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Abstract

People constantly apply acquired knowledge to new learn-
ing tasks, but machines almost never do. Research on trans-
fer learning attempts to address this dissimilarity. Working
within this area, we report on a procedure that learns and
transfers constraints in the context of inductive process mod-
eling, which we review. After discussing the role of con-
straints in model induction, we describe the learning method,
MISC, and introduce our metrics for assessing the cost and
benefit of transferred knowledge. The reported results sug-
gest that cross-domain transfer is beneficial in the scenarios
that we investigated, lending further evidence that this strat-
egy is a broadly effective means for increasing the efficiency
of learning systems. We conclude by discussing the aspects
of inductive process modeling that encourage effective trans-
fer, by reviewing related strategies, and by describing future
research plans for constraint induction and transfer learning.

Introduction

Research in transfer learning (Choi et al. 2007; Mihalkova
et al. 2007) promises mechanisms that let induction sys-
tems improve with experience even as they operate across
different tasks or domains. The wide variety of learning ap-
proaches joined with the limited research and lexical ambi-
guity of this area demands that authors clearly define both
the base induction task and the transfer task. In our case,
the base task is inductive process modeling (Bridewell et al.
2008), which involves learning explanatory models from a
mixture of time-series data and domain knowledge. Tra-
ditionally, the knowledge comes from human experts and
takes the form of model components and structural con-
straints that limit how those components can be combined
(Todorovski et al. 2005). The transfer task involves learning
new structural constraints during one modeling scenario and
using those to reduce search in later problems. This knowl-
edge lets the modeling system rule out candidate structures
before calling an expensive parameter estimation routine.

Our approach, implemented as the MISC1 system, treats
constraint induction as an instance of supervised learning.
Intuitively, we take advantage of a common property of in-
telligent systems: they consider several candidate solutions
to a problem before returning the most promising ones. By
scoring their candidates with an objective function, these
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1Method for Inducing Structural Constraints

systems create a labeled training set that contains implicit in-
formation about the search space. From this data, MISC can
extract rules that identify the most promising candidates. In
our case, an inductive process modeling system (e.g., HIPM)
uses these rules, much like its own structural constraints, to
limit its search for candidate structures.

Prior applications of this approach have led to constraints
that successfully transfer across similar problems (Bridewell
& Todorovski 2007a). That is, the transferred constraints
can substantially reduce a system’s learning costs without
a corresponding reduction in model accuracy. However, in
those experiments, the problems involved the same biolog-
ical species living in roughly the same environment. Inter-
estingly, the learned constraints reflected common domain
knowledge, a finding that was born out by later work in a
more complex scientific domain (Bridewell & Todorovski
2007b). This result in particular suggests that the constraints
are general enough for the more difficult task of transferring
across domains.2

In this paper, we evaluate whether MISC produces trans-
ferable, cross-domain knowledge in the context of inductive
process modeling. To this end, we consider two aquatic
ecosystems—one a lake in a temperate climate and the other
a sea in the Southern Ocean. These environments diverge
both in their relevant, measured variables and in their envi-
ronmental influences and are studied by different scientific
subfields. We make two conjectures: (1) constraints learned
from a source domain will dramatically reduce the number
of candidate structures considered in the target domain and
(2) these constraints will not substantially reduce solution
accuracy compared to search without them. If both hypothe-
ses hold, then we claim that MISC implements a successful
approach for cross-domain transfer learning.

The next section provides more details on the base induc-
tion task and illustrate the effects of declarative bias in the
form of structural constraints. We then introduce MISC and
show how it applies to inductive process modeling. After-
wards, we introduce the evaluation measures, report results,
and discuss their implications. We close by reviewing re-
lated work and suggesting a future line of research.

2We recognize that the word “domain” possesses a comforting
ambiguity. Within this paper, we discuss domains that differ in
their system variables and environmental factors. Notably, we use
the same generic process library throughout and do not investigate
representation mapping.
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Inductive Process Modeling

Scientists use models to explain and predict an observed
system’s behavior. In the biological sciences, those mod-
els commonly refer to processes that govern system dynam-
ics and the entities altered by those processes. Differential
equations offer one way to represent these mechanisms and
to develop predictive models, but they fail to make contact
with the process knowledge shared among scientists. In
response, Langley et al. (2002) developed a language for
quantitative process models that ties the explanatory aspects
of a model (i.e., the processes and entities) to its mathemat-
ical formulation.

