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Abstract

Spectral feature selection identifies relevant features by
measuring their capability of preserving sample simi-
larity. It provides a powerful framework for both super-
vised and unsupervised feature selection, and has been
proven to be effective in many real-world applications.
One common drawback associated with most existing
spectral feature selection algorithms is that they evalu-
ate features individually and cannot identify redundant
features. Since redundant features can have significant
adverse effect on learning performance, it is necessary
to address this limitation for spectral feature selection.
To this end, we propose a novel spectral feature selec-
tion algorithm to handle feature redundancy, adopting
an embedded model. The algorithm is derived from
a formulation based on a sparse multi-output regres-
sion with a L2,1-norm constraint. We conduct theoret-
ical analysis on the properties of its optimal solutions,
paving the way for designing an efficient path-following
solver. Extensive experiments show that the proposed
algorithm can do well in both selecting relevant features
and removing redundancy.

Introduction
Handling high-dimensional data represents one of the most
challenging problems for learning. Given huge number
of features, learning algorithms can overfit data and be-
come less comprehensible. Feature selection is one ef-
fective means to reduce dimensionality by removing irrel-
evant and redundant features (Guyon and Elisseeff 2003;
Liu and Motoda 1998). In recent years, researchers de-
signed spectral feature selection algorithms (He, Cai, and
Niyogi 2005; Zhao and Liu 2007) to identify relevant fea-
tures through evaluating features’ capability on preserving
sample similarity. Given m features, and a similarity ma-
trix S of the samples, the idea of spectral feature selection
is to select features that align well with the leading eigen-
vectors of S. Since the leading eigenvectors of S contain
structure information of sample distribution and group sim-
ilar samples into compact clusters (von Luxburg 2007), fea-
tures aligning better to them will have stronger capability on
preserving sample similarity (Zhao and Liu 2007). There
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exist many spectral feature selection algorithms: Laplacian
score (He, Cai, and Niyogi 2005), Fisher score (Duda, Hart,
and Stork 2001), trace ratio (Nie et al. 2008), relief and
reliefF (Sikonja and Kononenko 2003), SPEC (Zhao and
Liu 2007), and HSIC (Song et al. 2007). These algo-
rithms demonstrated excellent performance in both super-
vised and unsupervised learning. However, since the algo-
rithms evaluate features individually, they cannot handle re-
dundant features. Redundant features increase dimension-
ality unnecessarily (Kearns and Vazirani 1994), and worsen
learning performance when facing shortage of data. It is also
shown empirically that removing redundant features can re-
sult in significant performance improvement (Hall 1999;
Ding and Peng 2003; Gabrilovich and Markovitch 2004;
Yu and Liu 2004; Appice et al. 2004; Duangsoithong 2009).
Note that none of these redundant feature removal algo-
rithms are based on spectral analysis.

In this work, we address the limitation of existing spec-
tral feature selection algorithms in handling redundant fea-
tures, and propose a novel spectral feature selection algo-
rithm of an embedded model, which evaluates the utility
of a set of features jointly and can efficiently remove re-
dundant features. The algorithm is derived from a formu-
lation based on multi-output regression (Hastie, Tibshirani,
and Friedman 2001), and feature selection is achieved by
enforcing sparsity through applying L2,1-norm constraint
on the solutions (Obozinski, Wainwright, and Jordan 2008;
Argyriou, Evgeniou, and Pontil 2008). We analyze its capa-
bility on redundancy removal and study the properties of its
optimal solutions, which paves the way for an efficient path-
following solver. By exploiting the necessary and sufficient
conditions for the optimal solutions, our solver can automat-
ically adjust its parameters to generate a solution path for se-
lecting a specific number of features efficiently. We conduct
extensive empirical study on the proposed algorithm in both
supervised and unsupervised learning to demonstrate that it
can select relevant features with low redundancy.

