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Abstract

Many real life applications brought by modern technologies
often have multiple data sources, which are usually character-
ized by both attributes and pairwise similarities at the same
time. For example in webpage ranking, a webpage is usu-
ally represented by a vector of term values, and meanwhile
the internet linkages induce pairwise similarities among the
webpages. Although both attributes and pairwise similari-
ties are useful for class membership inference, many tradi-
tional embedding algorithms only deal with one type of input
data. In order to make use of the both types of data simultane-
ously, in this work, we propose a novel Discriminant Lapla-
cian Embedding (DLE) approach. Supervision information
from training data are integrated into DLE to improve the dis-
criminativity of the resulted embedding space. By solving the
ambiguity problem in computing the scatter matrices caused
by data points with multiple labels, we successfully extend
the proposed DLE to multi-label classification. In addition,
through incorporating the label correlations, the classifica-
tion performance using multi-label DLE is further enhanced.
Promising experimental results in extensive empirical evalua-
tions have demonstrated the effectiveness of our approaches.

Introduction

Embedding techniques seek to represent input data in
their lower-dimensional “intrinsic” subspace/sub-manifold,
in which irrelevant features are pruned and inherent data
structures are more lucid. In the early ages, embedding al-
gorithms assume that input data objects are homogeneous
but not relational, and thereby are devised to deal with a set
of attributes in the format of fixed-length vectors. For ex-
ample, Principal Component Analysis (PCA) (Jolliffe 2002)
attempts to maximize the covariance among data points,
and Linear Discriminant Analysis (LDA) (Fukunaga 1990)
aims at maximizing the class separability. In recent years,
manifold learning motivates many embedding algorithms
using pairwise similarities between data objects, such as
ISOMAP (Tenenbaum, Silva, and Langford 2000), Locally
Linear Embedding (LLE) (Roweis and Saul 2000), Lapla-
cian Eigenmap (Belkin and Niyogi 2002) and Locality Pre-
serving Projection (LPP) (He and Niyogi 2003), etc. These
algorithms generally assume that the observed data are sam-
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pled from an underlying sub-manifold which is embedded
in a high-dimensional observation space.

With the advances in science and technology, many data
sets in real applications nowadays are no longer confined to
one single format but come from multiple different sources.
Thus, for a same data set, we often have both attributes in-
formation about data objects (vector data) and various pair-
wise similarities between data objects (graph data) simul-
taneously. For example, a webpage can be represented as a
vector of term values. In addition, there also exist hyperlinks
between webpages, which indicates a similarity relationship
among the webpages. Because the both types of data, at-
tributes and pairwise similarities, convey valuable informa-
tion for classification, the aforementioned embedding algo-
rithms designed for only one single type of data are usually
insufficient, especially the correlations between these two
types of data are not exploited. In this work, we propose an
novel Discriminant Laplacian Embedding (DLE) approach
to integrate these two types of data. Our new algorithm is
interesting from a number of perspectives as following.

• Using an integral optimization objective, DLE inte-
grates both attributes data and pairwise similarity data
in a shared low-dimensional subspace, which is infused
with the LDA space of vector data and the Laplacian
eigenspace for graph data. As a result, the discriminabil-
ity of data are incorporated in the both spaces.

• Unlike many existing embedding algorithms purely rely-
ing on unsupervised data, the labels of training data are
utilized in DLE, such that the performance of classifica-
tions on the projected data via DLE is improved.

• DLE is linear and thereby fast, which makes it suitable for
practical applications. Through DLE, new data points can
be directly placed in the projection space. This is differ-
ent from many existing nonlinear embedding algorithms,
by which new data points must be interpolated in the rep-
resentation space/manifold.

• Through a natural extension, the proposed DLE approach
can be naturally extended to multi-label classification, an
emerging topic in machine learning in recent years, where
each objects may belongs to more than one class.

Discriminant Laplacian Embedding
For a classification task with n data points and K classes,
each data point xi ∈ R

p is associated with a subset of class
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labels represented by a binary vector yi ∈ {0, 1}K such that
yi(k) = 1 if xi belongs to the kth class, and 0 otherwise. In
single-label classification, each data point belongs to only
one class,

∑

k yi(k) = 1, while in multi-label classification,
each data point may belong to multiple classes at the same
time,

∑

k yi(k) ≥ 1. Meanwhile, we also have the pair-
wise similarities W ∈ R

n×n among the n data points with
Wij indicating how close xi and xj are related. Suppose the
number of labeled data points is l(< n), our goal is to predict
labels {yi}

n
i=l+1 for the unlabeled data points {xi}

n
i=l+1.