This formalism, shown in Table 1, supports both a per-
formance task that requires model simulation and a learning
task called inductive process modeling. Simulation involves
compiling a process model into a system of differential and
algebraic equations and using a numerical solver, such as
CVODE (Cohen & Hindmarsh 1996), to produce trajecto-
ries for analysis and comparison to observations. The learn-
ing task requires domain knowledge in the form of generic
processes, generic entities, and constraints on how they may
be instantiated and combined. The output is a specific pro-
cess model that explains observed data and predicts unseen
data accurately.

The generic processes form the core of the background
knowledge. For example,

generic process holling 1:
variables S1{prey},S2{predator};
parameters ar[0.01,10],e f [0.001,0.8];
equations

d[S1.pop,t,1] = −1 ∗ ar ∗ S1.pop ∗S2.pop;
d[S2.pop,t,1] = e f ∗ ar ∗ S1.pop ∗ S2.pop;

is the generic form of the predation process in Table 1. No-
tice that we replaced the parameters with continuous ranges
and the entities (i.e., f and r) with typed identifiers.

Several systems address this task, including IPM
(Bridewell et al. 2008) and HIPM (Todorovski et al. 2005),
and have been shown to learn models with hidden variables,
conditionally active processes, and other features. Each sys-
tem employs a generate-and-test strategy to search for mod-
els whose simulated trajectories match the training data. Ini-
tially, the generator constructs potential model components
by grounding generic processes with specific entities and
then carries out a two-layered search through the space of
candidate models. The first layer builds an acceptable model
structure from available components, and the second esti-
mates the numerical parameters for that structure. The tester
simulates each candidate and compares its trajectories to
the observations. Combined, the procedures for model con-
struction and evaluation take roughly the same amount of
time for each candidate. This approach works well in prac-
tice, but has two important drawbacks: parameter estimation
accounts for over 99% of the computation per model and
model structures may be scientifically implausible. Struc-
tural constraints treat both problems.

To illustrate the effects of declarative bias, consider an ex-
ample problem from predator–prey dynamics. The problem
input consists of the population density of interacting rabbit

Table 1: A process model of a predator–prey interaction be-
tween populations of foxes (f) and rabbits (r). The notation
d[X ,t,1] indicates dX/dt.

model Predation;

entities r{prey}, f {predator};

process rabbit growth;
equations

d[r.pop,t,1] = 1.81∗ r.pop∗ (1−0.0003∗ r.pop);

process fox death;
equations

d[ f .pop,t,1] = −1∗1.04∗ f .pop;

process predation holling 1;
equations

d[r.pop,t,1] = −1∗0.03∗ r.pop∗ f .pop;
d[ f .pop,t,1] = 0.30∗0.03∗ r.pop∗ f .pop;

and fox populations over time, rabbit and fox entities that
instantiate a generic entity for animal species, and 9 generic
processes: 2 for population growth (i.e., exponential and lo-
gistic), 2 for population loss, and 5 for predation. Ruling out
cannibalism, the generator would produce 18 model compo-
nents. If we limit each component to a single appearance
per model there are 218 −1 = 262,143 structures. However,
this scenario lets rabbits prey on foxes, which seems implau-
sible. A constraint that rules out fierce bunnies eliminates
five of the predation components, leaving 213 − 1 = 8,191
structures. By further differentiating the species into preda-
tor and prey and using common restrictions from population
dynamics, the space shrinks to 20 plausible candidates.3

This example demonstrates that domain knowledge can
dramatically reduce the amount of search carried out by a
system. Not only do the constraints exclude several implau-
sible models at the generation stage, but they do so with-
out calling the parameter estimation routine. This advance
eliminates a considerable amount of computation. Further-
more, compiling the bias into the generator implicitly by-
passes the implausible structures and saves more processor
time. However, unlike processes which frequently appear as
sets of equations in the scientific literature, modeling con-
straints tend to be implicit and infrequently codified. As a
result, collecting this knowledge requires extensive collab-
oration with domain experts (Atanasova et al. 2006). In
the next section, we introduce MISC and show how it can
automate the acquisition process in the context of inductive
process modeling.

