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Abstract

Nonnegative Matrix Factorization (NMF) is a widely used
technique in many applications such as clustering. It approx-
imates the nonnegative data in an original high dimensional
space with a linear representation in a low dimensional space
by using the product of two nonnegative matrices. In many
applications with data such as human faces or digits, data of-
ten reside on multiple manifolds, which may overlap or in-
tersect. But the traditional NMF method and other existing
variants of NMF do not consider this. This paper proposes a
novel clustering algorithm that explicitly models the intrinsic
geometrical structure of the data on multiple manifolds with
NMF. The idea of the proposed algorithm is that a data point
generated by several neighboring points on a specific mani-
fold in the original space should be constructed in a similar
way in the low dimensional subspace. A set of experimental
results on two real world datasets demonstrate the advantage
of the proposed algorithm.

Introduction
Nonnegative Matrix Factorization (NMF) has been applied
in many applications such as clustering and classification. It
provides a linear representation of nonnegative data in high
dimensional space with the product of two nonnegative ma-
trices as a basis matrix and a coefficient matrix. NMF has
received substantial attention due to its theoretical interpre-
tation and desired performance.

Several variants of NMF has been proposed recently.
Sparseness constraints have been incorporated into NMF
to obtain sparse solutions (Hoyer 2004; Kim and Park
2008). Discriminative NMF algorithms have been proposed
in (Zafeiriou et al. 2007; Wang et al. 2004) to maximize
the between-class distance and minimize the within-class
distance when learning the basis and coefficient matrices.
Some recent research work suggest data of many applica-
tions in a high dimensional Euclidean space are usually em-
bedded in a low dimensional manifold (Roweis and Saul
2000; Niyogi 2003). To explore the local structure on the
low dimensional manifold, research work in (Cai et al.
2009; Gu and Zhou 2009) have proposed Locality Preserv-
ing NMF and Neighbourhood Preserving NMF, which add
constraints between a point and its neighboring one(s).
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However, many real world data reside on multiple mani-
folds (Goldberg et al. 2009). For example, for handwritten
digits, each digit forms its own manifold in the feature space.
Furthermore, for human faces, the faces of the same person
lie on the same manifold and different persons are associated
with different manifolds. All existing NMF algorithms do
not consider the geometry structure of multiple manifold and
cannot model data on a mixture of manifolds, which may
overlap or intersect. In particular, the algorithms in (Cai
et al. 2009; Gu and Zhou 2009) only consider the situation
that all the data samples are drawn from a single manifold.
These algorithms create a graph by searching nearest neigh-
bor(s) to preserve the local geometry information: locality
or neighborhood. However, the created graph may connect
points on different manifolds, which can diffuse information
across manifolds and be misleading.

This paper proposes a novel clustering algorithm with
NMF that explicitly models the intrinsic geometrical struc-
ture of the data on multiple manifolds. The assumption is
that data samples are drawn from multiple manifolds, and if
one data point can be reconstructed by several neighboring
points on the same manifold in the original high dimensional
space, it should also be reconstructed in a similar way within
the low dimensional subspace by the basis matrix and coef-
ficient matrix. This approach is different from local linear
embedding which only studies one manifold in the original
space. This paper derives multiplicative updating rules for
the proposed algorithm with guaranteed convergence.

The proposed NMF clustering algorithm on multiple
manifolds has been evaluated on two real world datasets. It
has been shown to generate more accurate and robust results
than the K-means and two variants of NMF algorithms. Fur-
thermore, it has been shown that the new algorithm can learn
better representation for data in different classes than the tra-
ditional NMF method.

The rest part of this paper is organized as follows. It first
reviews the NMF algorithm, and then presents the proposed
algorithm followed by the optimization method. Further-
more, it describes and analyzes the experimental results. Fi-
nally, it concludes and discusses future work.

Review of Nonnegative Matrix Factorization
Given a nonnegative matrix X ∈ Rm×n, each column of
X is a data sample. The NMF algorithm aims to approxi-
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mate this matrix by the product of two nonnegative matrices
U ∈ Rm×k and V ∈ Rk×n. To achieve this, the following
objective function is minimized:

O = ||X − UV ||2F
s.t. U ≥ 0, V ≥ 0

(1)

where ||.||F denotes the Frobenius norm.
The following iterative multiplicative updating algorithm

is proposed in (Lee and Seung 2001) to minimize the objec-
tive function:

Uij = Uij
(XV T )ij

(UV V T )ij
(2)

Vij = Vij
(UTX)ij

(UTUV )ij
(3)

Proposed Nonnegative Matrix Factorization
Clustering on Multiple Manifolds

This section presents the formulation of the proposed Non-
negative Matrix Factorization on Multiple Manifolds(MM-
NMF for short). It then describes the optimization algo-
rithm.