Spectral Feature Selection with Sparse
Multi-output Regression

Let X ∈ n×m be the data matrix, where n and m are the
number of samples and features, respectively. Given a sam-
ple similarity matrix S specifying the similarity among sam-
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ples, spectral feature selection aims to select features that
preserve the sample similarity specified by S. Given a fea-
ture f , different spectral feature selection algorithms can be
formulated in a common way:

SC(f ,S) = f̂>Ŝ f̂ =
n∑

i=1

λ̂i

(
f̂>ξ̂i

)2

. (1)

In the equation, f̂ and Ŝ are the normalized f and S gener-
ated by certain normalization operators. λ̂i and ξ̂i are the
i-th eigenvalue and eigenvector of the Ŝ, respectively. Dif-
ferent spectral feature selection algorithms adopt different
ways to define S and use different criteria to normalize f and
S to achieve the certain effect, such as noise removal. Due to
the space limit, we refer readers to the literature for details
on spectral feature selection algorithms. Eq. (1) shows that
existing spectral feature selection algorithms evaluate fea-
tures individually. Therefore they cannot identify redundant
features, which forms a common drawback of them.

Sparse Multi-output Regression Formulation
To identify feature redundancy, features must be evaluated
jointly. To this end, given yi = λ

1/2
i ξi, where λi and ξi are

the i-th eigenvalue and eigenvector of S, instead of look-
ing for one feature which closely aligns yi, as formulated in
Eq. (1), we propose to find a set of l features, such that their
linear span is close to yi. The idea can be formulated as:

arg min
A,wi,A

‖yi −XAwi,A‖22.

In the equation, A = {i1, . . . , il} ⊆ {1, . . . ,m}, XA =
(fi1 , . . . , fil

) and wi ∈ l×1. Note, to facilitate the subse-
quent formulations, in the above equation, we use L2 norm
on the difference of two vectors to measure the closeness
among vectors. When all λi and ξi are considered, their
joint optimization can be formulated as:

arg min
A,wi,A

n∑
i=1

‖yi−XAwi,A‖22 = ‖Y−XAWA‖2F . (2)

In the equation, Y=(y1, . . . ,yn), WA=(w1,A, . . . ,wn,A).
Assume S = UΣU> is the SVD of S, we have Y=UΣ1/2.
Note, when A contains only one feature, the formulation
reduces to searching for features that maximize the Eq. (1).

Given Y and XA, WA can be obtained in a closed form.
However, feature selection needs to find the optimal A,
which is a combinatorial problem of NP-hard. To efficiently
solve the problem, we propose the following formulation:

arg min
W,c
‖Y −XW‖2F (3)

s.t. ‖W‖2,1 ≤ c
A = {i :

∥∥wi
∥∥

2
> 0}, Card (A) = l

Here wi denotes the ith row of W, and ‖W‖2,1 is the L2,1-
norm which is defined in the following way:

‖W‖2,1 =
m∑

i=1

∥∥wi
∥∥

2
(4)

When applied in regression, the L2,1-norm constraint is
equivalent to applying Laplace prior (Seeger 2008) on wi,
which tends to force many rows in W to be 0>, result-
ing sparse solution. The advantages of the formulation pre-
sented in Eq. (3) are three folds.

First, it can find a set of features that jointly preserve the
sample similarity specified by S.

Theorem 1 Let Y = UΣ1/2 and Ω = Y−XW. We have:∥∥XWW>X> − S
∥∥

F
≤ 2(‖Y‖F + ‖Ω‖F ) ‖Ω‖F

The proof is straightforward, given the fact that ‖AB‖F ≤
‖A‖F ‖B‖F . In the theorem, XW is a new representation
of samples obtained by linearly combining the selected fea-
tures1. And XWW>X> returns the pairwise similarity
among samples measured by their inner product under the
new representation. The theorem shows that by minimizing
‖Ω‖F , we also minimize ‖XWW>X> − S‖F , which en-
sures the selected features can jointly preserve the sample
similarity specified by S.

Second, by jointly evaluating a set of features, it tends
to select non-redundant features. Assume two features fp
and fq satisfy the following conditions: (1) they are equally
correlated to Y, i.e. f>p Y=f>q Y; (2) fq is highly corre-
lated to fd, i.e. f>q fd → 1. And fq is less correlated
to fd, i.e. f>p fd > f>q fd. Without loss of generality, we
assume both fp and fq are positively correlated to fd; (3)
they are equally correlated to other features, i.e. f>p fi=f>q fi,
∀i ∈ {1, . . . ,m}, i 6= d. We have:

Theorem 2 Assume the above assumptions hold, and fd
have been selected by an optimal solution of Eq. (3), then
feature fq has higher priority than fp to be selected in the
optimal solution.

