
 
Nonparametric Curve Extraction Based on Ant Colony System   

Qing Tan1, 2    Qing He1    Zhongzhi Shi1  
 

1Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, China 
 2Graduate University of Chinese Academy of Sciences, China 

{tanq, heq, shizz}@ics.ict.ac.cn  
 
 
 

Abstract1 
Curve extraction is an important and basic technique in 
image processing and computer vision. Due to the 
complexity of the images and the limitation of segmentation 
algorithms, there are always a large number of noisy pixels 
in the segmented binary images. In this paper, we present an 
approach based on ant colony system (ACS) to detect 
nonparametric curves from a binary image containing 
discontinuous curves and noisy points. Compared with the 
well-known Hough transform (HT) method, the ACS-based 
curve extraction approach can deal with both regular and 
irregular curves without knowing their shapes in advance. 
The proposed approach has many characteristics such as 
faster convergence, implicit parallelism and strong ability to 
deal with highly-noised images. Moreover, our approach can 
extract multiple curves from an image, which is impossible 
for the previous genetic algorithm based approach. 
Experimental results show that the proposed ACS-based 
approach is effective and efficient. 

1. Introduction 
Curve extraction and recognition is basic and crucial in 
many fields such as image processing, image analysis and 
computer vision. In curve recognition, image segmentation 
algorithm is firstly used before extraction. Due to the 
complexity of raw images and the limitation of 
segmentation algorithm, binary images after segmentation 
always contain discontinuous curves and noisy pixels, 
which bring difficulty for curve recognition.  

The well-known Hough transform (HT) is the most 
frequently used approach for curve extraction in a binary 
image which contains noisy pixels. In HT (Hough 1962), a 
linear point-to-line mapping is used to detect the largest sets 
of collinear points. A decade later, (Duda and Hart 1972) 
modified Hough’s method to fit the situation that the 
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intersection of lines could lie in  in the coordinate. Since 
the emergence of HT, many scholars (Sklansky 1978, 
Brown 1983) proposed improved algorithms to detect lines 
and circular arcs in a binary image and there is still a wealth 
of literatures about the Hough transform in recent years 
(Chandan et al. 2008, Fernandes et al. 2008). However, all 
these HTs have the limitation that they can only detect 
parametric curves. But in actual applications such as 
pavement crack detection, river course detection in remote 
sensing images and other crack detection, curve equations 
are usually not known a priori before recognition. HT 
methods do not work in these situations. 

Extracting curves from a binary image means to select a 
subset of pixels (real target pixels) from all nonzero pixels. 
So every pixel sequence can denote a curve and be treated 
as a feasible solution. In this way, curve extraction is 
converted to a combinatorial optimization problem and the 
curve could place no emphasis on whether it is a parametric 
one or not. From this point of view, some curve extraction 
approaches based on genetic algorithm (GA) were proposed. 
(Wei et al. 2005) proposed a niche genetic algorithm (NGA) 
based nonparametric curve extraction approach. (Saitoh 
1998) extracted disconnected curve using genetic algorithm 
based on factors of closeness and continuity in perceptive 
grouping functions. These GA-based methods are effective 
in extracting the main part of the dominant curve. However, 
experiments indicate that their accuracy and computation 
efficiency are not high. Moreover, these methods can only 
detect the most dominant curve in the binary image. 
Considering the multiple curves, it needs further creative 
modification to fit them. 

Ant colony optimization (ACO) (Dorigo et al. 1996, 
Dorigo and Stützle 2004) metaheuristic is a population-
based approach inspired by the behavior of ant colony in 
real world. In ACO, solutions of the problem are 
constructed within a stochastic iterative process, by adding 
solution components to partial solutions. ACO algorithms 
have been successfully applied to several NP-hard 
combinatorial optimization problems such as traveling 
salesman problem (TSP).  
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As one of the best implementation of ACO for TSP, ant 
colony system (ACS) (Dorigo and Gambardella 1997) has 
been shown to be competitive against optimization methods 
like GA and simulated annealing algorithm. In this paper, 
inspired by solving TSP utilizing ACS, we treat curve 
extraction as a problem of constructing path consisting of 
unfixed-length nonzero pixel sequence and propose an 
ACS-based curve extraction algorithm. Using state 
transition rule in ACS, the sequences are constructed step 
by step. Pheromone updating rule keeps the pheromone 
value in an ideal level to give ants more opportunities to 
find a better solution. Besides the traditional operators, 
searching termination function and path reversal rule are 
specifically designed in order to fit the curve extraction task. 
All these units work together to obtain the dominant curve. 
On this basis, the algorithm is extended to extract multiple 
target curves. We define the similarity between two curves 
based on the intersection of pixel sequences. All the high 
fitness curves whose similarity with others is smaller than a 
given threshold could be extracted.  