We write X = [x1, . . . ,xn] and Y = [y1, . . . ,yn].
Traditional embedding algorithms learn a projection only

from one type of data, either attribute data X , such as PCA
and LDA, or pairwise similarity data W , such as Laplacian
Eigenmap and LPP. Besides, though useful, the label infor-
mation from training data {yi}

l
i=1 is not always used, be-

cause many embedding algorithms are devised closely in
conjunction with clustering algorithms which are unsuper-
vised by nature. Therefore, we propose a novel Discriminant
Laplacian Embedding (DLE) approach to realize these two
expectations, data integration and making use of supervision
information, which produces a transformation U ∈ R

p×r by
solving the following optimization objective:

arg max
U

tr
(

UT
(

A
−

1

2

+ Sw
−

1

2 SbSw
−

1

2 A
−

1

2

+

)

U
)

, (1)

where r(≪ p) is the dimensionality of the projected sub-
space, Sb and Sw are the between-class and within-class
scatter matrices defined same as in standard LDA, and
A = X (D − W )XT with D = diag (d1, . . . , dn) , di =
∑

j Wij . Thus, L = D − W is the graph Laplacian (Chung

1997). The solution to Eq. (1) is well established in mathe-
matics by solving the following eigenvalue problem:

(

A
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2

+ Sw
−

1

2 SbSw
−
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2 A
−

1

2

+

)

uk = λkuk, (2)

where λ1 ≥ λ2 ≥ · · · ≥ λp are the resulted eigenvalues
and uk are the corresponding eigenvectors. Hence, U =
[u1, . . . ,ur], and r is empirically selected as K − 1.

Then we may project xi into the embedding space as:

qi = UTxi, (3)

and subsequent classification is carried out using qi. In this
work, we use K-nearest neighbor (KNN) method (Fukunaga
1990) for classification because of its simplicity and clear
intuition (K = 1 is used in this work and we abbreviate it
as 1NN). For each class, the classification is conducted as a
binary classification problem, one class at a time.

In the rest of this section, we will derive the optimization
objective in Eq. (1).

Backgrounds of DLE

Given training data {(xi,yi)}
l
i=1, LDA targets on projecting

the original data from a high p-dimensional space to a much
lower r-dimensional subspace to separate different classes
as much as possible (maximize between-class scatter Sb),
whilst condense each class as much as possible (minimize

within-class scatters Sw). Computing Sb and Sw by the stan-
dard definitions in LDA (Fukunaga 1990), we achieve the
standard LDA optimization objective to maximize:

JLDA = tr

(

GT SbG

GT SwG

)

. (4)

The transformation G ∈ R
p×r is usually obtained by ap-

plying the eigen-decomposition on Sw
−1Sb (or sometimes

by solving the generalized eigenvalue problem Sbuk =
λkSwuk), when Sw is nonsingular. This method, however,
can not guarantee the orthonormality of G. To this end,
learning from the way frequently used in spectral clustering,

let F = Sw

1

2 G, we maximize:

JLDA = tr
(

FT Sw
−

1

2 SbSw
−

1

2 F
)

, (5)

where the constraint FT F = I is automatically satisfied and
thereby removed from the formulation.

Given the pairwise similarity W , Laplacian embedding
preserves the same relationships and maximize the smooth-
ness with respect to the intrinsic manifold of the data set in
the embedding space by minimizing (Hall 1970)

∑

i,j

‖qi − qj‖
2Wij = qT

i (D − W )qi. (6)

For multi-dimensional embedding, Eq. (6) becomes
tr
(

QT (D − W )Q
)

, where we use linear embedding QT =

[q1, . . . ,qn] = FT X . We hence write Eq. (6) as follows:

JLap = tr
(

FT X(D − W )XT F
)

. (7)

Motivations and Formulation of DLE

As we are seeking an embedding to leverage both attributes
and pairwise similarity of a same data set, given two individ-
ual optimization objectives as in Eq. (5) and Eq. (7), we may
construct an additive embedding objective to maximize:

JDLE = αJLDA − (1 − α)JLap, (8)

where 0 < α < 1 is a tradeoff parameter. In practice, how-
ever, it is hard to choose an optimal α. Therefore, instead of
using the trace of difference, we formulate the objective as
the trace of quotient so that α is removed as follows:

JDLE = tr

(

FT Sw
−

1

2 SbSw
−

1

2 F

FT X(D − W )XT F

)

. (9)

Let A = X(D − W )XT and U = A
1

2

+F , we obtain the
symmetric optimization objective of our proposed DLE as
in Eq. (1), which yields orthonormal U as solution.