The theorem can be proved by contradiction through assum-
ing fd and fp are in the optimal solution but fq is not. The
theorem shows that the formulation in Eq. (3) tends to select
features that are less correlated to the already selected ones,
which ensures the selection of non-redundant features.

Third, it is tractable. Given a value for c, the problem:

arg min
W,c
‖Y −XW‖2F s.t. ‖W‖2,1 ≤ c (5)

can be solved by applying a general solver (Obozinski,
Wainwright, and Jordan 2008; Argyriou, Evgeniou, and
Pontil 2008; Liu, Ji, and Ye 2009). And given l, a proper
c value, which results in the selection of about l features,
can be found by applying either a grid search or a binary
search based on the observation that, a smaller c value usu-
ally results in selecting fewer features. However, for a given
l, this approach may require to run a solver many times for
searching the c value, which is computationally inefficient.

1Note that although W ∈ m×k, many of its rows are 0>.
Therefore, the representation is generated by using only a small set
of selected features
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MRSF, An Efficient Solver for Eq. (3)
We propose an efficient path-following solver for the prob-
lem in Eq. (3). It can automatically detect the points when
new features enter its “active set”, and update its parameters
accordingly. It can efficiently generate a solution path to se-
lect the specified number of features. We start by deriving
the necessary and sufficient conditions for a feature to be
selected in an optimal solution of Eq. (5).

The Lagrangian for Eq. (5) has the following form:

L (W, λ) = ‖Y −XW‖2F − λ
(
c− ‖W‖2,1

)
(6)

L (W, λ) is convex. According to the convex optimization
theorem (Boyd and Vandenberghe 2004), W∗ minimizes
L (W, λ) if and only if 0 ∈ ∂wiL (W, λ) |W=W∗ , i =
1, . . . ,m. Here, ∂wiL (W, λ) is the subdifferential of
L (W, λ) corresponding to wi, and has the following form:

∂wiL (W, λ) = f>i (Y −XW) + λvi (7)

vi =
wi

‖wi‖
, if wi 6= 0

vi ∈
{
u|u ∈ 1×k, ‖u‖2 ≤ 1

}
, if wi = 0

Therefore, W∗ is an optimal solution if and only if:

−λvi = f>i (Y −XW) |W=W∗ , ∀i ∈ {1, . . . ,m} (8)

Base on this observation, we give the necessary conditions,
and the necessary and sufficient conditions for W to be op-
timal with the following two propositions.

Proposition 1 Assume wi is the i-th row of W, the neces-
sary conditions for W to be optimal are: ∀i ∈ {1, . . . ,m}:

wi 6= 0 ⇒ ‖f> (Y −XW) ‖2 = λ

wi = 0 ⇒ ‖f> (Y −XW) ‖2 ≤ λ (9)

Proposition 2 Assume wi is the i-th row of W, the neces-
sary and sufficient conditions for W to be optimal are: ∀i

wi 6= 0 ⇒ f> (Y −XW) = −λ wi

‖wi‖2
wi = 0 ⇒ ‖f> (Y −XW) ‖2 ≤ λ (10)

Based on the two propositions, we propose an efficient
solver for Eq. (3), and its pseudo code can be found in Al-
gorithm 1. In the algorithm,Ai is the “active set” in the i-th
run, which contains the features selected in that run. Algo-
rithm 1 contains two major steps. (1) Lines 4-10, the algo-
rithm determines the direction for updating W[i] (Line 4),
and the step size (Lines 5-8), by which, it updates the active
set and the λ (Line 10). (2) Lines 11-18, the algorithm finds
an optimal solution corresponding to the λ obtained in step
1. Given λ, it first solves an L2,1-norm regularized regres-
sion problem using a general solver based on the Nesterov’s
method (Liu, Ji, and Ye 2009) (Line 11). Note, this prob-
lem is of small scale, since it is only based on the features
in the current active set, but not the whole set. Ŵ is used as
a starting point to ensure fast convergence of the Nesterov
solver. It then checks whether the obtained solution is also