The rest of this paper is organized as follows: Section 2 
introduces the fitness function adopted in this paper. Then 
in Section 3, we present our ACS-based curve extraction 
algorithm and give detailed analysis on the related 
operators. Experimental results are given in Section 4, 
followed by our conclusions in Section 5. 

2. Design of Fitness Function 
In order to extract the most probable curve as human 
visualization does, the fitness function is designed 
according to human visual characteristics which could be 
summarized as follows. 

(1) Along the most dominating curve, the density of 
nonzero pixels must be the highest one of all the envisaged 
curves in the image. In another word, the total length of the 
break points in the curve should be as small as possible.  

(2) For a nonzero pixel sequence, the longer the span 
between initial pixel and terminal pixel, the more the 
probability of denoting the dominant curve.  

Based on the above principles, some variables and fitness 
function are briefly defined as follows and more detailed 
information could be obtained in literature (Wei et al. 2005).  

In a pixel sequence (Curve), the distance between the 
k1th element and the k2th element is 

1 2( ( ), ( ))Dist Curve k Curve k  

1 2 1 2

2 2
( ) ( ) ( ) ( )( ) ( )Curve k Curve k Curve k Curve kx x y y ,      (1) 

where (
1( )Curve kx ,

1( )Curve ky ) and (
2( )Curve kx ,

2( )Curve ky ) are 
respectively the positions (row, column) of Curve(k1) and 
Curve(k2) in the image. 

Definition 1: Spn— the span between initial nonzero 
pixel and terminal nonzero pixel of the Curve in the binary 
image, which could be calculated as follows:   

 ( ) ( (1), ( ))CurveSpn Curve Dist Curve Curve L .          (2) 
Definition 2: Lcv— the actual length of the curve. 

1

1
( ) ( ( ), ( 1))

CurveL

k
Lcv Curve Dist Curve k Curve k ,   (3) 

where Curve(k) and Curve(k+1) are two neighbour pixels 
and LCurve is the pixel number of the Curve. 

The definition of distance is based on the premise that 
each pixel is a square with side length 1. The actual length 
of the curve Lcv could be partitioned into two parts: total 
length cross nonzero pixels and total length cross zero 
pixels. We use Wnnc to represent the total length cross 
nonzero pixels.  

Definition 3: Wnnc— the weighted number of nonzero 
pixels in the curve. Suppose that each pixel is a square with 
side length 1, and the weighted ‘1’ is the actual length of 
the line cross the square. The summation of the weighted 
‘1’ on the curve is called Wnnc.  

1

cos ( )    if (k)1 4, ( )
( ) sin ( )     if (k)

4

      
CurveL

k

k
Wnnc k

k k
     (4) 

where (k) is the angle between x coordinate and the line 
segment of Curve(k) and Curve(k+1).  

Definition 4: Ftnf— the fitness function of the curve. 

                   
10

SpnFtnf
Lcv Wnnc

.                      (5) 

In the fitness function, Lcv-Wnnc is the total length cross 
zero pixels. The empirical value 10 is used for adjusting the 
acutance of Lcv-Wnnc. The function designed in this way is 
easy to compute and considers both two principles of 
human visual characteristics.  

3. ACS-based Curve Extraction   
In our proposed ACS-based Curve Extraction (ACE) 
algorithm, each nonzero pixel is analogous to a city in TSP, 
the target of our algorithm is to find a pixel sequence which 
owns the highest fitness and denotes the most dominant 
curve. Follow the pattern of solving TSP utilizing ACS, we 
randomly choose a nonzero pixel as the initial pixel of the 
sequence and then apply a state transition rule to add other 
nonzero pixels one by one to form a pixel sequence. The 
main difference between solving curve extraction task and 
TSP is that we do not visit all the nonzero pixels in the 
image but dynamically judge whether to stop adding a next 
pixel into the sequence.  