Learning Structural Constraints

The approaches from the previous section fall into an impor-
tant category of heuristic search techniques. In this class—
which includes methods for supervised rule induction, con-
straint optimization, and equation discovery—each node in
the search space constitutes a candidate solution. Although
systems that implement this technique typically discard their

3A plausible model contains one of two growth processes for
rabbits, one of two loss processes for foxes, and one of five for
predation. This gives 2∗2∗5 = 20 total models.
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search history, adapting them to store visited nodes creates
data sets that map potential solutions to their performance.
The intuition that informs MISC is that a relationship exists
between the form of a solution and its fit to data.

This research rests on two central ideas: (1) one can learn
rules that classify structures as accurate or inaccurate for a
particular problem and (2) these rules transfer across prob-
lems and possibly across domains. We treat the second idea
when we report on the experiments. Here, we explore the
first idea by treating the task of constraint induction as a
supervised learning problem. To this end, MISC takes as
input (a) descriptions of models, (b) scores that represents
their fit to a data set, and (c) a logical representation of the
associated generic process library. The system translates the
model descriptions into a base language that indicates which
processes and entities appear in each model and how they in-
teract. These descriptions are used by the higher-level rela-
tional features shown in Table 2 to characterize the structure
of each model.

In addition to describing the models with these features,
MISC assigns a target class to each model based on its
quantitative fit. To this end, the system selects performance
thresholds for the coefficient of determination (r2), which
falls in the [0,1] interval, and labels models that exceed
the threshold as accurate and those below it as inaccurate.
To identify candidate thresholds, MISC sorts the models in
the training data models by r2 and divides them into bins.
Next, the system identifies the point of maximal perfor-
mance change between consecutive models within each bin.
If points in neighboring bins have similar r2 scores, the im-
plemented procedure eliminates all but one. We describe
how one might select a single threshold from this set when
we report on the experiments.

With a feature set and thresholds in hand, MISC relies
on inductive logic programming to induce structural con-
straints. The current implementation uses Aleph (Srinivasan
2000) to generate two separate rule sets for each threshold:
one that describes the structure of the accurate models and a
corresponding one for the inaccurate models.4 MISC trans-
forms the rules for accurate structures into a disjunction of
necessary conditions for considering a model and transforms
those for inaccurate structures into a similar disjunction of
conditions for ignoring a model. We can then use these con-
straints to alter the learning phase of an inductive process
modeling system.

Evaluating Constraint Transfer

This paper’s hypothesis claims not simply that the con-
straints learned using MISC help solve future modeling
problems within the same domain, but that they success-
fully transfer to other domains. To test this claim, we need
scoring functions to assess the effectiveness of knowledge
transfer. Unfortunately, general measures of transfer learn-
ing have been elusive since they depend on the nature of the
base learning task, the type of knowledge being passed on,

4We use Aleph’s iterative covering algorithm and allow 10 false
positives. All other settings take their default values.

Table 2: The domain-general relationships that can appear
in a constraint. Each predicate also has an explicit negation.

includes process(model id, generic process)

includes process type(model id, process type)

includes entity instance(model id, entity instance)

includes entity(model id, generic entity)

includes process entity instance(model id,
generic process, entity instance)

includes process entity(model id,
generic process, generic entity)

includes process type entity instance(model id,
process type, entity instance)

includes process type entity(model id,
process type, generic entity)

and the core objective of transfer. As a result we describe
the measures that we use and discuss why we chose them.

We can restate our conjectures as two questions:

(1) How much search time do you save?

(2) How much accuracy do you lose?

The first of these addresses the tradeoff between declarative
bias and computation. Intuitively, more knowledge should
equal less search. Since inductive process modeling uses
constrained, exhaustive search, we can directly measure this
effect. The second question addresses the primary danger of
adding bias. That is, the constraints could rule out the best
solutions. Since the base task carries out exhaustive search,
and since the constraints reduce the search space to a proper
subset of candidate structures, the results cannot improve.
The answers to these questions tell us (1) the transfer benefit
and (2) the transfer cost.