Algorithm 1: MRSF
Input: X, Y, k
Output: W
W[0] = 0, i = 1 and R[0] = Y;1
Compute the initial “active set” A1:2

A1 = arg maxj ‖f>j R[0]‖22;
while i ≤ k do3

Compute the walking direction γAi
:4

γAi
=
(
X>Ai

XAi

)−1
X>Ai

R[i−1];
for each j /∈ Ai and an arbitrary t ∈ Ai do5

Compute the step size αj can be taken in6
direction γAi , before fj enters the active set.
‖f>j

(
R[i−1] − αjXAi

γAi

)
‖2

= (1− αj)‖f>t R[i−1]‖2;
end7
j∗ = arg minj /∈Ai

αj ;8

Ŵ =
((

W[i−1] + αj∗γAi

)>
,0
)>

;9

Â = Ai

⋃
{j∗}, λ = (1− α)‖f>t R[i−1]‖2;10

Solve minW̃ ‖Y −XÂW̃‖2F + λ‖W̃‖2,1 using11

Nesterov’s method, with Ŵ as the starting point;
R̃ = Y −XÂW̃;12

if ∀i /∈ Â, ‖f>i R̃‖2 ≤ λ then13

i = i+ 1, Ai = Â, W[i−1] = W̃, R[i−1] = R̃;14
else15

Â =
{
i : ‖w̃i‖ 6= 0

}⋃{
arg maxj ‖f>j R̃‖2

}
;16

Remove w̃i from W̃, if ‖w̃i‖ = 0,17

Ŵ =
(
W̃>,0

)>
, Goto line 11;

end18

end19

Extend W[k] to W by adding empty rows to W[k];20

return W[k];21

optimal on the whole data (Line 13). If it is true, the algo-
rithm records the current optimal solution and goes to Line
4 to start next run (Line 14). Otherwise, it adjusts the active
set and goes back to Line 11 (Line 17).

Theorem 3 (1) Given W[i−1] is the current optimal solu-
tion, the Ŵ generated in step 1 (Line 9) satisfies the nec-
essary condition for an optimal solution specified in Propo-
sition 1. (2) And the W̃ in Line 14 of step 2 is an optimal
solution on X corresponding to the current λ.

Proof: To prove the first point, it is sufficient to show that
f>i XAi

(
X>Ai

XAi

)−1
X>Ai

= f>i , ∀ i ∈ Ai. And the sec-
ond point of the theory can be simply verified by applying
the necessary and sufficient conditions for the optimal solu-
tions developed in Proposition 2. �

Algorithm 1 is very efficient. In each run, in step 1 it
increases the size of its active set and decreases the λ ac-
cordingly. At the same time, it generates a tentative solu-
tion, which satisfies the necessary conditions for the opti-
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Table 1: Summary of the benchmark data sets
Data Set # Features # Instances # Classes
AR10P 2400 130 10
PIE10P 2400 210 10
PIX10P 10000 100 10
ORL10P 10000 100 10
TOX 5748 171 4
CLL-SUB 11340 111 3

mal solution. And in step 2, it generates an optimal solution
corresponding to λ for the whole data by working on fea-
tures in the active set only. Since the tentative solution is
usually very close to a true optimal, step 2 often converges
in just a few iterations. Our analysis shows that when n
features are selected, Algorithm 1 has a time complexity of
O(n3k +mn2). We omit the analysis due to space limit.

Experimental Study
We now empirically evaluate the performance of the pro-
posed algorithm in both supervised and unsupervised learn-
ing. We name it MRSF, since it is proposed to Minimize the
feature Redundancy for Spectral Feature selection.