3.1 ACE Algorithm 
The main structure of ACE algorithm is similar with that of 
ACS algorithm when solving TSP. The procedure is 
described in Algorithm 1. 

In each iteration, m ants are initially positioned on the 
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pixels. Each ant builds a pixel sequence (i.e., a feasible 
solution to the curve extraction task) by repeatedly applying 
the state transition rule. While constructing its solution, an 
ant also modifies the amount of pheromone on the visited 
edges by applying the local updating rule. Once all ants have 
terminated their solutions, the amount of pheromone on 
edges is modified again by applying the global updating rule. 
Different from ACS when solving TSP, a searching 
termination function is used in step 4 when the ant moves to 
a new pixel. It decides whether the ant will continue adding 
pixels into its current pixel sequence. Also a path reversal 
rule is used to reverse the current solution when the ant is 
stopped by searching termination function the first time. 
Detailed explanation will be given in the following 
subsections. 
 

Algorithm 1 ACS-based curve extraction (ACE) 

 

1 Initialize parameters and pheromone; 
Loop /* at this level each loop is called an iteration */ 

2       Put each ant in a random nonzero pixel as starting pixel; 
            Loop  

3             Each ant applies a state transition rule to choose a  
next pixel to visit, followed by a local pheromone 
updating rule; 

4             Each ant calls the searching termination function; 
5             If the return result is continue moving, 
                          Go to step 3 to incrementally build a solution; 
6             Else /* the result is stop moving */ 
                          If it is the first time to stop moving 

Apply path reversal rule and then go to step 3; 
                          Else /* it is the second time to stop moving */ 
                               Stop moving for that ant;  

/* that ant has built a complete solution */ 
Until all ants have built a complete solution 

7        Calculate fitness of each solution and a global pheromone  
updating rule is applied to reinforce pheromone on the 
edges belonging to the best solution; 

Until end condition of the algorithm is satisfied, usually reach 
a given iteration number. 

3.2 State Transition and Pheromone Updating 
Rule 

3.2.1 State Transition Rule. In ACE, the state transition 
rule is as follows: ant positioned on pixel i chooses the 
pixel j to move to by applying the rule given by Eq. (6).  

0

0

arg max[( ) ( ) ],

                             ,

il il
l U

q q
j

V q q
,                    (6) 

V is a random variable selected according to the probability 
distribution given by Eq. (7).  

( ) ( )

( ) ( )
ij ij

ij
il il

l U

P ,                               (7) 

where U is the set of pixels that not be visited by ant yet, q 
is a random number uniformly distributed in [0…1], and 

00 1q  is a parameter in ACS. Besides, ij is the 
pheromone on edge (i, j), ij is the heuristic information 
provided by the optimization problem itself,  and  are 
parameters which determine the relative importance of 
pheromone versus heuristic information. 

The crucial part in state transition rule is how to define 
the heuristic information . Usually, heuristic information 
stands for the cost of adding new elements into the current 
slice of the solution. For example, heuristic information 
defined in TSP is reciprocal of the distance between two 
cities. In curve extraction problem, the accompanying Lgap 
value when adding a new pixel into the path is just the cost. 
Heuristic information is defined in Eq. (8).  
                         1/( 1)ij ijLgap ,                                  (8) 

where Lgapij is the length of the gap between current pixel i 
and pixel j. Ants prefer to move to pixels with high 
pheromone level and small Lgap value on the edges. 
3.2.2 Pheromone Updating Rule. Pheromone ij reflects 
the desirability of visiting pixel j from current pixel i. In 
ACS, pheromone updating includes two parts: local 
updating rule and global updating rule. Local updating rule 
is applied while ants construct solutions. When building a 
solution, ants visit edges and change their pheromone level 
by applying the local updating rule of Eq. (9).  

                        0(1 )new old
ij ij ,                               (9) 

where 0 1  is a pheromone decay parameter and 0  is 
the initial pheromone level.  

Global updating rule is applied when all ants have 
terminated their pixel sequences. The pheromone level is 
updated by applying the global updating rule of Eq. (10). 

