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Abstract

Traditional clustering methods deal with a single clus-
tering task on a single data set. However, in some newly
emerging applications, multiple similar clustering tasks
are involved simultaneously. In this case, we not only
desire a partition for each task, but also want to discover
the relationship among clusters of different tasks. It’s
also expected that the learnt relationship among tasks
can improve performance of each single task. In this
paper, we propose a general framework for this prob-
lem and further suggest a specific approach. In our ap-
proach, we alternatively update clusters and learn rela-
tionship between clusters of different tasks, and the two
phases boost each other. Our approach is based on the
general Bregman divergence, hence it’s suitable for a
large family of assumptions on data distributions and di-
vergences. Empirical results on several benchmark data
sets validate the approach.

Introduction
Clustering is a fundamental problem in machine learning
and data mining. Several famous algorithms have been pro-
posed and successfully implemented, such as k-means (Jain
and Dubes 1988), spectral clustering (Ng, Jordan, and Weiss
2002), Bregman divergence based clustering (Banerjee et
al. 2005), etc. . Traditional clustering methods deal with
a single clustering task on a single data set. i.e., an algo-
rithm is required to provide a partition for a given target
data set. However, new requirements emerge from more and
more complex applications recently. In these applications,
we are confronted with multiple similar clustering tasks,
which are often on different data sets. Generally, there are
three types of typical scenarios. First, we hope to improve
individual clustering performance by transferring knowl-
edge across the tasks. The feasibility has been approved
by frontier research on multi-task learning (Caruana 1997;
Ando and Zhang 2005) and transfer learning (Pan and Yang
2008). Second, since the tasks are similar, the clustering
results on them are expected to be coherent. For example,
when clustering at different resolution on a same data set or
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clustering on slowly time-evolving data (Chakrabarti, Ku-
mar, and Tomkins 2006), significant contradiction certainly
leads to perplexity on understanding data. Third, we want
to discover the relationship between different data sets via
clustering analysis. For example, when analyzing species
of different area in ecology or haplotypes of different hu-
man populations in genetic (Stephens, Smith, and Donnelly
2001), we hope to discover the relationship between clusters
of different data sets.

In above scenarios, we have strong prior that there are
high correlation among involved data sets. This motivates
us to find an approach to perform multiple clustering tasks
collaboratively rather than in the traditional isolated manner.
The approach is desired to be able to (1) improve the per-
formance of individual clustering tasks; (2) produce results
coherent among tasks; (3) discover the relationship between
clusters of different tasks. What’s more, since there have
been lots of widely used clustering algorithms, suitable for
different assumption on data distribution or divergence mea-
sure, we hope the approach is general to be able to directly
extend these traditional algorithms to multitask applications.

Multitask clustering introduced here belongs to the field
of multitask learning (Caruana 1997; Ando and Zhang 2005;
Argyriou et al. 2008). However, compared to standard mul-
titask learning, multitask clustering introduced here has a
distinctive feature: it does not only want to improve sin-
gle task’s performance, but also discover the relationship be-
tween clusters of different tasks.

In this paper, we propose a general framework for this
problem and also suggest a specific approach. In the frame-
work, multitask clustering is formulated as minimizing a
loss composed of a task loss and a task regularization. In our
approach, each task loss is the average Bregman divergence
from a sample to its cluster centroid, and the task regulariza-
tion is a type of average divergence between partitions of any
two tasks. We further propose an alternative method to solve
the optimization problem. The method alternatively update
clusters and learn relationship between clusters of different
tasks, and the two phases boost each other. Empirical results
on several benchmark data sets validate our approach.