Experiment Setup
In the experiments, we choose eight representative feature
selection algorithms for comparison. For supervised learn-
ing, six feature selection algorithms are chosen as baselines:
reliefF, Fisher score, trace ratio, HSIC, mRMR (Ding and
Peng 2003) and AROM-SVM (Weston et al. 2003). The
first four are existing spectral feature selection algorithms.
And the last two are the-state-of-the-art feature selection al-
gorithms for removing redundant features. For unsupervised
learning, four algorithms are used for comparison: Lapla-
cian score, SPEC, trace ratio, and HSIC. They are all spec-
tral feature selection algorithms. For MRSF, in supervised
learning, S is calculated by Sij = 1/nl, if yi = yj = l,
otherwise Sij = 0; and in unsupervised learning, S is calcu-
lated by the Gaussian RBF kernel function. Six high dimen-
sional data sets are used in the experiment. There are four
image data: AR10P, PIE10P, PIX10, and ORL10P. And Two
Microarray data: TOX and CLL-SUB. Detailed information
of the data sets is listed in Table 1.

Assume F is the set of selected features, and XF only
containing features in F. In the supervised learning context,
algorithms are compared on (1) classification accuracy and
(2) redundancy rate. The redundancy rate is measured by:

RED (F) =
1

m(m− 1)

∑
fi,fj∈F,i>j

ρi,j ,

where, ρi,j returns the correlation between the ith and the
jth features. A large value of RED (F) indicates that many
selected features are strongly correlated and thus redun-
dancy is expected to exist in F. For unsupervised case, two
measurements are used: (1) the redundancy rate as defined

above; and (2) the Jaccard score computed by:

JAC (SF,S, k) =
1
n

n∑
i=1

NB (i, k,SF) ∩NB (i, k,S)
NB (i, k,SF) ∪NB (i, k,S)

,

where, SF = XFX>F is the similarity matrix computed from
the selected features using inner product; and NB (i, k,S)
returns the k nearest neighbors of the i-th sample according
to S. The Jaccard score measures the averaged overlapping
of the neighborhoods specified by SF and S. A high Jaccard
score indicates that sample similarity are well preserved.

For each data set, we randomly sample 50% samples as
the training data and the remaining are used for test. The
process is repeated for 20 times and results in 20 different
partitions. Different algorithms are evaluated on each parti-
tion. The results are recorded and averaged to generate the
final results. Linear SVM is used for classification. The pa-
rameters in feature selection algorithms and SVM are tuned
via cross-validation if necessary. Student’s t-test is used to
evaluate the statistical significance with a threshold of 0.05.

Study of Supervised Cases
Accuracy: The classification accuracy results are shown in
Figure 1-(a,b) and Table 2. Figure 1-(a,b) contains the plots
of the accuracy achieved by the SVM classifier when uses
the top 10, 20, . . ., 200 features selected by each algorithm.
Due to the space limit, we only plot the results from ORL
and CLL data. Table 2 shows the “aggregated accuracy”
of different algorithms on each data set. The aggregated
accuracy is obtained by averaging the averaged accuracy
achieved by SVM using the top 10, 20, . . ., 200 features se-
lected by each algorithm. The value in the parentheses is the
p-Val. In Figure 1 and Table 2, we can observe that MRSF
produces superior classification performance comparing to
the baseline algorithms. The averaged value for aggregated
accuracy achieved by the baseline algorithms is 0.78, which
is 11% lower than that achieved by MRSF.
Redundancy rate: Table 3 presents the averaged redun-
dancy rates of the top n features selected by different al-
gorithms, where n is the number of samples. We choose
n, since when the number of selected features is larger than
n, any feature can be expressed by a linear combination of
the remaining ones, which will introduces unnecessary re-
dundancy in evaluation. In the table, the boldfaced values
are the lowest redundancy rates or the ones without signif-
icant difference to the lowest. The results show that MRSF
attains very low redundancy, which suggests that the redun-
dancy removal mechanism in MRSF is effective.

Study of Unsupervised Cases
Jaccard score: Tables 4 present the averaged Jaccard score
achieved by different algorithms. Results show that MRSF
achieves significant better results on all data sets comparing
to the baseline algorithms, which demonstrates its strong ca-
pability on selecting good features for similarity preserving.
Redundancy rate: Table 5 shows the averaged redundancy
rates achieved with the top n features selected by different
algorithms. The results show that the features selected by
MRSF contains much less redundancy comparing with the
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(a) (b) (c)

Figure 1: Plots (a) and (b): Study of supervised cases, accuracy (Y axis) vs. different numbers of selected features (X axis).
The higher the accuracy the better. Plot (c), the Running time of MRSF and the Nesterov method on each data set.

