used in the same way as for the other schemes
to choose between actions.

Empirical Evaluation
We matched programs using the aforementioned search-
control schemes against two baseline programs. They all

share the same code base to minimize implementation-
specific issues. One important difference between our cur-
rent baseline agents and the ones used in our previous stud-
ies, is that they now have a more effective transposition ta-
ble. The value of the UCT parameter C is set to 40 (for per-
spective, possible game outcomes are in the range 0-100).
The τ parameter of the P(a) distribution in MAST, TO-
MAST and PAST is set to 10, but to 1 for FAST. The sample
threshold for a PAST value to be used is set to 3, and the
equivalence parameter for RAVE is set to 1000. In FAST
the λ parameter is set to 0.99, the step-size parameter α to
0.01, and c to 5. These parameters are the best known set-
tings for each scheme, based on trial and error testing.

In the tables that follow, each data point represents the
result of a either a 300-game (first two tables) or 200-
game (latter two tables) match, with both a winning per-
centage and a 95% confidence interval shown. We tested
the schemes on four different two-player turn-taking games:
Checkers, Othello, Breakthrough, and Skirmish2. They were
chosen because some variants of them are commonly fea-
tured in the GGP competitions, as well as some have proved
particularly challenging for simulation-based agents to play
well. The matches were run on Linux based 8 processor In-
tel(R) Xeon(R) E5430 2.66GHz CPU computer with 4GB
of RAM. Each agent used a single processor. The startclock
and the playclock were both set to 10 seconds.

Individual Schemes
Table 1 shows the result from matching the five search-
control schemes individually against a base MCTS player.
The base player uses UCT in the selection step and chooses
actions uniformly at random in the playout step. All five
schemes show an significant improvement over the base
player in all games except Skirmish (with the exception that
FAST has no effect in Checkers simply because the learning
scheme was not initiated by the FAST agent as no template
matched the way captures are done in that game). In the
game of Skirmish, however, the FAST agent does extremely
well, maybe not that surprising given that it was devised for
use in such types of games.

As the MAST scheme has been in use in CADIAPLAYER
for some time, and as such represented the state-of-the-art in
simulation search-control in GGP in 2008, we also matched
the other schemes against CADIAPLAYER as a baseline
player. The result in shown in Table 2. There are several
points of interest. First of all, the first three schemes improve
upon MAST in the game of Checkers. In the game Othello,
RAVE and FAST also more or less hold their own against
MAST. However, in the game Breakthrough, MAST clearly
outperforms both RAVE and FAST. This is not of a surprise
because the MAST scheme was originally motivated to over-
come problems surfacing in that particular game.

It is also of interest to contrast TO-MAST’s performance
on different games. The only difference between MAST and

2Skirmish is a chess-like game. We used the variation played in
the 2007 GGP finals where each player has two knights, two bish-
ops, two rooks, and four pawns (can only move by capturing). The
objective is to capture as many of the opponent pieces as possible.

957

Table 1: Tournament against the MCTS agent.
Game MAST win % TO-MAST win % PAST win % RAVE win % FAST win %
Breakthrough 90.00 (± 3.40) 85.33 (± 4.01) 85.00 (± 4.05) 63.33 (± 5.46) 81.67 (± 4.39)
Checkers 56.00 (± 5.37) 82.17 (± 4.15) 57.50 (± 5.36) 82.00 (± 4.08) 50.33 (± 5.36)
Othello 60.83 (± 5.46) 50.17 (± 5.56) 67.50 (± 5.24) 70.17 (± 5.11) 70.83 (± 5.10)
Skirmish 41.33 (± 5.18) 48.00 (± 5.29) 42.33 (± 5.16) 46.33 (± 5.30) 96.33 (± 1.86)

Table 2: Tournament against the MAST agent.
Game TO-MAST win % PAST win % RAVE win % FAST win %
Breakthrough 52.33 (± 5.66) 45.67 (± 5.65) 20.33 (± 4.56) 39.67 (± 5.55)
Checkers 82.00 (± 4.18) 55.83 (± 5.35) 78.17 (± 4.36) 46.17 (± 5.33)
Othello 40.67 (± 5.47) 49.17 (± 5.60) 58.17 (± 5.49) 56.83 (± 5.55)
Skirmish 56.00 (± 5.31) 43.33 (± 5.26) 59.83 (± 5.15) 97.00 (± 1.70)

Table 3: Tournament: MCTS vs. Scheme Combinations.
Game RM win % RF win %
Breakthrough 89.00 (± 4.35) 76.50 (± 5.89)
Checkers 84.50 (± 4.78) 77.00 (± 5.37)
Othello 79.75 (± 5.52) 81.00 (± 5.32)
Skirmish 45.00 (± 6.55) 96.00 (± 2.34)

