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Abstract

Multi-instance learning, as other machine learning
tasks, also suffers from the curse of dimensionality. Al-
though dimensionality reduction methods have been in-
vestigated for many years, multi-instance dimension-
ality reduction methods remain untouched. On the
other hand, most algorithms in multi-instance frame-
work treat instances in each bag as independently and
identically distributed (i.i.d.) samples, which fail to uti-
lize the structure information conveyed by instances in
a bag. In this paper, we propose a multi-instance di-
mensionality reduction method, which treats instances
in each bag as non-i.i.d. samples. To capture the struc-
ture information conveyed by instances in a bag, we re-
gard every bag as a whole entity. To utilize the bag label
information, we maximize the bag margin between pos-
itive and negative bags. By maximizing the defined bag
margin objective function, we learn a subspace to ob-
tain salient representation of original data. Experiments
demonstrate the effectiveness of the method.

Introduction

Multi-instance learning originated from investigating drug
activity prediction (Dietterich, Lathrop, and Lozano-Perez
1997). In multi-instance learning, each training example is
a bag containing many instances. A bag is positive if it con-
tains at least one positive instance; otherwise it is labeled as
negative bag. The labels of bags in training set are known.
However, we do not know the labels of instances in the bags.
The framework of multi-instance has attracted much atten-
tion in various domains such as object detection (Chen and
Wang 2004), information retrieval (Settles, Graven, and Ray
2008), image classification (Qi et al. 2007), and biomedical
informatics (Fung et al. 2007).

The “curse of dimensionality” is a serious problem for
machine learning and pattern recognition tasks involving
high-dimensional data. Reducing the dimensionality is
an important tool for addressing this problem. Based on
whether the label information is used or not, techniques
for reducing dimensionality can be categorized into three
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classes, i.e. supervised (Fisher 1936), semi-supervised
(Zhang and Yeung 2008), and unsupervised (Devijver and
Kittler 1982) dimensionality reduction methods. Due to the
ambiguity of not knowing which of the instances in a pos-
itive bag are the actual positive instances and which ones
are not, either supervised or semi-supervised dimensional-
ity reduction methods, which need to use the labels of in-
stances, could not be directly applied to multi-instance task.
On the other hand, unsupervised dimensionality reduction
methods that ignore the labels of bags are not suitable to
cope with this issue either. Although multi-instance learning
often involves high-dimensional data problem, to the best of
our knowledge, there is no dimensionality reduction method
designed for solving this issue.

Another point worth mentioning is the distributions of in-
stances in bags. Most recent multi-instance methods (Gart-
ner et al. 2002) (Andrews, Tsochantaridis, and Hofmann
2003) (Zhou and Zhang 2003) treat instances in each bag
as independently and identically distributed (i.i.d.), which
ignore the valuable structure information conveyed by in-
stances in a bag. Actually, as mentioned in (Zhou and Xu
2007) and (Qi et al. 2007), instances in a bag are hardly
identical and independent. Simply treating different image
segmentations as independent instances may lose important
information of inter-correlations among instances. For ex-
ample, in an object detection problem (Fig.1), monkeys are
very likely to locate in trees. It means in an image bag (that
is divided into several image segmentations/instances), the
instances that contain monkeys are actually correlated with
those instances that contain trees. Such correlation informa-
tion among instances is helpful to the object detection appli-
cations (Chen and Wang 2004). Therefore, it is more desired
to treat instances in each bags as non-i.i.d. samples in multi-
instance learning. However, how to explore the dependency
relations of instances in each bag is a thorny issue, and few
multi-instance methods can cope with the challenge.

In this paper, we propose a multi-instance dimensional-
ity reduction algorithm named as MidLABS (Multi-Instance
Dimensionality reduction by Learning a mAximum Bag
margin Subspace), which does not regard instances in each
bag as i.i.d. samples. To capture the structure information
conveyed by instances, every bag is treated as a whole entity
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Figure 1: In the image bag, instances(segmentations) con-
taining monkeys are correlated with those instances contain-
ing trees.

and instances in the bag are treated as inter-dependent com-
ponents of the entity. According to this basic idea, we define
a bag margin objective function that involves the discrimi-
native information of bags. Then, based on the criteria of
maximizing the margin of positive and negative bags, a sub-
space is learned for multi-instance dimensionality reduction
task.