Considering the fact that A is usually rank deficient, let

A = V

[

Σ
0

]

V T (10)

be the eigen-decomposition of A with diagonal line of Σ
being the positive eigenvalues of A, we have

A
1

2

+ = V1Σ
1

2 V T
1 and A

−
1

2

+ = V1Σ
−

1

2 V T
1 , (11)
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Table 1: Semi-supervised classification using DLE.

Input:
{xi}

n
i=1: Attribute vectors for all the data points.

{yi}
l
i=1: labels for the training data points.

W : pairwise relationship among all the data points.

Steps:
(1) Compute Sb and Sw as in standard LDA algorithm.

(2) Compute A = X(D − W )XT .
(3) Resolve the eigenvalue problem in Eq. (2). Con-

struct the projection matrix U by the resulted eigenvec-
tors corresponding to the (K − 1) largest eigenvalues.

(4) Compute the projected vectors {qi}
n
i=1 for all the

data points including those unlabeled as in Eq. (3).

(5) Use projected training data {(qi,yi)}
l
i=1 to clas-

sify the testing data points {qi}
n
i=l+1 via 1NN method.

Output:
Class labels for testing data points {yi}

n
i=l+1.

where V1 is composed of the eigenvectors of A correspond-
ing to its positive eigenvalues. Note that, A is semi-positive
definite and thereby has no negative nonzero eigenvalues.

Because in many real applications such as computer vi-
sion and document content analysis, the number of features
of a data set is often much larger than that of data points,
i.e., p > n, Sw could also be rank deficient. In this case, we

replace Sw
−

1

2 in Eq. (1) by Sw
−

1

2

+ , which is computed in a
same way as in Eqs. (10–11).

Finally, through an integral optimization objective, to-
gether with the supervision information contained in train-
ing data, data attributes and pairwise similarities on all the
data points including those unlabeled are integrated by DLE.
Therefore, DLE provides a framework for semi-supervised
learning, which is summarized in Table 1.

Multi-label DLE for Multi-Label Classification

Multi-label classification has attracted increasing attention
in the past few years as it arises in a lot of real life ap-
plications such as image annotation, document categoriza-
tion, etc. Different from traditional single-label (multi-
class) classification where each object belongs to exact one
class, multi-label classification deals with problems where
each object may be associated with more than one class la-
bel, which makes it not trivial to directly apply state-of-the-
art single-label classification algorithms to solve multi-label
classification problems. On the other hand, since the multi-
ple labels share the same input space, and the semantics con-
veyed by different labels are usually correlated, it is thereby
beneficial to exploit the correlations among different labels
to improve the overall classification accuracy. Therefore,
we extend the proposed DLE to multi-label classification by
first solving the ambiguity problem in computing the scat-
ter matrices caused by data points with multiple labels and
then incorporating the label correlations to achieve enhanced
classification performance.

(a) Single-label classification. (b) Multi-label classification.

Figure 1: (a) A traditional single-label classification prob-
lem. Each data point distinctly belongs to only one class. (b)
A typical multi-label classification problem. The data points
denoted by green diamonds belong to more than one class,
which cause the ambiguity in scatter matrices calculations.

Class-wise Scatter Matrices for Multi-Label
Classification

In traditional single-label multi-class classification, the scat-
ter matrices Sb, Sw and St used in standard LDA are well de-
fined as per the geometrical dispersion of data points. These
definitions, however, do not apply to multi-label case, be-
cause a data point with multiple labels belong to different
classes at the same time, how much it should contribute to
the between-class and within-class scatters remains unclear.
As illustrated in Figure 1, the data points with multiple la-
bels, denoted by the green diamonds in Figure 1(b), cause
the ambiguity in computing the scatter matrices.