Prior work in this area (Bridewell & Todorovski 2007a)
reported the transfer benefit by directly comparing the num-
ber of models in the search space with and without the trans-
ferred knowledge. For example, a score of 9.0 indicated that
the additional bias led to a 9-fold reduction in search. We
modify that measure to produce a value that falls between
zero, which indicates no reduction, and one, which indicates
an empty search space. Specifically, we report the fraction of
the original search space that the structural constraints rule
out: 1− tn

ntn
, where tn is the number of models in the transfer

scenario and ntn is the number in the nontransfer scenario.

Our measure of transfer cost also diverges from earlier
work. Since we are interested in a single solution, mea-
suring the recall of the top n models (Bridewell & Todor-
ovski 2007a) can lead to overly pessimistic results for two
reasons. First, if the bias rules out all but the highest scor-
ing model, we should not penalize it for failing to retrieve
the top 10, 50, or 100. Second, in practice, the highest
score and the 50th highest score may differ by 1/100th of
a point which may be negligible compared to uncertainty
in the data. To avoid these problems, we calculate transfer
cost as (1− tbest

ntbest
) where tbest is the r2 score for the highest

ranked model in the transfer condition and ntbest is the high-
est ranked model in the unconstrained search space. A cost
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Figure 1: The transfer benefit for applying necessary (NEC)
and sufficient (SUF) constraints from Bled Lake to the Ross
Sea (BR) or vice versa (RB). The boxes identify the 1st, 2nd,
and 3rd quartiles, and the lines delineate the minimum and
maximum values.

of 0 indicates that no accuracy was lost, whereas a cost of
1 corresponds to the extreme case where the constraints left
only those models with an r2 of 0. Coupled with our mea-
sure of transfer benefit, this measure of transfer cost lets us
evaluate MISC in the context of ecological modeling.

Results from Cross-Domain Transfer

To evaluate the practical effect of constraint learning on in-
ductive process modeling, we applied it to the task of ex-
plaining ecosystem dynamics. Models of population dynam-
ics identify the mechanisms that drive observed changes in
species concentrations within an ecosystem. These mech-
anisms may include processes of nutrient uptake for plants,
grazing for herbivores, and predation for carnivores as possi-
ble examples. For this study, we focused our attention on the
general domain of aquatic ecosystems, which includes both
freshwater and marine (i.e., saltwater) environments. Al-
though these ecosystem types share more in common with
each other than with terrestrial systems, they differ substan-
tially in their species composition and in the presence and
the dynamics of the relevant environmental factors.

The two ecosystems that we selected differ not only along
the freshwater–saltwater dimension but also in geographi-
cal location. The marine data are from the 1996–1997 and
1997–1998 summer seasons of the Ross Sea (Arrigo et al.
2008), which lies in the Southern Ocean off the coast of
Antarctica. In this scenario, we had observations of five
variables: phytoplankton concentration, nitrate concentra-
tion, ice concentration, available light, and water tempera-
ture. To these we added unmeasured variables for the zoo-
plankton and iron concentrations—two properties thought to

Figure 2: The transfer cost for applying necessary (NEC)
and sufficient (SUF) constraints from Bled Lake to the Ross
Sea (BR) or vice versa (RB). The boxes identify the 1st, 2nd,
and 3rd quartiles, and the lines delineate the minimum and
maximum values.

affect the phytoplankton bloom. In comparison, the fresh-
water data came from the Bled Lake (Atanasova et al. 2006)
in Slovenia from 1995–2002 during the months where the
lake was not covered in ice. Observations from this site cov-
ered seven variables: the amount of available light, the water
temperature, and the concentrations of phytoplankton, zoo-
plankton, nitrate, phosphate, and silica. These regions differ
in the particular plankton species, the set of operative nutri-
ents, and the expressed environmental factors (e.g., there is
no night during the summer in the Ross Sea). Nevertheless,
we expected the same general processes to drive the underly-
ing dynamics and that this commonality would support con-
straints that transfer across their parent scientific domains.
Each year or season serves as a data set, which gives us two
sets for the Ross Sea and eight for Bled Lake.