     (1 ) ,    ( , )new old bs bs
ij ij ij i j T ,                (10) 

_     if ( , )  global-best-path
         0                          otherwise

bs
ij

best fitness i j
,  (11) 

where 0 1  is a decay parameter, and best_fitness is 
the fitness of the global best path from the beginning of the 
trial. It indicates that only those edges belonging to the 
globally best path will receive reinforcement. 

3.3 Searching Termination Function and Path 
Reversal Rule 

3.3.1 Searching Termination Function. In TSP, length 
of the solutions is a fixed number because all the cities must 
be visited once and only once. As to the problem of curve 
extraction, the curve is composed of only a subset of all the 
nonzero pixels. In order to fit for this feature, a searching 
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termination function is designed in our approach. In the 
process of constructing a pixel sequence, termination 
function will be applied whenever the ant moves to a new 
pixel. It judges the ant whether stop moving or continue 
adding a new pixel to the current partial sequence. In an 
ideal state, ants should stop when they move to the end 
points of the curve, otherwise should be allowed to 
continue moving to a new pixel. When all the unvisited 
nonzero pixels are far away from the current pixel, a great 
increment of weighted number of zero pixels (length cross 
zero pixels) will be added into the curve if ant continues 
moving to a new pixel, which will decrease the density of 
nonzero pixels and cause low fitness of the solution. When 
this situation happens, the ant should have more probability 
to stop at the current pixel.  

Definition 5: Lgap— length of the gap between two 
nonzero pixels. Connecting two pixels refers to connect 
their centroids. Lgap equals the distance of the centroids 
minus the length cross the two pixels. It could be calculated 
when the positions (row and column in the image) of the 
pixels are given. 

The searching termination function designed in our 
approach is given by Eq. (12), which gives the probability 
of stopping at the current pixel.  

  
_   if _ _

() _
       1                 if _ _

min Lgap min Lgap ave Lgap
Stop ave Lgap

min Lgap ave Lgap
,   (12) 

min_Lgap is the minimal Lgap value among those from 
current pixel to all the unvisited nonzero pixels. The more 
the min_Lgap, the more stopping probability will be 
returned. ave_Lgap is the average of all Lgap values 
between any two nonzero pixels in the image, which is a 
constant for a given image.  
3.3.2 Path Reversal Rule. Considering that it is hard or 
even impossible to determine which pixel is the end point 
of the curve, each ant starts from a random nonzero pixel. 
Suppose the target curve is pixel sequence [1 2 3 4 5 6 7 8 9] 
and an ant starts from pixel number 4, constructs a path [4 5 
6 7 8 9] and stops at pixel number 9 judged by the 
searching termination function mentioned above. Obviously, 
it is just part of the target curve. On the other hand, every 
pixel in the curve has two adjacent pixels except for the end 
points. From a random starting pixel, ant constructs a path 
in only one direction. In order to allow the ant to continue 
moving towards another direction after stopping searching 
in the first direction, path reversal rule is designed as 
follows: exchange the position of starting pixel and 
terminal pixel in the path, reverse the path between them at 
the same time. After applying this rule, the raw path [4 5 6 
7 8 9] turns into [9 8 7 6 5 4]. In this way pixel number 9 
becomes one of the two end points and pixel number 4 
becomes a new starting node, from which ant could 
continue searching in another direction until stopped by 

searching termination function the second time. And it is 
likely that ant constructs a path [9 8 7 6 5 4 3 2 1] from [9 8 
7 6 5 4].  

3.4 Multi-curve Extraction  
The most dominant curve in the binary image could be 
extracted by ACE algorithm. However, many images may 
contain two or even more curves in real applications. In this 
section, we develop our ACE algorithm to fit this situation. 

ACO algorithms always focus on finding the global best 
solution in most cases. But for the problem of multi-curve 
extraction, different target curves correspond to different 
local best solutions.  

Suppose two curves are represented as pixel sequences in 
Eq. (13) and Eq. (14). Curvea is the current global best 
solution obtained by the ACE algorithm. 

           1 2 3[ ]a mCurve a a a a                         (13) 

1 2 3[ ]b nCurve b b b b .                        (14) 
Each sequence constitutes a pixel set. When the 

intersection of the two pixel sets contains lots of pixels, 
Curvea and Curveb are considered to represent a same target 
curve. Curveb should be neglected due to its lower fitness. 
But in another situation, Curvea and Curveb indicate two 
quite different curves when their intersection is empty or 
only has a few pixels. Although Curvea is the most 
dominant curve, Curveb should be considered as another 
target curve if its fitness is higher than a given threshold.  