We organize the rest of this paper as follows. In section
2, we briefly introduce some related works. MidLABS is
proposed in section 3. In section 4, we report on experimen-
tal results. Finally in Section 5, we conclude the paper and
discuss some future directions.

Related Work

As a powerful framework, multi-instance learning (Diet-
terich, Lathrop, and Lozano-Perez 1997) has been investi-
gated for many years, and many algorithms have been de-
veloped, such as Diverse Density (Maron and Lozano-Perez
1998), Bayesian-KNN (Wang and Zucker 2000), MI kernels
(Gartner et al. 2002), MI SVMs (Andrews, Tsochantaridis,
and Hofmann 2003), MI Ensembles (Zhou and Zhang 2003)
et al. However, as indicated in (Zhou and Xu 2007), all such
methods treat instances in each bag as independently and
identically distributed samples, which ignore the important
structure information conveyed by inter-correlated instances
in each bag. Nevertheless, encoding structure information
of instances into multi-instance learner is a difficult issue.
As far as we know, (Zhou, Sun, and Li 2009) is the only
multi-instance learner that treats instances as non-i.i.d. sam-
ples. By defining a graph kernel among bags, it explores
the structure information of instances in each bag which sig-
nificantly improves the classification performance in multi-
instance framework.

Our work also relates to Dimensionality Reduction (DR),
which is an effective tool to cope with “the curse of dimen-
sionality”. Many dimensionality reduction algorithms have
been proposed during past few years. According to whether
the label information is needed, Dimensionality Reduction
algorithms can be categorized into supervised DR, semi-
supervised DR, and unsupervised DR methods. Linear Dis-
criminant Analysis (LDA) (Fisher 1936), along with some
LDA based methods (Friedman 1989) (Howland, Jeon, and

Park 2003) (Ye et al. 2004), achieves maximum discrimina-
tion by finding an transformation that maximizes between-
class distance and minimizes within-class distance simulta-
neously. Maximum Margin Criterion (MMC) (Li and Jiang
2003) and some variants (Yan et al. 2004) optimize a dif-
ferent objective function from LDA, but achieve the goal
of maximum discrimination as well. Semi-supervised Dis-
criminant Analysis (SSDA) (Zhang and Yeung 2008) aims
at fulfilling dimensionality reduction task when supervisory
information is available for some but not all training sam-
ples. However, those supervised and semi-supervised DR
algorithms need to avail the labels of instances in training
set, which are impossible to be applied in multi-instance
framework. Principal Component Analysis (PCA) (Devi-
jver and Kittler 1982) which aims at finding the projection
that maximize the data variance, along with some other sim-
ilar algorithms (Weng, Zhang, and Hwang 2003) (Bartel-
maos and Abed-Meraim 2008) (Xu et al. 2009) are a typical
class of unsupervised DR methods. Some other unsuper-
vised nonlinear dimensionality reduction schemes such as
Locally Linear Embedding (LLE) (Roweis and Saul 2000),
ISOMAP (Tenenbaum, Silva, and Langford 2000), and Lo-
cality Preserving Projections (LPP) (He and Niyogi 2003)
employ local symmetries to learn the global structure of
original data. Such methods can compute a low-dimensional
embedding of a set of high-dimensional original data. How-
ever, simply using those unsupervised DR methods to ad-
dress the high-dimensional data in multi-instance learning
framework will miss the label information of bags. There-
fore, a DR method that can take advantage of bag label in-
formation in multi-instance learning framework is very de-
sired. However, to the best of our knowledge, there is no
such method.

In this paper, we propose a dimensionality reduction
method for multi-instance learning framework. The label
information of bags is taken advantage of to ensure a better
discriminant performance. Moreover, we consider the in-
stances in each bag as non-i.i.d. samples, which takes the
structure information of instances in each bag into account.

The Proposed MidLABS Method

In this section, we introduce our MidLABS algorithm,
which takes advantage of both discriminant information of
bags and geometrical structures of instances in each bag.