Formulation
Given a nonnegative matrix X , each column of which is a
data sample. In our target applications with data such as hu-
man faces and digits, our assumption is that data samples
are drawn from a mixture of manifolds. We use a product of
two nonnegative matrices U and V to approximate X while
taking the multiple manifold structure information into con-
sideration. The matrix U can be viewed as the basis, while
the matrix V can be treated as the coefficients.

Considering that data samples are drawn from different
manifolds, the matrix U represent bases for different man-
ifolds, and a data sample X.i only belongs to a manifold
(as long as it is not drawn at the intersection). We denote
the manifold from which X.i is drawn as Mi. Ideally, there
should be a subset of columns of U associated with the man-
ifold Mi. So the corresponding coefficient vector of this
sample V.i should have nonzero values only for the entries
which correspond to the subset of columns of U associated
with the manifoldMi. Thus, the coefficient matrix V should
be naturally sparse.

Another important goal is to encode the geometrical in-
formation of multiple manifolds. When there are more than
one manifolds, we cannot create a graph which directly con-
nects the neighboring samples according to Euclidean dis-
tance, since samples close to each other may belong to dif-
ferent manifolds, especially near the intersection of different
manifolds.

Based on the above discussion, our MM-NMF algorithm
on multiple manifolds should be equipped with two proper-
ties: 1) the coefficient matrix V is sparse. In other words, the
representation of the samples in the new space is sparse; 2)
the local geometrical information on each manifold is pre-
served. In the following part, we will describe how we for-
mulate MM-NMF with these two desired properties.

Sparse Representation in Output Space
The traditional NMF will learn part-based representation
due to its nonnegativity constraint. This means that the
data representation in the output space spanned by U is
sparse.Our algorithm also inherits the nonnegativity con-
straint, which will introduce some sparseness.

However, the sparseness introduced by nonnegativity may
not be enough and is difficult to control (Hoyer 2004). Some
prior research made the matrix sparse by adding an extra
sparseness constraint which is usually related with the L1
norm minimization technique (Donoho 2006). We utilize
the method in (Kim and Park 2008) , which is denoted as
SNMF, to make the coefficient matrix V sparse.

The objective function of SNMF is defined as follows:

OSNMF = ||X − UV ||2F + ζ‖U‖2F + λ
∑
j

‖V.j‖21 (4)

where V.j is the jth column of V . The term λ
∑
j ‖V.j‖21

encourages the sparsity, and ζ‖U‖2F is used to control the
scale of matrix U . Parameter λ controls the desired sparsity,
and ζ is simply set as the maximum value of X .

Since the nonnegativity constraint automatically intro-
duces some degree of sparseness, we will study two
cases with and without the extra sparseness regularizer
λ
∑
j ‖V.j‖21 in this paper.

Mining Intrinsic Geometry on Individual
Manifolds
This section targets on the second property, which is to pre-
serve the local geometrical information on each manifold
in the matrix factorization. We try to preserve the neigh-
borhood relation on each manifold. Note that the neighbor-
hood relation is defined on the manifold rather than in the
Euclidean space. This local geometry information on each
manifold will guide the formulation of sparseness, which
is similar with joint sparsity constraint (Turlach, Venablesy,
and Wright 2005).

To achieve the goal, we assume there are enough data
samples so that any data sample can be well approximated
by a linear combination of neighboring data samples on the
same manifold, since the manifold is usually smooth (El-
hamifar and Vidal 2009).

Now we describe how to explore the intrinsic geometry
in the data matrix X with size of M × N . Let X.i be the
ith sample, which is under consideration now. We want to
identify its neighbors on the same manifold rather than the
entire Euclidean space. As there are enough samples and
the manifold is smooth, the data point can be well approxi-
mated by a linear combination of a few nearby samples on
the same manifold. Thus, it has a sparse representation over
the entire data matrix X . To identify the set of samples that
can approximate X.i, we use the sparsest linear combina-
tion which can approximate X.i by the L1 norm minimiza-
tion technique (Donoho 2006). We obtain a sparse structure
matrix S from the equation of X = XS, where the diag-
onal elements of S are 0. This means any sample can be
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expressed by several other samples on the same manifold.
We construct the S as follows.