Related works
Multitask learning (Caruana 1997; Ando and Zhang 2005;
Argyriou et al. 2008) aims to perform multiple learning
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Table 1: Frequently used Bregman divergences.
Domain φ(x) dφ(x, y) Divergence

Rd ‖x‖2 ‖x− y‖2 Squared Euclidean distance
Rd xTAx (x− y)TA(x− y) Mahalanobis distance

d-simplex d
j=1 xj log2 xj

d
j=1 xj log

xi
yi

KL-divergence

R++ − log x x
y
− log x

y
− 1 Itakura-Saito distance

tasks together to improve individual performance. How-
ever, almost all existing works focused on supervised set-
tings. (Gu and Zhou 2009) handled the clustering problem
by learning a shared subspace among tasks. However, the
approach assumes that all tasks share an identical set of clus-
ters and requires that cluster numbers of all tasks are the
same, which is too restrictive in practice. Moreover, the ap-
proach is especially designed for Euclidean distance, which
can not apply to more general case of divergences.

Transfer learning (Pan and Yang 2008) attempts to im-
prove learning performance on a target data set by utilizing
auxiliary data sets. Hence in transfer learning, different data
sets are not equally treated, which is different from multi-
task learning. On clustering problems, (Dai et al. 2008) pro-
posed an approach to clustering a small collection of target
data with the help of a large amount of unlabeled auxiliary
data.

Clustering ensemble (Strehl and Ghosh 2003; Topchy,
Jain, and Punch 2005) aims to combine multiple given par-
titions on an identical data set to reach a consensus. Rather
differently, in multitask clustering, the partitions for all tasks
are exactly unknown and desired. Moreover, multiple tasks
are often on different data sets.

Preliminaries
Bregman divergence
Clustering problem is often formulated as minimizing cer-
tain type of average divergence between a data sample and
corresponding cluster centroid. Hence the divergence as-
sumption is crucial to a clustering algorithm. It has been
found that a large family of divergences can be written as a
uniform form called Bregman divergences.

Definition 1 (Bregman 1967) Let S ⊂ Rd be a convex set
with the relative interior ri(S) nonempty, and φ : S 7→ R
be a strictly convex function differentiable on ri(S). The
Bregman divergence dφ : S × ri(S) 7→ [0,∞] is defined as

dφ(x‖y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉 ,
where∇φ(y) represents the gradient of φ evaluated at y.

Tab. 1 lists some frequently used divergences as special
cases of Bregman divergences.

A Bregman divergence is not generally symmetric, i.e.,
it does not always hold that dφ(x‖y) = dφ(y‖x). Two ex-
amples of symmetric Bregman divergences are squared Eu-
clidean distance and Mahalanobis distance. KL divergence
is asymmetric. In addition, a Bregman divergence is convex
w.r.t. its left variate but non-convex w.r.t. its right variate.

(Banerjee et al. 2005) summarized an uniform formula-
tion for clustering problem with Bregman divergences:

min
U,h

1
n

∑n

i=1
dφ
(
xi
∥∥uh(xi)

)
, (1)

where U = {u1, . . . , uK} is the set of all cluster centroids,
and assigning function h : X 7→ {1, . . . ,K} maps from a
sample xi to its cluster index. Lots of traditional cluster-
ing algorithms such as k-means, Gaussian mixture models,
model-based clustering (Zhong and Ghosh 2003) are special
cases of this formulation.

Multitask Bregman clustering
Problem and notations
Consider T clustering tasks. Each task t is on a data cor-
pus X t = {xt1, . . . , xtnt}, and X = {X 1, . . . ,X T } de-
notes all data corpora. Each data corpus is to be parti-
tioned into Kt clusters. For each task t, we need to find
a partition Pt = {U t, ht}, which is defined by an assign-
ing function ht : X t 7→ {1, . . . ,Kt} and a set of centroids
U t = {ut1, . . . , utKt}. P = {Pt}Tt=1 denotes all the parti-
tions. K = {K1, . . . ,KT } denotes the set of all the cluster-
ing numbers. All superscripts t and s are task indices rather
than power. Subscripts z and l indicate cluster indices. Sub-
script i indicates index for a data sample.