Therefore, instead of computing the scatter matrices from
data points perspective as in standard LDA, we propose

to formulate them by class-wise, i.e., Sb =
∑K

k=1 Sb(k),

Sw =
∑K

k=1 Sw(k), and St =
∑K

k=1 St(k). In this way,
the structural variances of the training data are represented
more perspicuous and the construction of the scatter matri-
ces turns out easier. Especially, the ambiguity, how much a
data point with multiple labels should contribute to the scat-
ter matrices, is avoided. The multi-label between-class scat-
ter matrix is defined as:

Sb =

K

k=1

S
(k)
b

, S
(k)
b

=

l

i=1

Yik (mk−m)(mk−m)T
, (12)

the multi-label within-class scatter matrix Sw is defined as:

Sw =
K

k=1

S
(k)
w , S

(k)
w =

l

i=1

Yik (xi − mk) (xi − mk)T
, (13)

and the multi-label total scatter matrix is defined as:

St =

K
∑

k=1

S
(k)
t , S

(k)
t =

l
∑

i=1

Yik(xi − m)(xi − m)T , (14)

where mk is the mean of class k and m is the multi-label
global mean, which are defined as follows:

mk =

∑l

i=1 Yikxi
∑l

i=1 Yik

, m =

∑K

k=1

∑l

i=1 Yikxi
∑K

k=1

∑l

i=1 Yik

. (15)

Note that, the multi-label global mean m defined in Eq. (15)
is different from the global mean in single-label sense as in

standard LDA. The latter is defined as 1
l

∑l

i=1 xi.

620



Table 2: Description of 6 UCI data sets.

Data sets Sizes Classes Dimensions

soybean 562 19 35
housing 506 3 13
protein 116 6 20
wine 178 3 13
balance 625 3 4
iris 150 3 4

Table 3: Classification accuracy (in percentage) with 10% of data labeled.

Data sets
Approaches

SVM CF HF LPP KL Transducer DLE

soybean 70.3 36.2 52.3 51.3 76.5 75.2 88.4
housing 53.2 54.4 52.3 56.1 55.8 56.1 59.3
protein 32.7 27.6 27.4 31.5 38.2 38.5 41.7
wine 73.6 43.0 39.6 74.5 71.4 74.5 85.9
balance 47.2 47.5 46.6 44.5 47.1 46.8 52.1
iris 58.4 40.0 33.3 63.2 61.9 62.3 75.3

When applied to single–label classification, the multi–
label scatter matrices, Sb, Sw, and St, defined in Eqs. (12–
14), are reduced to their corresponding counterparts in stan-
dard LDA. Most importantly, in standard LDA, St = Sb +
Sw, which is still held by the multi-label scatter matrices.

With the application of the class-wise scatter matrices de-
fined in Eqs. (12–13) in the optimization objective of pro-
posed DLE in Eq. (1), the ambiguity problem is solved, and
in the meantime the main advantage of standard LDA, rep-
resenting data with the maximized separability, is preserved.

Label Correlation Enhanced Pairwise Similarity

Existing embedding algorithms construct the pairwise sim-
ilarity matrix (W ) only from data attributes (X), while the
label correlations are overlooked, which, however, is indeed
useful for class membership inference in multi-label classifi-
cation. Thus, we propose a label correlation enhanced pair-
wise similarity construction scheme to make use of them as:

W = WX + βWL, (16)

where WX could be constructed from attribute data as in pre-
vious embedding algorithms or obtained directly from ex-
perimental observations, and WL is the label similarity ma-
trix. β is a parameter determining how much the pairwise
relationship should be biased by label similarities, which is

empirically selected as β = i,j,i6=j
WX(i,j)

i,j,i6=j
WL(i,j)

.

WX is constructed using Gaussian function as in most of
existing approaches:

WX(i, j) = exp
(

−‖xi − xj‖
2/2σ

)

, (17)

where σ is the length scale hyperparameter and fine tuned
by 5-fold cross validation in the current work.

WL encodes the label correlations via assessing the label
similarities between data points. The simplest measure of
label similarity is the label overlap of two data points com-
puted by yT

i yj . The bigger the overlap is, and the more sim-
ilar the two data points are. The problem with this straight-
forward similarity measurement is that it treats all classes
independent and therefore is unable to explore the correla-
tions among them. In particular, it will give zero similarity
whenever two data points do not share any label. However,
two data points with no common label can still be strongly
related if their attached labels are highly correlated. There-
fore, instead of computing label similarity by dot product,

we compute it by yT
i C yj with normalization:

WL(i, j) =
yT

i C yj

‖yi‖ ‖yj‖
, (18)

where C is a symmetric matrix and its entry Ckl captures
the correlation between the kth and lth classes. As the num-
ber of shared data points attached to two classes measures
how closely they are related, we use the cosine similarity
to quantify the label correlations. Let Y = [y(1), . . . ,y(K)],
y(k) ∈ R

n(1 ≤ k ≤ K) is an n-vector, which is a class-wise
label indicator vector for the kth class. Note that, y(k) is
different from the data-point-wise label indicator vectors yi

which is a K-vector. We define the label correlation matrix,
C ∈ R

K×K , to characterize the label correlation between
two classes as following:

C (k, l) = cos(y(k),y(l)) =
〈y(k),y(l)〉

‖y(k)‖ ‖y(l)‖
. (19)

In order to compute WL in Eq. (18), we first initialize the
testing data points using 1NN method.

Apparently, WL contains both supervision information
and label correlations. Using the label correlation enhanced
pairwise similarity W defined in Eq. (16) to compute A in
Eq. (1), we incorporate the label correlations into the opti-
mization objective of proposed DLE, and the overall multi-
label classification performance is thereby boosted. To-
gether with the utility of the class-wise scatter matrices Sb

and Sw defined in Eqs. (12–13) into Eq. (1), we call the em-
bedding computed from Eq. (1) as Multi-label DLE.

Empirical Studies

Semi-Supervised Learning Using DLE

We first evaluate the semi-supervised classification perfor-
mance of proposed DLE by comparing to three state-of-the-
art semi-supervised learning algorithms: (1) the consistent
framework (CF) approach (Zhou et al. 2004) and (2) the har-
monic function (HF) approach (Zhu, Ghahramani, and Laf-
ferty 2003), (3) transducer approach (Joachims 2003), and
two related embedding algorithms: LPP approach (He and
Niyogi 2003) and embedding via K-means Laplacian clus-
tering (KL) approach (Wang, Ding, and Li 2009). We also
report the classification accuracy by Support Vector Ma-
chine (SVM) as a baseline. For the proposed DLE approach,
LPP approach and KL approach, 1NN is used for classifica-
tion after embedding. Six standard UCI data sets (Newman
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Table 4: Classification accuracy with 10% correctly labeled
data and another 5% incorrectly labeled data (noises).

Data sets
Approaches

CF HF LPP KL DLE

soybean 36.2% 54.8% 50.1% 71.2% 85.1%
housing 54.4% 49.9% 53.4% 53.9% 57.3%
protein 27.6% 23.8% 30.9% 37.4% 39.1%
wine 43.0% 40.1% 74.4% 71.9% 83.6%
balance 47.2% 64.4% 43.9% 47.2% 52.0%
iris 38.0% 50.0% 60.1% 57.1% 71.9%

et al. 1998) are used in our evaluations, which are summa-
rized in Table 2.
Semi-supervised classification. We randomly select 10%
of data points, and treat them as labeled data and the rest as
unlabeled data. We run the five compared approaches. To
get good statistics, we rerun these trails 10 times such that
the labeled data are different from each trial. Final results
are the averages over these 10 trials and listed in Table 3.
Over all six data sets, our DLE approach generally outper-
forms the other approaches, sometimes very significantly.
Semi-supervised classification with noisy labels. For each
data set, 10% data points are randomly selected and given
correct labels. Another 5% data points are randomly se-
lected and are given incorrect labels, to emulate noises. All
five learning methods are applied to the six data sets. Results
of the averages of 10 trials of random samples are listed in
Table 4. In general, accuracies in Table 4 are slightly worse
than those in Table 3, as expected. Again, our DLE shows
better performance than other approaches.

Face Recognition Using DLE

In this subsection, we show the experimental results of ap-
plying our proposed DLE approach to face recognition on
the following three benchmark data sets.

• Yale database contains 165 gray scale images of 15 indi-
viduals. There are 11 images per subject, one per different
facial expression or configuration.

• ORL database Contains 10 different images of each of
40 distinct subjects. For some subjects, the images were
taken at different times, varying the lighting, facial ex-
pressions and facial details.

• PIE database contains 41,368 images of 68 people, each
person under 13 different poses, 43 different illumination
conditions, and with 4 different expressions. In our ex-
periments, we only use a subset containing 5 near frontal
poses (C05, C07, C09, C27, C29) and all the images un-
der different illuminations and expressions. We hence end
up with 170 images for each individual.