For any i = 1, ..., N

min
S.i

||S.i||1

s.t. X.i = XS.i
Sii = 0

(5)

There may be some noise in real applications and the
equality constraint above may not hold, we relax it to the
following equation:

min
S.i

||S.i||1

s.t. ‖X.i −XS.i‖2 < ε

Sii = 0

(6)

Ideally, the nonzero entries in the vector S.i correspond to
the samples which lie on the same low dimensional manifold
as X.i. On the other hand, the nearest samples in Euclidean
space from another manifold may not appear in the nonzero
entries. ε controls the noise energy, and is set to 0.01 here.

MM-NMF Objective Function
We preserve the geometry relation represented by S in the
matrix factorization. When the matrix is factorized, we try
to preserve geometry constraint from S for V . This can be
gained by minimizing

∑
i

||V.i − V S.i||2

= ||V − V S||F
= ||V (I − S)||F
= tr(V (I − S)(I − S)TV T )

= tr(V GV T )

(7)

where I ∈ Rn×n, and G = (I − S)(I − S)T .
Considering both of the two properties we want to en-

gage: 1, sparseness; 2, local structure preservation on each
manifold, the objective function of MM-NMF is defined as:

OMM−NMF = ||X − UV ||2F + ζ‖U‖2F + λ
∑
j

‖V.j‖21

+ ηtr(V GV T )
(8)

When minimizing the objective function above, we
should add constraints that the U and V be nonnegative. The
first term is the square fitting error, the second term controls
the energy of U , the third term encourages the sparseness,
and the last term is to preserve the local geometry structure
on each manifold.

Now consider a special case of MM-NMF, where there is
no sparseness regularizer(λ = 0). This means we only rely

on the nonnegativity constraint to engage the V with first
property: sparseness. We name this special case as MM-
NMF2. The objective function is:

OMM−NMF2 = ||X − UV ||2F + ζ‖U‖2F + ηtr(V GV T )
(9)

Optimization
Here we only consider how to optimize the objective func-
tion of MM-NMF, since MM-NMF2 is a special of case of
MM-NMF.

Since OMM−NMF is not convex with U and V jointly,
it is difficult to find the global minimum for OMM−NMF .
Instead, we aim to find a local minimum for OMM−NMF

by iteratively updating U and V in a similar way with the
work (Lee and Seung 2001) for NMF.

Update U Given V , we update U to decrease the value
of objective function. In the following equation we follow
(Kim and Park 2008) to reformulate the objective function
for computational convenience.

U =argmin
U≥0
||X − UV ||2F + ζ‖U‖2F + λ

∑
j

‖V.j‖21

+ ηtr(V GV T )

=argmin
U≥0
||X − UV ||2F + ζ‖U‖2F

=argmin
U≥0
||(X, 0m×k)− U(V,

√
ζIk)||2F

=argmin
U≥0
||X̃ − UṼ ||2F

(10)

where X̃ = (X, 0m×k) and Ṽ = (V,
√
ζIk).

The updating rule for U to (Lee and Seung 2001)reduce
the objective function can be either of the following ones,
which can be proven in a similar way in (Lee and Seung
2001; Gu and Zhou 2009),

Uij = Uij
(X̃Ṽ T )ij

(UṼ Ṽ T )ij
(11)

Uij = Uij

√
(X̃Ṽ T )ij

(UṼ Ṽ T )ij
(12)

Update V Now we decrease the objective function with
respect to V given U .

V = argmin
V

OMM−NMF

= argmin
V
||X − UV ||2F + λ

∑
j

‖V.j‖21 + ηtr(V GV T )

= argmin
V
||
(

X

01×n

)
−
(

U√
λe1×k

)
V ||2F + ηtr(V GV T )

= argmin
V
||X̃ − ŨV ||2F + ηtr(V GV T )

(13)
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where X̃ =
(
X

01×n

)
and Ũ =

(
U√
λe1×k

)
.

This optimization step can be done efficiently using the
following updating rule, which can be proven in a similar
way in (Gu and Zhou 2009),

Vij = Vij

√
(ŨT X̃ + ηV G−)ij

(ŨT ŨV + ηV G+)ij
(14)

where

G = G+ −G−

G+
ij =

|Gij |+Gij
2

G−ij =
|Gij | −Gij

2

(15)

Convergence Analysis
Since both updating methods for U and V are non-
increasing, and the objective function clearly has a lower
bound, for example, 0, thus the algorithm will converge.

Experimental Results
Data Set
We conduct clustering experiments on real data sets: the
ORL face database, and the USPS handwritten digits.

The ORL face database contains ten images for each of
the forty human subjects, which are taken at different times,
under different lighting condition, with different facial ex-
pression and with/without glasses. All faces are resized to
32× 32 for efficiency. Figure 1 shows some sample images
from ORL data set.