Dimensionality Reduction for Multi-Instance
Learning Problem

Before presenting the dimensionality reduction problem
for multi-instance learning, we give the formal de-
scription of multi-instance learning as follows. Let
X denote the instance space. Given a data set
T = {(X1, L1), ..., (Xi, Li), ..., (XN, LN )}, where Xi =
{xi1, ..., xij , ..., xi,ni

} ⊂ X is called a bag, Li ∈ L =
{−1, +1} is the label of Xi, and N is the number of train-
ing bags, the goal is to learn some concept from the training
set for correctly labeling unseen bags. Here xij ∈ X is an

instance [xij1, ..., xijk, ..., xijD ]⊤, where xijk is the value of

xij at the kth attribute, ni is the number of instances in Xi,
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and D is the dimension of original space X . If there exists
p ∈ {1, ..., ni} such that xip is a positive instance, then Xi

is a positive bag and thus Li = +1, but the concrete value
of the index p is usually unknown; otherwise Li = −1.

Then, the problem of dimensionality reduction for multi-
instance learning is explained as follows: given a data set
T = {(X1, L1), ..., (Xi, Li), ..., (XN, LN )} as above, find-
ing a transformation matrix W = [w1,w2, ...,wd], which
maps every xij ∈ RD in each bag Xi to yij ∈ Rd in

new bag Yi i.e. yij = W
⊤

xij , such that yij “repre-
sents” xij and Yi “represents” Xi, then we could get data
set {(Y1, L1), ..., (Yi, Li), ..., (YN, LN )} in feature space.

Maximize the Bag Margin Objective Function for
Non-i.i.d. Multi-instance Dimensionality Reduction

We propose a Dimensionality Reduction (DR) method to not
only utilize bag label information, but also capture structure
information of instances in each bag. To capture the struc-
ture information, we treat instances in each bag as a whole
entity and establish the local geometric structure. To utilize
bag label information, we maximize the bag margin between
positive and negative bags after mapping. Specifically, we
define a bag margin objective function involving bag labels
based on a novel distance metric among bags which takes
geometrical structure into account. Then the question of di-
mensionality reduction can be fulfilled by learning a sub-
space which maximizes the bag margin objective function.
In the rest of this subsection, the proposed MidLABS will
be described in details.

First, we consider the particular problem of mapping the
instances in each bag to a line, i.e. yij = w

⊤
xij , i = 1 :

N ; j = 1 : ni, so that different classes of bags stay as distant
as possible, whereas same class of bags stay as close as pos-
sible. In other words, our goal is choosing a “good” vector
w, ‖w‖ = 1, which maximizes the margin of between-class
bags and minimizes the margin of within-class bags. Before
formally introducing the criterion function of this goal, we
must define a distance metric of bags in this line. A reason-
able one is:

Dis(Xi,Xj) =

ni∑

a=1

nj∑

b=1

(yia − yjb)
2 (1)

where yia = w
⊤

xia is the mapped point of xia on this
line from bag Xi, and yjb = w

⊤
xjb is the mapped point of

xjb on this line from bag Xj. This definition means that the
distance between two bags is measured by the sum of pair-
wise instances from different bags. Similar metric is em-
ployed in (Gartner et al. 2002) to setup kernels between
multi-instance bags by treating each bag as a set. This pair-
wise metric methodology has been proven to be effective to
measure the similarity among bags.

However, as we mentioned before, in order to capture the
structure information conveyed by instances, the instances
in a bag should not be simply treated as i.i.d. samples. As
Fig.2 illustrates, the instances(denoted as small squares) in-
side each bag(denoted as ellipse) are correlated in fact, and
the two bags are obviously dissimilar. But if we treat these
instances as i.i.d. samples as indicated in Fig.3, the two

Figure 2: The two bags are obviously dissimilar according
to their different inter-correlations among instances.