Following standard computer vision experimental con-
ventions, we resize all the face images to 32 × 32. Besides
the proposed DLE approach, we also implement the follow-
ing approaches:

• Nearest Neighbor Classifier (1NN): This method is imple-
mented as the baseline method for comparison, where all
the computations are performed in the original data space.

Figure 2: Face recognition results on 3 benchmark face data
sets. The x-axis gives the number of images randomly se-
lected from each class (person) for training. The y-axis gives
the averaged recognition error.

• Eigenface: The face images are first projected by PCA
and then the classification is implemented in the projected
space with the 1NN classifier. The projected dimension is
set using exhaustive search by 5-fold cross validation.

• Fisherface: The implementation is the same as in (Bel-
humeur et al. 1997).

• Laplacianface: The implementation is the same as in (He
et al. 2005).

In our experiments, we first randomly select a certain
number of face images from each subject. Those selected
images will be used as training set and the remaining images
will be used for testing. The recognition error averaged over
50 independent trials are shown in Figure 2, which demon-
strate the effectiveness of our method.

Multi-Label Classification Using Multi-label DLE

We use standard 5-fold cross validations to evaluate the
multi-label classification performance of the proposed
Multi-label DLE approach, and compare the experimental
results with the following most recent multi-label classifi-
cation methods: (1) Multi-Label Gaussian harmonic Func-
tion (MLGF) (Zha et al. 2008) method, (2) Semi-supervised
learning by Sylvester Equation (SMSE) (Chen et al. 2008)
method, (3) Multi-Label Least Square (MLLS) (Ji et al.
2008) method and (4) Multi-label Correlated Green’s Func-
tion (MCGF) (Wang, Huang, and Ding 2009) method. For
MLGF and SMSE methods, we follow the detailed algo-
rithms as described in the original works. For MCGF and
MLLS, we use the codes posted on the authors’ websites.

We apply all approaches on the following three broadly
used multi-label data sets from different domains.

• TRECVID 2005 data set (Smeaton, Over, and Kraaij
2006) contains 137 broadcast news videos, which has
61901 sub-shots with 39 concepts (labels). We randomly
sample the data set such that each concept has at least
100 video key frames. We extract 384-dimensional block-
wise (64) color moments (mean and variance of each
color band) from each image as features, i.e., xi ∈ R

384.
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Table 5: Multi-label classification performance measured by
“Average Precision” for the five compared approaches.

Approaches
Data sets

TRECVID Yahoo Music

MLGF 10.8% 14.2% 23.5%
SMSE 10.7% 13.5% 21.3%
MLLS 23.7% 27.6% 31.2%
MCGF 24.9% 24.3% 30.3%
Multi-label DLE 28.1% 29.3% 37.7%

• Music emotion data set (Trohidis et al. 2008) comprises
593 songs with 6 emotions (labels).

• Yahoo data set is described in (Ueda and Saito 2002),
which is a multi-topic web page data set compiled from
11 top-level topics in the “yahoo.com”. Each web page
is described as 37187-dimensional feature vector. We use
the “science” topic as it has maximum number of labels,
which contains 6345 web pages with 22 labels.

For performance evaluation, we adopt the widely-used
metric, Average Precision (AP), as recommended by
TRECVID (Smeaton, Over, and Kraaij 2006). We compute
the precision for each class and average them over all the
classes to obtain the AP to assess the overall performance.

Table 5 presents the overall classification performance
comparisons of the five approaches by 5-fold cross valida-
tions on the three datassets. The results show that the pro-
posed DLE approach clearly outperforms all the other meth-
ods, which justify the utility of class-wise scatter matrices
in solving the ambiguity caused by data points with multiple
labels and quantitatively demonstrate the usefulness of the
incorporated label correlations in multi-label classification.

Conclusions

In this work, we proposed a novel Discriminant Laplacian
Embedding (DLE) approach to seek the shared structures
between the attributes and pairwise similarities of a data
set in a lower-dimensional subspace, in which the data sep-
arability is doubly reinforced by utilizing the information
from the both data sources. With the integration of the su-
pervision information from training data, the resulted em-
bedding space is more discriminative. By solving the am-
biguity problem in computing scatter matrices of standard
LDA in multi-label scenarios and leveraging the label corre-
lations, we extended DLE to multi-label classification with
enhanced classification performance. In extensive experi-
mental evaluations, promising results have been obtained,
which demonstrate the effectiveness of our approaches.
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