A general framework
Considering T clustering tasks together, we can formulate
the multitask clustering problem as finding a set of partitions
P to minimize following loss function

min
P
L =

1
T

∑T

t=1
Lt
(
Pt,X t

)
+ λΩ (P) . (2)

In Eq. (2), Lt (Pt,X t) is a local loss for task t, and Ω (P) is
a task regularization incorporating relationship among tasks.
And λ ≥ 0 is a free parameter.

Eq. (2) is a rather general framework. The choice of local
loss is the same as that in traditional clustering problems.
The form of task regularization is application dependent, re-
flecting the properties desired for relationship between tasks
in that application problem.

A suggested formulation
Let’s revert to the specific problem in this paper. Besides
clustering the data of each task well, we also want the re-
sults of similar tasks to be coherent and expect that the per-
formance on each single task can be enhanced by utilizing
multiple tasks. As to the local loss Lt (Pt,X t), we inherit
that for clustering with Bregman divergence, i.e., the aver-
age divergence from a data sample to its cluster centroid

Lt
(
Pt
)

=
1
nt

∑nt

i=1
dφ

(
xti
∥∥utht(xti)) . (3)

As to the task regularization, we suggest following formula-
tion

Ω (P) =
1

T (T − 1)

∑T

t=1

∑T

s=1,s6=t
d
(
Pt,Ps

)
(4)

to encourage results of different tasks coherent. In Eq. (4),
d (Pt,Ps) measures the divergence from the partition Pt of
task t to the partition Ps of task s . Notice that d (Pt,Ps) is
not a Bregman divergence.

A proper form for the divergence between two clustering
models is right the difficult problem in multitask clustering.
On the one hand, we can not use a metric of functions like
‖ht − hs‖ in classification problems, as indistinguishability
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about the cluster labels exists for clustering. On the other,
we hope the divergence d (Pt,Ps) reflects relationship be-
tween clusters of task t and s rather than just a value of dis-
tance between two functions. Hence we define the form of
d (Pt,Ps) as

d
(
Pt,Ps

)
= min

W ts

∑Kt

z=1

∑Ks

l=1
wtszldφ

(
utz
∥∥usl ) , (5)

s.t.
∑

z
wtszl = πsl ,

∑
l
wtszl = πtz , w

ts
zl ≥ 0 ,∀ z, l, (6)

whereW ts is a nonnegative matrix of sizeKt×Ks, andwtszl
is the element at row z and column l. This matrix’s sum-
mations along each row and each column are constrained
by Eq. (6). In the constraints, πtz = ntz/n

t is the propor-
tion of cluster z in the data corpus X t of task t . Similarly,
πsl = nsl /n

s is the proportion of cluster l in X s of task s .
Obviously,

∑
z π

t
z =

∑
l π

s
l = 1, hence

∑
zl w

ts
zl = 1. Thus

W ts can be considered as a joint probability matrix between
clusters of two tasks, with each marginal equal to the empir-
ical prior on clusters of a task.

The actual meaning of the task regularization based on di-
vergence of Eq. (5) will be further explained in the followed
subsection.

Why such a task regularization
In this subsection, we will show that the suggested formu-
lation is equivalent to joint density estimation on multiple
data corpora via mixture density models while requiring that
learnt density models of different tasks are similar. The task
regularization defined by Eq. (5) actually defines a diver-
gence between two learnt density models of tasks t and s.
Thus the theoretical foundation of the suggested formulation
is made clear.

(Banerjee et al. 2005) showed that there is a bijection
between a Bregman divergence dφ and an exponential family

pΨ(x; θ) = exp {〈θ, x)〉 −Ψ(θ)} p0(x) (7)
where θ, x, and Ψ(θ) are called natural parameter, natu-
ral statistic, and cumulant function, respectively. In fact, the
density Eq. (7) can be represented using a Bregman diver-
gence as pΨ(x, θ) = exp {−dφ(x, u)} bφ(x). The parame-
ters u and θ, functions φ and Ψ are linked by u = ∇Ψ(θ),
θ = ∇φ(u), and dΨ(θ1‖θ2) = dφ(u2‖u1). Moreover, for
two distributions p1 and p2 in a same exponential family,
KL(p1||p2) = dΨ(θ2‖θ1) = dφ(u1‖u2).