TO-MAST is that the former updates action values in the
entire episode, whereas the latter only updates action values
when back-propagating values in the top part of the episode,
that is, when in the tree. TO-MAST significantly improves
upon MAST in the game of Checkers, whereas it has decre-
mental effects in the game of Othello. A possible explana-
tion is that actions generalize better between states in dif-
ferent game phases in Othello than in Checkers, that is, an
action judged good towards the end of the game is more of-
ten also good early on if available. For example, placing a
piece on the edge of the board is typically always good and
such actions, although not available early on in the game,
start to accumulate credit right away.

PAST seems to have an advantage on MAST in only
Checkers and then just slightly, but the main problem with
PAST is its overhead resulting in fewer simulations per sec-
ond; it seems that we do not gain enough from the better
information to offset the simulation loss. FAST still clearly
remains the best scheme to use for Skirmish.

Combined Schemes
The MAST, TO-MAST, PAST, and FAST values are for ac-
tion selection in the playout step, whereas RAVE’s action
selection is for the selection step. It thus makes sense to try
to combine RAVE with the others. The results of a com-
bined RAVE/MAST (RM) and RAVE/FAST(RF) schemes
playing against the same base players as in previous exper-
iments are given in Tables 3 and 4. The result shows that
combining schemes this way offers overall a genuine im-
provement over using the schemes individually. Especially
noteworthy are the improvement gains in Othello.

Related Work
One of the first general game-playing systems was Pell’s
METAGAMER (Pell 1996), which played a wide variety of
simplified chess-like games. CLUNEPLAYER (Clune 2007)

Table 4: Tournament: MAST vs. Scheme Combinations.
Game RM win % RF win %
Breakthrough 50.50 (± 6.95) 38.50 (± 6.76)
Checkers 83.50 (± 4.87) 74.00 (± 5.81)
Othello 73.75 (± 6.01) 66.00 (± 6.43)
Skirmish 53.00 (± 6.47) 97.00 (± 2.04)

and FLUXPLAYER (Schiffel and Thielscher 2007) were the
winners of the 2005 and 2006 GGP competitions, respec-
tively. UTEXAS LARG was also a prominent agent in
those two competitions, and novel in that it used knowl-
edge transfer to expedite the learning process. The afore-
mentioned agents all use a traditional game-tree search with
a learned heuristic evaluation function. The most recent ver-
sion of CLUNEPLAYER also has a Monte-Carlo simulation
module, and the agent decides at the beginning of a game
which search approach to use (Clune 2008). Besides CA-
DIAPLAYER, which won the 2007 and 2008 GGP competi-
tions, two other strong agents were also simulation-based,
MALIGNE and ARY (which won the 2009 competition).

As for learning simulation guidance in GGP the MAST
scheme was proposed in (Finnsson and Björnsson 2008). A
preliminary comparison study of some of the search-control
schemes discussed here is found in (Finnsson and Björnsson
2009), whereas FAST and RF are first introduced here. In
(Sharma, Kobti, and Goodwin 2008) a method to generate
search-control knowledge for GGP agents based on both ac-
tion and state predicate values is presented. The action bias
consists of the sum of the action’s average return value and
the value of the state being reached. The value of the state
is computed as the sum of all state predicate values, where
the value of each state predicate is learned incrementally us-
ing a recency weighted average. Our PAST method learns
state predicates as simple averages and uses them quite dif-
ferently, in particular, we found that a bias based on a max-
imum state predicate value is more effective than their sum.
Most recently in (Kirci, Schaeffer, and Sturtevant 2009) a
method is introduced that generates features for the game be-
ing played by examining state differences to pinpoint predi-
cates that result in moves beneficial towards winning or for
fending off attacks. The move and the relevant predicates
constitute a feature. During the playout the agent scans for
these features and if present uses them to guide the search.

958

Monte Carlo Tree Search (MCTS) has been used success-
fully to advance the state-of-the-art in computer Go, and
is used by several of the strongest Go programs, including
MOGO (Gelly et al. 2006) and FUEGO (Enzenberger and
Müller 2009). Experiments in Go showing how simulations
can benefit from using an informed playout policy are pre-
sented in (Gelly and Silver 2007). The method, however,
requires game-specific knowledge which makes it difficult
to apply in GGP. The paper also introduced RAVE.

Conclusions and Future Work
In this paper we empirically evaluate several search-control
schemes for simulation-based GGP agents. The MAST, TO-
MAST, PAST and FAST action selection is in the MCTS
playout step, whereas RAVE biases the action selection in
the selection step.