Figure 3: If the instances in each bag are treated as i.i.d.
samples, the structure information conveyed by instances is
ignored. In this case the two bags which are actually differ-
ent would be regarded as similar to each other.

bags are regarded as similar. Therefore, the inter-instance
information that provides critical structure information is
worth considering when defining the metric among bags. As
(Tenenbaum, Silva, and Langford 2000) shows that ǫ-graph
is useful for discovering the underlying manifold structure
of data, we establish an ǫ-graph for every bag to discover
the geometrically dependent information among instances
inside the bag. This method is first employed in (Zhou, Sun,
and Li 2009), and appears to be effective in practical appli-
cations. The procedure is very straightforward. For a bag
Xi, we view every instance of it as a node. Then, we com-
pute the distance of every pair of nodes, e.g. xiu and xiv. If
the distance between them is smaller than a pre-set thresh-
old ǫ, then an edge is established between those two nodes.
To reflect the “texture” information of each edge in bag, we
define the edge as the vector difference of two associated
nodes. We choose the node which has the first larger at-
tribute as the start node. For example, we have two nodes
xiu and xiv, and the distance between them is smaller than
ǫ. If there exists a k ∈ [1, D], such that xiuk > xivk and
xium = xivm for all m ∈ [1, k − 1], we choose xiu as the
start node. Hence, the edge associated with xiu and xiv

is e = xiu − xiv . From this method, we could extract
the “texture” or non-i.i.d. information among instances in-
side the bag. Now, we redefine the distance metric of bags
(graphs) in the line w. We use Disnode to incorporate the
information conveyed by the nodes, and use Disedge to in-
corporate the non-i.i.d. information conveyed by the edges.
Formally,

DisG(Xi,Xj) = Disnode(Xi,Xj) + C · Disedge(Xi, Xj)

= ni

a=1

nj

b=1
(w⊤

xia − w
⊤

xjb)
2 +

C ·
mi

c=1

mj

d=1
(w⊤

eic − w
⊤

ejd)2 (2)

Where w
⊤

xia and w
⊤

xjb are declared as before, w⊤
eic

is the projection of the edge eic from bag Xi in the line,
w

⊤
ejd is the projection of the edge ejd from bag Xj in the
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line, mi is the number of edges in Xi, mj is the number of
edges in Xj, and C is the weight ratio of node and edge. (In
our paper, we set C = 1 for the purpose of convenience.)
To avoid numerical problem or any preference for the bag
which has large number of instances, DisG is normalized to

DisG(Xi,Xj) =
Disnode(Xi,Xj)

ninj

+ C
Disedge(Xi,Xj)

n2

i n
2

j

(3)

where ni and nj are the number of instances in Xi and Xj

respectively. Note that, Disedge is divided by n2

i n
2

j , because
the number of edges in a bag is usually proportional to the
square of nodes number. Based on above distance metric
among bags, we could formally introduce the criterion for
choosing w which maximizes the margin of between-class
bags and minimizes the margin of within-class bags after
mapping. The objective function which needs to be opti-
mized is

J(w) =

∑
Li 6=Lj

DisG(Xi,Xj)∑
Li=Lj

DisG(Xi,Xj)
(4)

where numerator represents the margin of between-class
mapped bags, and denominator represents the margin of
within-class mapped bags. Therefore, maximizing (4) is an
attempt to ensure that: if Xi and Xj share the same label,
they stay as close as possible after mapping; if Xi and Xj

have different labels, they stay as distant as possible after
mapping.

Optimal Linear Subspace

We solve the objective functions (4) in closed form. Follow-
ing some simple algebraic steps, the DisG(Xi,Xj) in (3)
can be written as follows:

DisG(Xi,Xj) =

∑ni

a=1

∑nj

b=1
(w⊤

xia − w
⊤

xjb)
2

ninj

+C

∑mi

c=1

∑mj

d=1
(w⊤

eic − w
⊤

ejd)2

n2

i n
2

j

= w
⊤

∑ni

a=1

∑nj

b=1
(xia − xjb)(xia − xjb)

⊤

ninj

w

+w
⊤C

∑mi

c=1

∑mj

d=1
(eic − ejd)(eic − ejd)⊤

n2

i n
2

j

w (5)

We denote

Kij =

∑ni

a=1

∑nj

b=1
(xia − xjb)(xia − xjb)

⊤

ninj

+C

∑mi

c=1

∑mj

d=1
(eic − ejd)(eic − ejd)⊤

n2

i n
2

j

(6)