As explained in (Zhang et al. 2009), Bregman clustering
via Eq. (1) is equivalent to using an exponential family mix-
ture distribution gΨ(x; Θ) =

∑K
z=1 αzpΨ(x; θz) to approx-

imate true data distribution f(x), i.e., minΘ KL (f‖gΨ) .
If we measure divergence between two exponential fam-

ily mixture distributions, gtΨ and gsΨ, earth mover dis-
tance (EMD) (Rubner, Tomasi, and Guibas 1998) is a good
choice. EMD measures divergence between two discrete
distributions, which is widely used in music analysis and
computer vision. The EMD between gtΨ and gsΨ is defined
as
dM (gtΨ, g

s
Ψ) = min

W

∑Kt

z=1

∑Ks

l=1
wzl d

(
ptz, p

s
l

)
, (8)

s.t.
∑

z
wtszl = αsl ,

∑
l
wtsl = αtz , w

ts
zl ≥ 0 ,∀ z, l ,

where we simply use ptz to denote ptΨ(x; θz). d (ptz, p
s
l ) is

a predefined divergence between two component distribu-
tions. If we take d (ptz, p

s
l ) as a KL divergence, utilizing the

property KL(ptz||psl ) = dφ(utz‖usl ), we obtain an interesting
result that the EMD defined by Eq. (8) is just the divergence
we define in Eq. (5).

Now the meaning of the suggested formulation of Eq. (3-
5) is clear: the multitask clustering is equivalent to jointly
approximate data distributions of all tasks, each by an ex-
ponential family mixture density model. The local loss of
Eq. (3) is to require that the local mixture density approx-
imates local data density well. The task regularization de-
fined by Eq. (4-5) is to require the learnt local mixture den-
sities for all tasks are similar to each other.

Solving the optimization problem
In this section, we discuss how to solve the resulted opti-
mization problem.

According to Eq. (2-5), the proposed approach is con-
verted to following optimization problem

min
P,W

L (P,W) =
∑

t

1
nt

∑
i
dφ

(
xti
∥∥utht(xti)) (9)

+
λ

T − 1

∑
t6=s

∑
z,l

(
wtszldφ(utz‖usl ) + wstlzdφ(usl ‖utz)

)
,

s.t. ∀ (t, s) ,
∑

z
wtszl = πsl ,

∑
l
wtszl = πtz , w

ts
zl ≥ 0 ,∀ z, l .

Comparing with Eq. (2-5), we discard the constant 1/T ,
simply use

∑
t6=s to denote summation on all unordered task

pairs {t, s}, and use
∑
z,l to denote summation on all or-

dered pairs (z, l) between cluster z of task t and cluster l
of task s . We useW = {W ts}(t,s) to denote the set of all
relation matrices.

In the problem in Eq. (9), πtz = ntz/n
t is determined by

assigning function ht, hence the two series of equality con-
straints couple variables W ts, ht and hs, which makes the
problem difficult. Since the two equality constraints aim
to prevent trivial solutions with very unbalanced clusters,
we simply relax the problem by letting πtz = 1/Kt and
πsl = 1/Ks be constants. This relaxed constraints can play
the same role of encouraging balanced clusters, while de-
coupling variables.

As a general Bregman divergence is not convex w.r.t. the
right variable, the relaxed problem is also non-convex. The
full gradient w.r.t. all variables is complex and difficult to
deal with. Fortunately, as introduced later, due to some prop-
erties of a Bregman divergence, it’s easy to to alternatively
optimize w.r.t. groups of variables.