For the experimental evaluation, we used HIPM (Todor-
ovski et al. 2005) to exhaustively explore the space of mod-
els that could explain the Ross Sea and Bled Lake data
sets and MISC to induce transferable knowledge. In each
case we employed the same domain knowledge for aquatic
ecosystems which included 29 generic processes, 6 generic
entities, and structural constraints. This library was assem-
bled and validated by an ecologist in collaboration with sci-
entists who study the Bled Lake and the Ross Sea. The in-
stantiated entities differed between the Ross Sea and Bled
Lake and affected the number of candidate solutions for each
domain: 1108 for the Ross Sea and 3120 for Bled Lake. Af-
ter running HIPM on all 10 data sets individually, we applied
MISC at each of its suggested thresholds. This produced
two sets of rules for each run: one that described accurate
models, which became necessary constraints, and another
that described the inaccurate models, which were negated to
gain sufficient constraints.

To transfer the knowledge across domains, we imple-
mented a selection procedure that chose constraint sets
based on within-domain problems and evaluated them on
the cross-domain problems. For example, we took the set
of necessary constraints derived from the 1995 Bled Lake
data for each threshold and applied them to the remaining
Bled Lake years. The constraint set that generalized best to
the other years was selected for transfer. Our selection cri-
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teria involved picking the set of constraints that maximized
(bene f it + 1− cost)/2 for other problems within the same
domain. This step led to separate collections of necessary
constraints and sufficient constraints for each of 10 modeling
problems. Our assumption was that a set of constraints that
works well within a domain would also work well across do-
mains. Following this approach, there were 2 modeling tasks
for the Ross Sea domain and 8 for the Bled Lake, which gave
16 cases of transfer in each direction. Since we considered
the necessary and sufficient constraints separately, we had a
total of 64 transfer experiments.

The following rules are an example of MISC’s output in
a Prolog format. The first rule states that if phytoplankton
is modeled with a second-order exponential death process
and without the specified grazing process then the candidate
structure is inaccurate. The second rule states that if a model
includes a limited growth process and the generalized Gause
grazing process, then it is accurate.

inaccurate model(M) :-
includes process entity(M, death exp2, phy),
does not include process entity(M, holling type 3, phy).

accurate model(M) :-
includes process type(M, limited growth),
includes process(M, generalized gause).

These rules provide the constraints that reduce the search
space of an inductive process modeling system.

Figure 1 summarizes the transfer benefit and Figure 2
summarizes the transfer cost. In 68.8% of the cases the ben-
efit exceeded 0.5, which means that the added bias cut the
search space by 50% or more. Also, 31.3% of the cases had
a benefit greater than 0.9, which is an order of magnitude re-
duction. The average benefit was 0.92 when using the neces-
sary constraints and 0.55 when applying the sufficient ones.
Overall, the cost was less than 0.1 for 70.3% of the time and
0.0 for 40.6% of the time. The average cost when using the
necessary constraints was 0.25 and 0.01 when applying the
sufficient ones.

Discussion

The results with transfer benefit imply a substantial reduc-
tion in computation due to the learned constraints. The
current results are, in some cases, more modest than the
order-of-magnitude reductions shown in previous studies
(Bridewell & Todorovski 2007a). We attribute that find-
ing to the fact that the aquatic ecosystem library already
contains extensive, expert-derived constraints that make the
modeling task manageable. As a result, we were surprised to
find further constraints that complemented the expert knowl-
edge and generalized across domains. Based on that prior
study, we conjecture that domains lacking a strong bias on
the structure of solutions will see higher transfer benefit.

Although there were some exceptions, transfer cost was
low. This result means that the added bias either preserved
the highest scoring model (41% of the time) or a model with
a similar score (70% of the time). Notably, transfer cost was
minimal for the sufficient constraints, but could be quite high
for the necessary ones. The cause of this discrepancy could
be related to the technologies in MISC, or it could result

from properties of the modeled domains. To uncover the
source of this effect and its ubiquity, we will need to exam-
ine data from a broad range of transfer scenarios. However,
the parameters in Aleph that control rule selection (e.g., pre-
cision and coverage) may also be dominant factors.