Genetic algorithm is a population evolutionary method, 
in which the individuals with lower fitness will be 
eliminated gradually. Due to such a mechanism, Curveb is 
hard to be reserved by the GA-based curve extraction 
methods. Fortunately, it is not a problem in ACS-based 
algorithm. Ants randomly start from pixel bi have a 
considerable probability to construct the target Curveb using 
the rules designed in ACE algorithm.  

In order to judge whether two pixel sequences represent 
the same target curve, we define the similarity of two 
curves based on the size of their intersection.  

Definition 6: Similarity— the similarity function of two 
curves.  

( , )
min( , )

a b
a b

a b

Curve Curve
Similarity Curve Curve

Curve Curve
,  (15) 

where ‘ ’ denotes the size of the set. In the extreme case, 
according to the above definition, similarity would be 0 
when the intersection is empty and it would be 1 when one 
set is a subset of another set.  

For multi-curve extraction, we use target_curves to store 
all the target curves. In each iteration, all the constructed 
paths satisfy Eq. (16) will be selected as candidate solutions. 
For each such candidate solution Curvec, calculate its 
similarity with all the target curves currently stored in 
target_curves according to Eq. (15). Curvec will be added 
into target_curves when Eq. (17) is satisfied for every 
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Curvet stored in target_curves. Otherwise, pick out Curvet 
whose similarity with Curvec is not satisfied. Use Curvec to 
substitute Curvet in target_curves if its fitness is higher 
than that of Curvet. This situation means Curvec and Curvet 
represent a same target curve and Curvec further optimizes 
the former Curvet. 

          ( ) _Ftnf Curve threshold fitness ,                   (16) 
( , ) _c tSimilarity Curve Curve threshold similarity .  (17) 

where threshold_fitness and threshold_similarity are two 
threshold parameters given in advance.  

Besides, the global pheromone updating rule is modified 
in order to fit multi-curve extraction. Instead of only the 
globally best path will receive reinforcement, all paths 
stored in target_curves are allowed to release pheromone.  

4. Experimental Results 
In order to test the effectiveness of the proposed ACE 
algorithm, we pick 40 raw pavement images taken from 
camera together with 80 generated binary images as our 
testing samples. Each raw pavement image has 1024 1280 
pixels. Binary tile images with 64 80 pixels each could be 
obtained using image preprocessing and segmentation 
algorithms adopted in (Wei et al. 2005). The generated 
images contain various curves of undefined shapes and 
each image has 80 80 pixels. The ACS parameters setting 
in our experiments is a typical combination as follows, 
whose detailed analysis could be obtained in (Dorigo and 
Gambardella 1997). 

1 , 2 , 0 0.9q , 0.1 , 0.1 , 10m . 
In the following images, white pixels are not identified, 

gray ones are recognized and black is background. The 
extraction results illustrated in figure 1 show the 
effectiveness of ACE algorithm.  

   
Figure 1. ACE results of a pavement image. 

For some extreme highly-noised images, ACE algorithm 
also presents high performance. In the sample image 
illustrated in figure 2(a), 8% of pixels of backgrounds are 
random noisy pixels, which is much larger than the 
corresponding number 0.3% in the experimental images 
used in (Saitoh 1998). Although the noise proportion is so 
large that nearly reaches the limitation of human visual 
recognition, ACE algorithm can still extract the dominant 
curve in the image effectively.  

For each image in the image samples, we run ACE 
algorithm three times considering its randomicity. The 

average extraction accuracy for each image is recorded to 
measure ACE’s performance. Extraction accuracy (EA) 
refers to the proportion of correctly extracted pixel number 
to the total number of nonzero pixel. Table 1 summarizes 
ACE’s performances on the image samples. 42 of 120 
images get a perfect extraction result (EA=100%) and 118 
of 120 images have an EA higher than 95%. The average 
EA for the 120 images is 98.8%. The reason for the failure 
sample is that the curve is separated into two parts by a big 
gap. The short part of the curve is not treated as another 
target curve and be neglected due to its small span value.  