Figure 1: Examples of ORL face database

The USPS digit dataset contains 8-bit gray scale images
of ”0” through ”9”. Each image is of size 16× 16, and there
are 1100 images for each class. Figure 2 shows some images
from this dataset.

Evaluation Metric
To evaluate the performance of clustering, we use two met-
rics (Xu, Liu, and Gong 2003; Cai, He, and Han 2008): 1,
accuracy; 2, normalized mutual information(NMI).

The clustering algorithm is tested on N samples. For a
sample xi, the cluster label is denoted as ri, and ground true
label is ti. The accuracy is defined as follows:

accuracy =
∑N
i=1 δ(ti,map(ri))

N
(16)

Figure 2: Examples of USPS Handwritten Digits

where δ(x, y) is equal to 1 if x is equal to y, and 0 oth-
erwise. Function map(x) is the best permutation mapping
function gained by Kuhn-Munkres algorithm (Lovasz and
Plummer 1986), which maps cluster to the corresponding
predicted label. So, we can easily see that the more labels of
samples are predicted correctly, the greater the accuracy is.

For the second metric, let C denote the cluster centers
of the ground truth, and C ′ denote the cluster centers by
clustering algorithm. The mutual information is defined as
follows:

MI(C,C ′) =
∑

c∈C;c′∈C′
p(c, c′)log

p(c, c′)
p(c)p(c′) (17)

where p(c) and p(c′) are the probabilities that a document
belongs to cluster c and c′ respectively, and p(c, c′) is the
probability that a document jointly belongs to cluster c and
cluster c′. The normalized mutual information(NMI) is de-
fined as follows:

NMI(C,C ′) =
MI(C,C ′)

max((H(C)), (H(C ′)))
(18)

where H(C) and H(C ′) are the entropies of C and C ′.
We can easily see that NMI measures the dependency of
two distributions, and higher value of NMI means greater
similarity between two distributions.

Clustering on Human Faces
We conduct ten independent experiments on the ORL face
dataset. In each experiment, we randomly select ten sub-
jects, and get 100 images since there are ten images for each
subject. Then the clustering algorithms are run on the 100
images. ThusX is a matrix with the size of 1024×100. U is
a matrix with size of 1024×10 and V is of size 10×100. We
don’t list the performance SNMF, because according to our
experimental results SNMF cannot outperform NMF, which
means the best choice of the parameter λ is 0. When λ is set
to 0, SNMF is equivalent to NMF.

As mentioned above, ζ is simply fixed as the maximum
value of the input matrix. The parameter λ is searched
within [0, 0.5]. However, this parameter is not critical as
we will see MM-NMF2, which simply sets λ to 0, still has
competitive performance. The parameter η reflects how re-
liable the structure information encoded by S is. Generally
speaking, if there are more samples, the S will be more reli-
able since the samples on each manifold will be denser, and
the η should have larger value. In this paper, η is set by
searching only on the grid of {0.1, 1, 10, 100, 1000}. In the
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Method K-means NMF MM-NMF2 MM-NMF
1 71.0 67.0 66.0 82.0
2 60.0 54.0 80.0 79.0
3 58.0 59.0 81.0 84.0
4 58.0 61.0 79.0 78.0
5 70.0 52.0 68.0 64.0
6 63.0 62.0 73.0 75.0
7 66.0 65.0 72.0 80.0
8 48.0 61.0 67.0 64.0
9 59.0 65.0 54.0 72.0
10 55.0 59.0 59.0 56.0

Average 60.8 60.5 69.9 73.4
Std. 7.0 4.8 8.9 9.2

Table 1: Clustering Accuracy(%) on ORL face database

Method K-means NMF MM-NMF2 MM-NMF
1 80.4 69.3 77.8 88.8
2 73.4 62.1 82.1 83.6
3 72.4 68.8 82.2 82.6
4 69.1 66.2 81.3 83.5
5 80.5 58.6 75.2 70.3
6 68.8 63.2 75.5 80.6
7 76.2 77.8 79.7 85.2
8 59.5 63.1 67.8 70.1
9 67.4 64.3 63.6 72.8
10 65.4 62.9 64.1 64.9

Average 71.3 65.6 74.9 78.2
Std. 6.6 5.3 7.2 8.0

Table 2: Clustering NMI(%) on ORL face database

experiments on face clustering, our λ for MM-NMF is 0.01,
and η for MM-NMF and MM-NMF2 is 1.