Now we optimize the relaxed problem w.r.t. three groups
of variables alternatively, i.e., cluster centroids U = {U t}t,
assigning functions H = {ht}t, and relation matricesW =
{W ts

(z,l)}.

OptimizeW fixing U andH Fixing U andH, each matrix
W ts is independently determined by following problem:

min
W ts

∑Kt

z=1

∑Ks

l=1
wtszl d

ts
zl (10)

s.t.
∑

z
wtszl = 1/Ks ,

∑
l
wtszl = 1/Kt , wtszl ≥ 0 ,∀ z, l,
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where dtszl = dφ(utz‖usl ) is the Bregman divergence from
the centroid of cluster z of task t to that of cluster l of task
s . This problem can be efficiently solved by standard lin-
ear programming techniques, such as simplex method. In
fact, we need only to iterate few iterations to promise de-
scent rather than completely iterate to a minimum.

The problem will lead to such a solution thatwtszl is large if
dtszl is small. Hence it functions as matching similar clusters
among tasks and wtszl measures similarity between cluster z
of task t and cluster l of task s.

Optimize H fixing U and W Fixing U and W , each as-
signing function ht for task t is also independently deter-
mined by

min
ht

∑
i
dφ

(
xti‖utht(xti)

)
. (11)

Obviously, the optimum of this problem is
ht(xti) = arg minz dφ

(
xti‖utz

)
, (12)

which makes each item within the summation in Eq. (11) is
minimized.

Optimize U fixing W and H Fixing W and H , the cen-
troids U = {U t}t of different tasks are correlated resulted
by the task regularization. Hence we traverse all the tasks to
optimize each U t sequentially, with the centroids {Us}s6=t
of other tasks fixed. This is an unconstrained problem:

min
Ut

1
nt

∑
i
dφ

(
xti
∥∥utht(xti))

+
λ

T − 1

∑
s6=t

∑
z,l

(
wtszldφ(utz‖usl ) + wstlzdφ(usl ‖utz)

)
.

In fact, if we denote Itz = {i|ht(xti) = z} as the set of
all members of cluster z of task t, then the first item can be
written as another form 1

nt

∑Kt

z=1

∑
i∈Itz

dφ(xti‖utz). Substi-
tuting this form with the first item in above problem, we can
find that in task t, each centroid utz in U t is independently
determined by

min
utz

1
nt

∑
i∈Itz

dφ(xti‖utz) (13)

+
λ

T − 1

∑
s6=t

∑Ks

l=1

(
wtszldφ(utz‖usl ) + wstlzdφ(usl ‖utz)

)
.

This is the most difficult phase in the whole problem. Luck-
ily, following two properties of a Bregman divergences make
this problem easier. Let ωi ≥ 0, and

∑
i ωi > 0, then

Theorem 1
∑n
i=1 ωidφ(xi‖θ) = Adφ(µL‖θ) + C, where

A =
∑n
i=1 ωi, µL =

∑
i ωixi/A , C is a constant w.r.t. θ .

Theorem 2
∑n
i=1 ωidφ(θ‖xi) = Adφ(θ‖µR) + C, where

A =
∑n
i=1 ωi, µR = (∇φ)−1 (

∑
i ωi∇φ(xi)/A), and C is

a constant w.r.t. θ . ∇φ is the gradient of function φ, and
(∇φ)−1 is the inverse function of ∇φ .

(Nielsen and Nock 2009) provide proofs to above two theo-
rems for a special case of ωi = 1/n . In above general case
of ωi, proofs are straightforward and almost the same, hence
are omitted here.

Directly applying above two theorems, we can write
Eq. (13) in a concise form as

min
utz

A · dφ
(
µL‖utz

)
+B · dφ

(
utz‖µR

)
, (14)

where A = ntz
nt + λ

Kt , B = λ
Kt , and

µL =
1
A

(
1
nt

∑
i∈Itz

xti +
λ

T − 1

∑
s6=t

∑Ks

l=1
wstlzu

s
l

)
µR = (∇φ)−1

(
λ

B · (T − 1)

∑
s6=t

∑Ks

l=1
wtszl∇φ(usl )

)
.