Finally, we point out the differences in the results that re-
late to the direction of transfer. In Figures 1 and 2, trans-
fer from Bled Lake generally reflects a wider distribution
of costs and benefits than transfer from the Ross Sea. This
relates to the number of constraint sets in each case. There
were 16 total constraint sets derived from the Bled Lake task
and only 4 from the Ross Sea one. Constraints learned from
a single modeling task in one domain (e.g., Bled Lake, 1995)
will remove the same number of candidate structures from
the other domain regardless of the year being modeled. As
the number of source domains increases and the number of
target domains decreases the variability in the constraint sets
has a greater effect on the variance. We posit that a similar
result explains the differences in transfer cost.

The findings in this paper build upon and strengthen prior
work by Bridewell & Todorovski (2007a) in three ways.
First, our experiments evaluated the potential for cross-
domain transfer as opposed to within-domain transfer. Sec-
ond, our modeling problems were more complex than ba-
sic predator–prey interactions, involving unobserved vari-
ables and a wider variety of potential interactions. Third,
they constrained their models by the number of processes,
whereas our ecosystem library included several structural
constraints that were fine-tuned by a domain expert. As a
result, there is strong evidence for our two conjectures, that
MISC dramatically reduces the number of structures con-
sidered in the target domain and that solution accuracy will
remain stable.

Related Work and Concluding Remarks
Notably, without a rich representation transfer of any sort is
difficult. Work investigating multitask learning (e.g., Zhang
et al. 2008) typically uses a propositional language for in-
put and lacks background knowledge about task structure.
As a result, much of that research is directed toward repre-
sentations that enable the induction of the shared structure.
Caruana (1997) rightly suggests that we need a theory of
task relatedness to better understand multitask and transfer
learning, but any such theory that fails to take the task struc-
ture as input will be of limited use.

Our research more closely resembles methods for trans-
ferring and adapting relational knowledge across domains
and for inducing structures with general applicability. For
example, TAMAR (Mihalkova et al. 2007) maps first-order
logical predicates across domains, transfers the correspond-
ing theories, and then revises the structure to apply to the
new scenario. Whereas that system learns by transferring
and then adapting a solution from another domain, MISC
attempts to induce knowledge about solutions that is suit-
able for transfer. DTM (Davis & Domingos 2009) goes one
step further by identifying domain independent patterns that
may be useful in many scenarios.

MISC also shares similarities with research outside the
area of transfer learning. Bessiere et al. (2006) present a
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system that learns constraint networks using a version space
approach, but these networks are propositional and the em-
phasis is on automated programming as opposed to con-
straint transfer. In addition, systems that learn search control
knowledge, such as PRODIGY (Carbonell et al. 1991) and
SAGE.2 (Langley 1983), identify constraints that reduce the
size of the search space. However, their constraints tend to
be domain and problem specific and evaluate local decisions
in a problem-solving context as opposed to candidate solu-
tions during an exhaustive search.

We see a wide vista of research opportunities based on
MISC. One item on our agenda involves incorporating a
representation mapping component so that we can improve
our support for scenarios where the entities differ. Research
on this front could also let us explore situations where the
generic processes may take different forms. In that case,
we can infer similarities in processes based on the equations
that define their behavior and other key characteristics. We
also plan to study constraint induction in scenarios where
exhaustive search is impossible and to investigate alternative
approaches to constraint induction.

More broadly, we believe that the techniques used by
MISC apply to a variety of problems in artificial intelli-
gence (AI) including rule induction and constraint optimiza-
tion. Adapting this approach requires the development of
a language that describes the structure of candidate solu-
tions. With this in hand, the basic strategy of using induc-
tive logic programming to infer declarative bias should eas-
ily transfer. Much of the labor would involve either casting
the AI problem into a constraint-satisfaction mold to take
advantage of established technology (Selman, Levesque, &
Mitchell 1992) or compiling the constraints into an existing
solution generator. In the future, we intend to expand MISC
to address some of these other areas.

Inductive process modeling uses rich background knowl-
edge that generalizes across domains, and we have described
a method for automatically extending that knowledge. We
evaluated a system that implements this method using mea-
sures that capture the cost and benefit of transfer, and the ex-
periments showed that the learned constraints dramatically
reduced search with minimal effects on solution accuracy.
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