Then

DisG(Xi,Xj) = w
⊤
Kijw (7)

Now, the objective function (4) can be reduced to

J(w) =
w

⊤(
∑

Li 6=Lj
Kij)w

w⊤(
∑

Li=Lj
Kij)w

(8)

Let

Sb =
∑

Li 6=Lj

Kij (9)

and

Sw =
∑

Li=Lj

Kij (10)

Obviously, Sb and Sw are symmetric. In a sense, Sb de-
scribes the between-class scatter information of bags; Sw

describes the within-class scatter information of bags. Then,
J(w) can be rewritten as the following form:

J(w) =
w

⊤
Sbw

w⊤Sww
(11)

It is a generalized Rayleigh quotient, and could be maxi-
mized through Lagrange Multipliers method. Let denomina-
tor w

⊤
Sww = α 6= 0 as a constraint, we can turn (11) as a

Lagrange multiplication problem with λ being the Lagrange
multiplier and noting that the constraint should be rewritten
to equal 0. The Lagrange multiplier function is

L(w, λ) = w
⊤
Sbw − λ(w⊤

Sww − α) (12)

Taking the first order derivative with respect to w yields

∂L(w, λ)

∂w
= 2Sbw − 2λSww (13)

Let the derivative equal zero, then

Sbw = λSww (14)

We note that equation (14) is precisely in the form of
generalized eigenvalue problem with w being the eigen-
vector. That means the projection vector w that maximizes
(11) is given by the maximum eigenvalue solution to this
generalized eigenvalue problem1. Let the column vector
w1,w2, ...,wd be the solution of (14) ordered according to
their eigenvalues λ1 > λ2 > λd. Thus, the dimensionality
reduction is given as follows:

xij → yij = W
⊤

xij ; (15)

W = [w1,w2, ...,wd]

Where xij is a D-dimensional vector from bag Xi, yij is
the d-dimensional vector represented xij , and W is an D×d
matrix.

Summary of the Proposed Algorithm

According to the above analysis, the detailed algorithm is
given in Algorithm 1. First, we treat instances in each bag
as a whole entity and build a ǫ-graph for every bag. The
structure information conveyed by instances in each bag is
taken into account. Then, we compute Sb and Sw that re-
flect the discriminant information of bags. Finally, we solve
the generalized eigenvalue equation, and get the transforma-
tion matrix W.

1Discussions on numerical stability of generalized eigen-
problems can be found in (Ye et al. 2004). But it is out of the
scope of this paper.
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Input: Data set {(X1, L1), , (Xi, Li), , (XN, LN)} and
the target dimension d

1: Construct the ǫ-graph for every bag Xi, establish
edges inside bag.

2: Compute Sb and Sw according to (9) and (10).
3: Solve the generalized eigenvalue equation (14).
4: Construct the D × d matrix W whose columns are

composed by the eigenvectors corresponding to
largest d eigenvalues.

Output: W: the projection from RD to Rd.

Algorithm 1: Pseudo-code of the MidLABS method

Experiments

We compare MidLABS with two typical dimensionality re-
duction methods, including a linear dimensionality reduc-
tion method PCA (Devijver and Kittler 1982) and a nonlin-
ear dimensionality reduction method LLE (Roweis and Saul
2000). The MI-Kernel method (Gartner et al. 2002) is used
for classification after dimensionality reduction. As a base-
line, we also evaluate the performance of MI-Kernel in the
original feature space (denoted by ORI).

In our experiments, the classification accuracy (CA) and
dimension ratio (DR) are used to evaluate the proposed
method. Here, dimension ratio is defined as the target di-
mension d dividing the original dimension D.

Musk Data Set

In this subsection, we evaluate the proposed MidLABS on
the benchmark data sets popularly used in multi-instance
learning, including Musk1 and Musk2. Each instance in-
side the bag is represented by a 166-dimensional vector in
both Musk1 and Musk2 (i.e. D = 166). More detailed in-
formation about the datasets can be available in (Dietterich,
Lathrop, and Lozano-Perez 1997).

Table 1: Classification Accuracy (CA) and Dimension Ratio
(DR) of MidLABS, PCA, LLE, and ORI under Musk1 and
Musk2.