Now the problem left is to solve Eq. (14). There are two
cases:
• When dφ(x‖y) is symmetric, i.e., dφ(x‖y) = dφ(y‖x),

such as squared Euclidean distance and Mahalanobis dis-
tance, applying Theorem 1 again, the objective of Eq. (14)
is equal to (A + B)dφ

(
A·µL+B·µR

A+B ‖utz
)

. According to
the nonnegative property of a Bregman divergence, a min-
imum is

utz = (A · µL +B · µR) / (A+B) . (15)
• When dφ(x‖y) is asymmetric, i.e., dφ(x‖y) 6= dφ(y‖x),

such as KL divergence, we cannot obtain a closed form
minimum. (Nielsen and Nock 2009) provided an effi-
cient Geodesic-walk dichotomic approximation algorithm
for this problem.
Up to now, all variables have been traversed through and

optimized alternatively. The overall process is listed in Al-
gorithm 1.

Algorithm 1 Multitask Bregman Clustering
Require: Data sets X of T tasks; Clustering numbers K of all

tasks; Parameter λ ≥ 0; Initial clustering assignmentsH of all
tasks.

1: Initialization. Initialize U according toH not considering task
regularization.

2: repeat
3: Learning relationship between clusters of different

tasks: UpdateW by solving the set of linear programming
of Eq. (10).

4: Assigning each sample to a cluster: Update assigning
functionsH of all tasks according to Eq. (12) .

5: for t = 1 to T do
6: Updating cluster centroids U t for task t: for each clus-

ter z = {1, . . . ,Kt}, using Eq. (15) (for a symmetric
Bregman divergence) or the geodesic-walk dichotomic
approximation method of (Nielsen and Nock 2009) (for
an asymmetric Bregman divergence) to solve Eq. (14) to
update the centroid utz .

7: end for
8: until Loss function L does not descend significantly up to a

specified precision.

Experiments
In this section, we report experiments on several benchmark
data sets. The Bregman divergence we used is the Euclidean
distance. The proposed method is general for multiple tasks,
but for clarity of comparison, our experiments only involves
two tasks.

Data sets
We use data sets in (Zhong and Ghosh 2003) 1 , as listed
in Tab. 2, where n is the size of original data set, d is the

1The clean data in matlab format are available from
http://www.shi-zhong.com/software/docdata.zip .
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Table 2: Data sets.
X1 X2

n d K n1 K1 n2 K2

NG20-1 19949 43585 20 9975 20 9974 20
NG20-2 19949 43585 20 15952 16 14969 15
NG20-3 19949 43585 20 19949 20 19949 6
reviews 4069 18482 5 3657 4 (1-4) 3070 4 (2-5)
sports 8580 14866 7 7771 6 (1-6) 5168 6 (2-7)
hitech 2301 10080 6 2114 5 (1-5) 1816 5 (2-6)
ohscal 11162 11465 10 8452 8 (1-8) 9294 8 (2-9)
tr11 414 6412 9 388 7 (1-7) 324 7 (3-9)
tr23 204 5814 6 204 6 (1-6) 157 6 (1-6)
tr45 690 8249 10 478 7 (1-7) 440 7 (4-10)

dimensionality, K is the number of categories. More de-
tails about these data sets can be found in (Zhong and Ghosh
2003).

Different from traditional clustering, our experiments in-
volve two tasks on two data corpora. We construct the two
data corpora X 1 and X 2 by splitting an original data set. In
general, we split a data set into two parts X 1 and X 2 sharing
some categories. The splitting schemes are also provided in
Tab. 2, where n1 and n2 are size of the two constructed cor-
pora respectively, and K1 and K2 are cluster numbers of
two constructed corpora.