Table 2: Study of supervised cases: aggregated accuracy with p-Val. (The higher the better.)
Algorithm ORL PIX AR PIE TOX CLL-SUB AVE
ReliefF 0.83 (0.00) 0.93 (0.00) 0.80 (0.00) 0.94 (0.00) 0.77 (0.03) 0.67 (0.00) 0.82
Fisher Score 0.80 (0.00) 0.92 (0.00) 0.77 (0.00) 0.93 (0.00) 0.72 (0.00) 0.54 (0.00) 0.78
Trace-ratio 0.80 (0.00) 0.92 (0.00) 0.77 (0.00) 0.93 (0.00) 0.72 (0.00) 0.54 (0.00) 0.78
HSIC 0.80 (0.00) 0.93 (0.00) 0.77 (0.00) 0.94 (0.00) 0.73 (0.00) 0.55 (0.00) 0.79
mRMR 0.73 (0.00) 0.87 (0.00) 0.70 (0.00) 0.95 (0.00) 0.70 (0.00) 0.64 (0.00) 0.76
AROM-SVM 0.78 (0.00) 0.86 (0.00) 0.63 (0.00) 0.94 (0.02) 0.64 (0.00) 0.57 (0.00) 0.74
MRSF 0.91 (1.00) 0.96 (1.00) 0.84 (1.00) 0.98 (1.00) 0.79 (1.00) 0.71 (1.00) 0.86

Table 3: Study of supervised cases: averaged redundancy rate with p-Val. (The lower the better.)
Algorithm ORL PIX AR PIE TOX CLL-SUB AVE
ReliefF 0.92 (0.00) 0.79 (0.00) 0.77 (0.00) 0.36 (0.00) 0.34 (0.00) 0.59 (0.00) 0.63
Fisher Score 0.79 (0.00) 0.83 (0.00) 0.67 (0.00) 0.37 (0.00) 0.56 (0.00) 0.76 (0.00) 0.66
Trace-ratio 0.79 (0.00) 0.83 (0.00) 0.67 (0.00) 0.37 (0.00) 0.56 (0.00) 0.76 (0.00) 0.66
HSIC 0.79 (0.00) 0.83 (0.00) 0.67 (0.00) 0.37 (0.00) 0.56 (0.00) 0.76 (0.00) 0.66
mRMR 0.25 (0.29) 0.33 (0.00) 0.26 (0.00) 0.29 (0.00) 0.26 (0.00) 0.26 (0.00) 0.27
AROM-SVM 0.25 (0.44) 0.26 (1.00) 0.25 (0.00) 0.32 (0.00) 0.15 (1.00) 0.59 (0.00) 0.31
MRSF 0.25 (1.00) 0.35 (0.17) 0.21 (1.00) 0.24 (1.00) 0.16 (0.40) 0.21 (1.00) 0.24

Table 4: Study of unsupervised cases: averaged Jaccard score with p-Val. (The higher the better.)
Algorithm ORL PIX AR PIE TOX CLL-SUB AVE

NB = 1
Laplacian Score 0.07 (0.00) 0.05 (0.00) 0.07 (0.00) 0.04 (0.00) 0.10 (0.00) 0.06 (0.00) 0.07
SPEC 0.15 (0.00) 0.05 (0.00) 0.09 (0.00) 0.05 (0.00) 0.12 (0.00) 0.05 (0.00) 0.09
Trace-Ratio 0.06 (0.00) 0.05 (0.00) 0.08 (0.00) 0.03 (0.00) 0.12 (0.00) 0.08 (0.00) 0.07
HSIC 0.08 (0.00) 0.05 (0.00) 0.07 (0.00) 0.04 (0.00) 0.12 (0.00) 0.10 (0.00) 0.08
MRSF 0.56 (1.00) 0.53 (1.00) 0.41 (1.00) 0.41 (1.00) 0.31 (1.00) 0.17 (1.00) 0.40