The accuracy and NMI of different algorithms are shown
in table 1 and table 2, respectively. The average performance
and standard deviation of the algorithms are listed in the bot-
tom lines of the tables.

From the results, we can see that our algorithms MM-
NMF2 and MM-NMF outperform traditional NMF by about
ten percent, and MM-NMF is slightly better than MM-
NMF2, which means the sparseness regularizer is helpful.
In other words, the sparseness introduced by nonnegativ-
ity constraint is not enough for this task, and we need extra
sparseness regularization.

According to our experiments, the performance is not sen-
sitive to the value of η. For example, when η is set on 0.1,
the average accuracy of MM-NMF is 68.6%, which is still
much better than NMF.

After the matrix factorization, we gain a nonnegative basis
matrixU with size of 1024×10. Ideally, each column should
represent a human subject. We visualize these basis learned
by NMF and MM-NMF in figure 3 and figure 4, respectively.
From these basis, we can easily see that MM-NMF learns
better representation for each class. This is mainly because
they are manifold specific.

Figure 3: Face Basis Learned by NMF

Figure 4: Face Basis Learned by MM-NMF

Clustering on Handwritten Digits
For experiment on USPS digits, we randomly select 1000
samples from the dataset. Thus X is a matrix with the size
of 256 × 1000, U is of size 256 × 10 and V is of size 10 ×
1000. The scheme to set parameters here is the same as face
clustering. The λ here is 0.4, and η is set to 100.

The accuracy and NMI of different algorithms are shown
in table 3 and table 4, respectively.

From the results, we can also see that our algorithms
MM-NMF2 and MM-NMF outperform traditional NMF by
about ten percent in both accuracy and NMI, and MM-NMF
is slightly better than MM-NMF2, which again shows the
sparseness regularizer is helpful. Here K-means also has
comparable good performance. It outperforms traditional
NMF, but it still cannot outperform our MM-NMF.

In the experiments on digits, we have more examples than
experiments on faces, thus the η has larger value as men-
tioned above. Experiments are also conducted when η is
set as 10 and 1, and MM-NMF still generates robust results

Method K-means NMF MM-NMF2 MM-NMF
1 64.5 54.4 69.0 64.3
2 56.8 48.1 65.9 63.6
3 56.9 55.4 62.0 61.2
4 50.9 52.3 55.9 64.5
5 58.4 53.2 61.0 61.5
6 65.8 52.2 68.4 65.9
7 63.8 59.1 53.8 65.5
8 65.8 50.5 54.6 65.8
9 65.0 47.5 56.8 60.1
10 62.6 55.7 66.3 68.1

Average 61.1 52.8 61.3 64.1
Std. 5.0 3.6 5.8 2.5

Table 3: Clustering Accuracy(%) on USPS Digits Dataset
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Method K-means NMF MM-NMF2 MM-NMF
1 59.7 51.3 60.9 58.8
2 61.3 46.4 65.0 59.6
3 58.5 49.9 58.9 60.3
4 54.0 46.7 53.5 60.8
5 59.0 45.8 56.0 57.4
6 63.2 50.0 66.2 61.6
7 59.4 55.6 53.1 61.2
8 63.2 50.9 59.2 64.4
9 63.9 47.3 58.5 58.5
10 59.6 53.4 62.6 64.0

Average 60.2 49.7 59.4 60.9
Std. 2.9 3.2 4.4 2.3

Table 4: Clustering NMI(%) on USPS Digits Dataset

with the average accuracy as 61.2% and 60.7%, which are
still much better than NMF.

In experiments, each column of U should represent a
digit. We visualize these basis U learned by NMF and MM-
NMF in figure 5 and figure 6, respectively. From these two
figure, we can easily see that basis learned by MM-NMF
have much clearer interpretation than basis learned by NMF.

Figure 5: Digit Basis Learned by NMF

Figure 6: Digit Basis Learned by MM-NMF

Conclusion
We observe that when the data are supported on more than
one manifold, a good representation should be sparse since
any data sample is drawn from a single manifold. Also, the
local geometry structure should be preserved on each man-
ifold rather than the entire set of manifolds. Based on the
observation, we propose a nonnegative matrix factorization
algorithm for data samples drawn from a mixture of man-
ifolds, which is never considered before. The sparseness

is encouraged and the local geometric structure on each of
the manifolds is preserved in our our algorithm. The cor-
responding objective function can be efficiently minimized
by two iterative multiplicative updating rules. Experimental
results on real datasets show that our algorithm gains better
clustering results and learns better interpretable representa-
tion for each class. For future, clustering for data with mul-
tiple labels on multiple manifolds is a promising direction.
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