Algorithm MidLABS PCA LLE ORI

Musk1 CA 90.0% 87.5% 85.9% 86.4%
±2.7% ±4.1% ±5.1% ±3.1%

Musk1 DR 18.1% 33.1% 36.1% 100.0%
Musk2 CA 85.3% 86.2% 85.2% 88.0%

±1.8% ±2.8% ±2.5% ±1.5%
Musk2 DR 12.1% 39.2% 48.2% 100.0%

In this experiment, we obtain the optimal dimension in
feature space via ten times 10-fold cross validation (i.e., we
repeat 10-fold cross validation for ten times with different
random data partitions). After dimensionality reduction, we
employ MI-Kernel to evaluate classification performance by
10-fold cross validation. For each method, Table 1 lists the
average classification accuracy (CA) and the dimension ra-
tio (DR), i.e. the target dimension dividing by the original
dimension. The best performances are highlighted with fig-
ures in bold typeface. The results dedicate that the proposed

method has significant improvement in classification perfor-
mance than ORI under Musk1. Treating instances in each
bag as non-i.i.d. samples, MidLABS successfully explores
structure information. Therefore, it is no wonder that Mid-
LABS can capture salient features and obtain a higher clas-
sification accuracy. Compared with PCA and LLE, the clas-
sification performance of MidLABS is higher under Musk1.
Besides that MidLABS is able to obtain higher classifica-
tion accuracy, the dimension ratio of MidLABS is better
than other methods as well, as indicated in Table 1. Un-
der Musk2, the classification accuracy is a slightly poorer.
It is because that in MidLABS, we use pairwise metric to
evaluate the distance among bags and there are a relatively
large number of instances in each bag. Under this distance
metric, too many negative instances in the positive bag will
overwhelm the positive instance.

Automatic Image Annotation

In this part, we evaluate MidLABS method on three data
sets for image annotation tasks, including Elephant, Fox,
and Tiger. In each case, the data sets have 100 positive and
100 negative example bags. Each instance inside the bag is
represented by a 230-dimensional vector (i.e. D = 230).
More details can be found in (Andrews, Tsochantaridis, and
Hofmann 2003).

As in last subsection, the optimal dimension in feature
space is tuned by ten times 10-fold cross validation. We
employ MI-Kernel to evaluate classification accuracy (CA),
which is recorded in Table 2. The results show that the
proposed method is better than ORI in classification accu-
racy. Compared with PCA and LLE, the classification per-
formance of MidLABS is higher under all the three image
databases. To the aspects of dimension ratio (DR) that is in-
dicated in Table 2, MidLABS is averagely better than other
methods.

Table 2: Classification Accuracy (CA) and Dimension Ratio
(DR) of MidLABS, PCA, LLE, and ORI under datasets of
Elephant, Fox, and Tiger.

Algorithm MidLABS PCA LLE ORI

Elephant CA 86.5% 86.0% 84.0% 84.3%
±1.4% ±1.2% ±1.1% ±1.6%

Elephant DR 13.0% 17.4% 26.1% 100.0%
Fox CA 67.0% 64.0% 66.0% 60.3%

±2.1% ±2.4% ±2.2% ±1.9%
Fox DR 17.4% 21.3% 20.4% 100.0%

Tiger CA 87.5% 84.5% 86.0% 84.2%
±1.6% ±1.9% ±1.9% ±1.0%

Tiger DR 21.7% 21.7% 17.4% 100.0%

Conclusion and Future Works

In this paper, we propose a multi-instance dimensionality
reduction algorithm named as MidLABS. Treating instances
in each bag as non-i.i.d. samples, MidLABS effectively cap-
tures important structure information conveyed by instances
in each bag, which plays an important role in obtaining
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salient features from original data space. Meanwhile, Mid-
LABS takes advantage of the label information of bags to
guarantee a powerful discriminant ability. The results of ex-
periments validate the effectiveness of MidLABS.

In the future, we intend to design a framework to simul-
taneously reduce the dimensionality of data and the number
of instances in each bag because it is often the case that in
multi-instance learning tasks the number of instances is huge
and the problem of reducing the instances number is at least
as important as the one tackled in this paper.
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