It is clear that the design and choice of a search-control
scheme greatly affects the playing strength of a GGP agent.
By combining schemes that work on disparate parts of the
simulation rollout, further performance improvements can
be gained, as showed by RAVE/MAST and RAVE/FAST. It
is also important to consider both where the learning experi-
ences come from (e.g., the performance difference of MAST
vs. TO-MAST), and how they are generalized. For example,
the PAST scheme is capable of generalizing based on con-
text, and that gives significant benefits in some games. Over-
all, none of the schemes is dominating in the sense of im-
proving upon all the others on all four test-bed games. Not
surprisingly, the diverse properties of the different games fa-
vor some schemes more than others. Also, agents that in-
fer game-specific properties from a game description, like
FAST, offer great potentials for games that have until now
been known to be problematic for the MCTS approach.

For future work there are still many interesting research
avenues to explore for further improving simulation-based
search control. For example, there is still a lot of work
needed to further improve FAST-like schemes, e.g. for them
to understand a much broader range of games and game
concepts. Nonetheless, looking at the finals of the 2007
and 2008 GGP competitions (which our agent won), FAST
would have detected feature candidates in all the games.
There is also specific work that can be done to further im-
prove the other schemes discussed, for example, currently
PAST introduces considerable overhead in games where
states contain many predicates, resulting in up to 20% slow-
down. By updating the predicates more selectively we be-
lieve that most of this overhead can be eliminated while still
maintaining the benefits. There is also scope for combining
the search-control schemes differently: one promising pos-
sibility that comes to mind is to combine FAST and MAST.
Finally, we believe that there is still room for improvements
by tuning the various different parameters used by the meth-
ods, especially if one could automatically tailor them to the
game at hand.

Acknowledgments
This research was supported by grants from The Icelandic
Centre for Research (RANNÍS).

References
Abramson, B. 1990. Expected-outcome: A general model
of static evaluation. IEEE Trans. PAMI 12(2):182–193.
Björnsson, Y., and Finnsson, H. 2009. Cadiaplayer: A
simulation-based general game player. IEEE Trans. on Com-
putational Intelligence and AI in Games 1(1):4–15.
Bouzy, B., and Helmstetter, B. 2003. Monte-Carlo Go De-
velopments. In van den Herik, H.; Iida, H.; and Heinz, E.,
eds., Advances in Computer Games 10: Many Games, Many
Challenges, 159–174. Kluwer, Boston, MA, USA.
Brügmann, B. 1993. Monte Carlo Go. Technical report,
Physics Department, Syracuse University.
Clune, J. 2007. Heuristic evaluation functions for General
Game Playing. In 22nd AAAI, 1134–1139.
Clune, J. E. 2008. Heuristic Evaluation Functions for Gen-
eral Game Playing. PhD dissertation, University of Califor-
nia, Los Angeles, Department of Computer Science.
Coulom, R. 2006. Efficient selectivity and backup operators
in Monte-Carlo tree search. In CG2006, 72–83.
Enzenberger, M., and Müller, M. 2009. Fuego - an open-
source framework for board games and go engine based on
monte-carlo tree search. Technical Report 09-08, Dept. of
Computing Science, University of Alberta.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based
approach to general game playing. In 23rd AAAI, 259–264.
Finnsson, H., and Björnsson, Y. 2009. Simulation control in
general game playing agents. In GIGA’09 The IJCAI Work-
shop on General Game Playing.
Finnsson, H. 2007. CADIA-Player: A General Game Play-
ing Agent. Master’s thesis, Reykjavı́k University.
Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in UCT. In Ghahramani, Z., ed., ICML, volume
227, 273–280. ACM.
Gelly, S.; Wang, Y.; Munos, R.; and Teytaud, O. 2006. Mod-
ification of UCT with patterns in Monte-Carlo Go. Technical
Report 6062, INRIA.
Kirci, M.; Schaeffer, J.; and Sturtevant, N. 2009. Fea-
ture learning using state differences. In GIGA’09 The IJCAI
Workshop on General Game Playing.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In ECML, 282–293.
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Automatic
heuristic construction in a complete general game player. In
21st AAAI, 1457–62.
Pell, B. 1996. A strategic metagame player for general
chess-like games. Computational Intelligence 12:177–198.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In 22nd AAAI, 1191–1196.
Sharma, S.; Kobti, Z.; and Goodwin, S. 2008. Knowledge
generation for improving simulations in UCT for general
game playing. In AI 2008: Advances in Artificial Intelli-
gence. Springer. 49–55.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3:9–44.

959