   
(a) Raw highly-noised image      (b) ACE curve extraction result 

Figure 2. ACE result of highly-noised image. 
Table 1. ACE’s performance on the image samples 

EA=100% EA>98% EA>95% Average EA

42/120=35% 99/120=83% 118/120=98% 98.8% 

We compare the performance of ACE algorithm with 
previous NGA-based approach proposed in (Wei et al. 
2005). Both methods are implemented in the same running 
environment. Representative binary images with different 
noise level are selected to make the comparison. Sample 
description and extraction results are given in table 2. We 
conduct t –test with 95% confidence to check whether the 
superiority of ACE method over NGA method is 
statistically significant. The results indicate that the 
proposed ACE algorithm extremely significantly 
outperforms the NGA-based approach in both views of 
extraction accuracy and computation time.  

Generally speaking, the accuracy gap between NGA and 
ACE is not too big when the noise proportion is relatively 
low. And this gap becomes obvious as the noise proportion 
grows. That is because the ACE’s state transition rule 
guarantees the ants focus on the nearby pixels when 
choosing a next pixel to visit, which is quite insensitive to 
the noisy pixels out of the curve. However, for every bit of 
NGA’s chromosome, noisy pixels have the same chance to 
compete with the target pixel on the curve. Although in 
theory, the extraction accuracy of NGA-based approach 
may be enhanced by increasing the iteration number, it will 
cost much more time. On the other hand, the comparison of 
running time between ACE and NGA presented in table 2 
shows that ACE algorithm owns much better computation 
efficiency than NGA-based approach. 
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Table 2. Comparison of extraction results between ACE and NGA 

Sample Description Iteration Number EA (%)  Running Time (s) 

ID Noise 
Proportion 

Nonzero 
Pixel  NGA ACE NGA ACE NGA ACE 

1 0.5% 90 500 20 95.6 100 36.7 6.8 
2 0.6% 99 500 20 100 100 36.8 7.0 
3 0.9% 117 1000 30 95.7 99.1 78.4 8.8 
4 1.0% 129 1000 30 96.9 100 79.8 11.2 
5 1.4% 142 1500 40 94.4 99.3 124.1 14.4 
6 1.8% 161 1500 40 91.9 100 128.7 19.8 
7 2.0% 194 2000 50 89.2 96.9 185.9 30.7 
8 2.7% 233 3000 60 90.1 98.3 269.3 35.1 
9 3.2% 275 4000 80 88.0 99.3 399.7 62.2 
10 4.0% 330 5000 100 84.2 99.1 516.5 99.3 

Moreover, images containing multiple curves are used to 
test the effectiveness of ACE algorithm in multi-curve 
extraction tasks. Parameter threshold_fitness is used to 
discriminate whether a pixel sequence denotes a target 
curve. It is insensitive because the fitness of a target curve 
and a noisy sequence usually has a large gap. Consider that 
almost all target curves in our experiments own a fitness 
higher than 2.0, we set threshold_fitness=2.0. Besides, we 
set threshold_similarity=0.7 and keep other parameters 
setting the same with those in the former experiments. 
Extraction results of some representative samples are 
presented in figure 3, which demonstrate that the proposed 
algorithm is effective in multi-curve extraction.  

  
 

Figure 3. Extraction results of multi-curve images. 

5. Conclusion 
This work studies the problem of nonparametric curve 
extraction, which focuses on dealing with the curves whose 
shape and functions are not given in advance. We propose 
an ACS-based curve extraction algorithm in this paper and 
the curves extracted in this way could place no emphasis on 
parametric ones or not, while the Hough Transform method 
can only detect parametric curves. Instead of coding the 
curves in GA-based approaches, solutions are flexibly 
constructed step by step in our method. Besides the 
traditional operators in ACS, searching termination 
function and path reversal rule are specially designed to fit 
curve extraction task. They are in effect in this research and 
the proposed ACS-based method is much more effective 
and efficient than previous GA-based method. The solution 

construction mechanism in the method is insensitive to 
noisy pixels and thus guarantees the method good 
performance even if the processed image is extreme highly-
noised. What is more, the method could preserve multiple 
meaningful locally best solutions, which fits the multi-
curve extraction tasks.  
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