Original NG20 data set is composed of 6 root categories,
under which are 20 sub categories. We use three splitting
schemes to construct three data sets to demonstrate three
typical cases of multitask clustering. The first case is that
two tasks’ data sets are from a same distribution. We con-
struct a data set NG20-1 to represent this case, by randomly
splitting entire NG20 into two parts, with each part having
all the 20 sub categories. The second case is that two tasks’
data distributions are not identical but similar, which is rep-
resented by a data set NG20-2. In NG20-2, the first data
corpus X 1 includes the 16 sub categories under root cate-
gories “alt”, “comp”, “misc” , “rec”, “sci” and “soc”, while
the second data corpusX 2 includes the 15 sub categories un-
der “alt”, “misc” , “rec”, “sci”, “soc” and “talk”. The third
case is that two tasks are on an identical data set but requires
clusters at different resolutions. A data set NG20-3 is con-
structed to represent this case. In NG20-3, X 1 and X 2 are
both the original NG20. However, we want to partition X 1

into K1 = 20 clusters (the 20 sub categories) and partition
X 2 into K2 = 6 clusters (the 6 root categories).

All remaining data sets are used to construct data sets for
the general second case. We split each data set into two
parts sharing categories. For example, for data set “ohscal”
in Tab. 2 the items “8 (1-8)” under column K1 and “8 (2-9)”
under column K2 mean that X 1 includes original categories
1 to 8, and X 2 includes original categories 2 to 9. The rep-
resentations are the same for other data sets.

Settings
We compare multitask Bregman clustering with the tradi-
tional isolated method, i.e., performing Bregman cluster-
ing (Banerjee et al. 2005) (k-means in this experiment) in-
dependently on each task, denoted by “IND”. Our approach
is called “MBC”.

Both methods have the problem of local optimum and
rely on initializations. As a result, we run both methods for
N = 100 times and compare the average performance. In

each run, on each task, the two methods are enforced with
an identical random initialization. After each run, we obtain
performance on above evaluation metrics. Parameter λ is set
to 0.5 for all data sets.

Evaluations
We evaluate the performance from two aspects. The first
is clustering quality of each task, evaluated by two widely
used metrics Normalized Mutual Information (NMI) and Ad-
justed Random Index (ARI) (Willigan and Cooper 1986).
Higher values on NMI and ARI means better coherence be-
tween clustering assignments and true category labels. The
second is coherence among clustering results of different
tasks. Two metrics are used. One is EMD between the two
partitions of two tasks, as defined by Eq. (8). We denoted it
as dM . Another is NMI between the two partitions, which
evaluates the coherence between two partitions on a same
data set. We denote it as snmi. Notice that this metric is
only used on NG20-3, where the two data corpora are iden-
tical and the metric makes sense. A lower value on dM and
a higher value on snmi mean better coherence between the
two clustering results of two tasks.

Results
The mean and standard deviation values of NMI and ARI are
listed in Tab. 3, from which we can see that MBC indeed sig-
nificantly improve the clustering performance of each task.

The mean and standard deviation values of dM and snmi
are listed out in Tab. 4. In the table, the “true” column is the
EMD between the two partitions defined by the true category
labels of two tasks. It reflects intrinsic divergence between
the true cluster structures of two tasks. Since the dM itself
appears as a part in objective function of the MBC, it’s not
strange that dM of MBC is generally low. However, from
the table, we observe an interesting result, i.e., the “true”
value of dM is indeed the lowest. It means that when the
distributions of two data corpora are similar, the objective of
minimizing the divergences between two models is coherent
with the isolated clustering objective of each task. This phe-
nomenon validates that collaboratively performing multiple
similar clustering tasks is indeed expected to improve the
clustering performance of each task. In addition, on NG20-
3, two tasks are clustering a same data set at different reso-
lution. Much higher value of snmi indicates that MBC leads
to results more coherent between two resolutions.