NB = 5
Laplacian Score 0.16 (0.00) 0.11 (0.00) 0.13 (0.00) 0.08 (0.00) 0.17 (0.00) 0.16 (0.00) 0.13
SPEC 0.28 (0.00) 0.11 (0.00) 0.16 (0.00) 0.11 (0.00) 0.19 (0.00) 0.14 (0.00) 0.17
Trace-Ratio 0.15 (0.00) 0.11 (0.00) 0.14 (0.00) 0.08 (0.00) 0.18 (0.00) 0.17 (0.00) 0.14
HSIC 0.16 (0.00) 0.13 (0.00) 0.14 (0.00) 0.10 (0.00) 0.18 (0.00) 0.16 (0.00) 0.14
MRSF 0.57 (1.00) 0.63 (1.00) 0.41 (1.00) 0.38 (1.00) 0.34 (1.00) 0.24 (1.00) 0.43

Table 5: Study of unsupervised cases: averaged redundancy rate with p-Val. (The lower the better.)
Algorithm ORL PIX AR PIE TOX CLL-SUB AVE
Laplacian Score 0.88 (0.00) 0.97 (0.00) 0.82 (0.00) 0.84 (0.00) 0.57 (0.00) 0.65 (0.00) 0.68
SPEC 0.72 (0.00) 0.97 (0.00) 0.75 (0.00) 0.77 (0.00) 0.47 (0.00) 0.59 (0.00) 0.61
Trace-Ratio 0.88 (0.00) 0.97 (0.00) 0.81 (0.00) 0.87 (0.00) 0.57 (0.00) 0.67 (0.00) 0.68
HSIC 0.88 (0.00) 0.97 (0.00) 0.80 (0.00) 0.82 (0.00) 0.57 (0.00) 0.64 (0.00) 0.67
MRSF 0.35 (1.00) 0.32 (1.00) 0.32 (1.00) 0.29 (1.00) 0.27 (1.00) 0.37 (1.00) 0.27
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baseline algorithms. This is expected, since the latter cannot
remove redundant features in feature selection.

Study of Efficiency
Figure 1-(c) presents the running time of MRSF and a solver
for Eq. (5) proposed in (Liu, Ji, and Ye 2009). Since that
solver is based the Nesterov’s method, we call it Nesterov in
this paper. As shown in (Liu, Ji, and Ye 2009), Nesterov is
one of the fastest solvers for solving Eq. (5). The running
time is obtained in the following way. We first run MRSF to
select 100 features on each data set and record the obtained
c = ‖W‖2,1 and the time it used. We then run Nesterov on
each data using the c we obtained from MRSF and record its
running time. The precision of the Nesterov is set to 10−6.
Note that Nesterov is also used in Line 11 of MRSF, where
its precision is set to 10−6, too. The results show that on
the six data sets, MRSF achieved an average running time of
23.33s, which compares to the 37.46s of Nesterov. Note that
if the grid search or binary search is applied to determine
c, Nesterov may have a running time which is much longer,
even with the warm start strategy (Liu, Ji, and Ye 2009).
The results demonstrate the high efficiency of the proposed
MRSF algorithm.

The experiment results from both supervised and unsu-
pervised learning cases show consistently that MRSF can
very efficiently select features containing less redundancy
and producing excellent learning performance.

Conclusion
In this work, we propose a novel spectral feature selec-
tion algorithm based on sparse multi-output regression with
L2,1-norm constraint. We study the properties of its solu-
tions, and design an efficient solver following our formula-
tion. The algorithm improves existing spectral feature selec-
tion algorithms by overcoming a common drawback in han-
dling feature redundancy. As illustrated by extensive experi-
mental study, the proposed algorithm can effectively remove
redundant features and achieve superior performance in both
supervised and unsupervised learning. In our study, we find
that our formulation for spectral feature selection can be
linked to a wide range of learning models, such as SVM and
LDA through their least square formulations (Suykens and
Vandewalle 1999; Sun, Ji, and Ye 2009). We will investigate
these connections to gain more insights on spectral feature
selection for further research.
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