The “collaborative” property of multitask Bregman clus-
tering are also demonstrated in Fig. 1 and Fig. 2. For each
data set, after each run, we have a pair of NMI values
(NMI1,NMI2), as a point in two-dimensional space. Then
after N run, we obtain N vectors of (NMI1,NMI2) for each
algorithm, and we can plotted out these points, as illustrated
in Fig. 1. The figures for ARI pairs in Fig. 2 are plotted
out in the same way. These figures clearly depict out the
performance comparison and correlation between two meth-
ods. From the figures, it’s clear that the average performance
of MBC is much better than IND. Meanwhile, for IND, the
two variable NMI1 and NMI2 seems independently, while
for MBC, there is strong positive correlation between NMI1
and NMI2. Results for ARI pairs are similar. Limited by
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Table 3: Results of NMI and ARI values (mean± std)
NMI ARI

Tasks IND MBC IND MBC
NG20-1 X1 (.40± .02) (.49± .02) (.13± .03) (.32± .02)

X2 (.40± .02) (.49± .02) (.13± .03) (.33± .02)

NG20-2 X1 (.46± .02) (.50± .02) (.19± .04) (.33± .03)

X2 (.48± .03) (.50± .02) (.19± .05) (.30± .04)

NG20-3 X1 (.44± .02) (.52± .02) (.15± .04) (.35± .03)

X2 (.40± .03) (.41± .02) (.12± .03) (.14± .02)

reviews X1 (.32± .11) (.42± .14) (.19± .15) (.35± .17)

X2 (.32± .17) (.36± .15) (.25± .22) (.31± .21)

sports X1 (.38± .08) (.52± .08) (.21± .10) (.51± .14)

X2 (.46± .08) (.53± .07) (.30± .10) (.37± .09)

hitech X1 (.28± .04) (.29± .04) (.20± .04) (.26± .05)

X2 (.14± .04) (.18± .04) (.07± .04) (.12± .04)

ohscal X1 (.42± .01) (.43± .01) (.31± .02) (.32± .02)

X2 (.45± .02) (.45± .02) (.32± .03) (.34± .03)

tr11 X1 (.51± .07) (.55± .05) (.41± .12) (.45± .07)

X2 (.46± .06) (.56± .05) (.36± .10) (.47± .08)

tr23 X1 (.24± .06) (.26± .07) (.11± .07) (.13± .08)

X2 (.24± .10) (.26± .12) (.14± .11) (.16± .15)

tr45 X1 (.55± .06) (.56± .08) (.46± .10) (.49± .10)

X2 (.49± .06) (.53± .08) (.32± .09) (.41± .12)

Table 4: Results: the divergences / coherence between two
mixture models (mean± std)

dM
IND MBC true

NG20-1 (27.39± 5.53) (4.44± 0.64) 3.67
NG20-2 (28.61± 3.21) (7.92± 2.87) 6.18
reviews (7.33± 2.97) (3.18± 4.18) 1.64
sports (8.14± 0.77) (5.91± 0.60) 5.18
hitech (15.97± 0.45) (7.42± 0.23) 2.54
ohscal (8.57± 1.06) (7.67± 1.01) 4.90
tr11 (6.33± 0.70) (2.84± 0.40) 4.16
tr23 (8.49± 0.67) (8.07± 0.80) 3.55
tr45 (11.56± 1.65) (9.34± 0.68) 7.52

snmi
NG20-3 (0.47± 0.03) (0.67± 0.01)

space, we only provide figures for three data sets, NG20-1,
NG20-2 and NG20-3.

Conclusion
In this paper, we deal with multitask clustering, which aims
to improve performance on each single task and also dis-
cover the relationship between clusters of different tasks.
We propose a general framework and also suggest a spec-
ified approach. In our approach, we alternatively update
clusters and learn relationship between clusters of differ-
ent tasks, and the two phases boost each other. Based on
the general Bregman divergences, our approach provides an
uniform solution to a large family of data distributions and
divergence assumptions, hence can be widely utilized. The
approach is validated by experiments on several real data
sets.
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