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Abstract

Diffusion processes taking place in social networks are used
to model a number of phenomena, such as the spread of
human or computer viruses, and the adoption of products in
‘viral marketing’ campaigns. It is generally difficult to obtain
accurate information about how such spreads actually occur,
so a variety of stochastic diffusion models are used to simu-
late spreading processes in networks instead. We show that a
canonical genetic algorithm with a spatially distributed pop-
ulation, when paired with specific forms of Holland’s syn-
thetic hyperplane-defined objective functions, can simulate a
large and rich class of diffusion models for social networks.
These include standard diffusion models, such as the inde-
pendent cascade and competing processes models. In addi-
tion, our genetic algorithm diffusion model (GADM) can also
model complex phenomena such as information diffusion.
We demonstrate an application of the GADM to modeling
information flow in a large, dynamic social network derived
from e-mail headers.

Introduction

Modeling the spread of infectious diseases through person-
to-person contacts is an important problem in mathemat-
ical epidemiology (Hethcote 1989). Many mathematical
models of disease transmission, however, make the sim-
plifying assumption that individuals in a population mix
uniformly at random. In order to relax this assumption,
the spread of infections are studied on network-structured
populations (Keeling 1999; Newman 2002), also called so-
cial networks, where person-to-person contacts are con-
strained by a graph structure. Since real social network
data is readily available, the general idea of an infectious
disease spreading through a network has also been used to
model more general diffusion processes, such as the diffu-
sion of innovations (Valente 1996), so-called ‘viral’ mar-
keting that spreads knowledge of a product through word-
of-mouth recommendations (Kempe, Kleinberg, and Tardos
2003), and the spread of electronic worms through a com-
puter network (Aspnes, Rustagi, and Saia 2007), among
others. Although the ultimate purpose of modeling each
type of diffusion process is generally different, they all fun-
damentally rely on a diffusion model, which probabilisti-
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cally specifies how a process – such as a disease, com-
puter virus, or adoption of a product – starts and spreads
through a network of individuals. A variety of diffusion
models have been proposed to model various spreading pro-
cesses in networks (Kempe, Kleinberg, and Tardos 2003;
Kleinberg 2007).

In this paper, we show that a form of the canonical Ge-
netic Algorithm (GA) (Goldberg 1989), when paired with
Holland’s recently developed hyperplane-defined objective
functions (Holland 2000), comprise a large, rich class of
diffusion models for social networks, with some interesting
properties. In particular, the GA Diffusion Model (GADM)
(a) contains several popular diffusion models from eco-
nomics, sociology, and mathematical epidemiology as spe-
cial cases, such as the susceptible-infected and competing
process models, (b) allows the computation of diffusion over
a large class of diverse models as a direct result of the previ-
ous point, which in some cases may be preferable to choos-
ing a single model for a particular application (Cointet and
Roth 2007), and (c) allows the modeling of complex, non-
linear phenomena such as information exchange. In order to
demonstrate the final point, we use the GADM to model in-
formation flow in a large social network derived from e-mail
traffic. Our results indicate that some individuals in the net-
work are intrinsically, and non-trivially, better connected in
terms of receiving information as it propagates from person
to person.

Our work here is, to the best of our knowledge, the first
to explicitly and formally unite purely optimization-oriented
studies of genetic algorithms with spatially structured pop-
ulations (Min et al. 2006; Payne and Eppstein 2006), and
diffusion processes in social networks (Kempe, Kleinberg,
and Tardos 2003; Kleinberg 2007). The genetic diffusion
model presented here also draws from work in collective op-
timization (Scardovi and Sepulchre 2006) and parallel ge-
netic algorithms (Cantu-Paz 1998).We feel that these are
valuable connections, and by framing diffusion in social net-
works in terms of the genetic algorithm, we hope to initiate
some crossover in the considerable theoretical developments
in each of these fields.

Diffusion in Social Networks

A social network is a graph-theoretic representation of the
interconnections or interactions between a set of unique en-
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tities. The vertices of the graph represent individual humans,
animals, or networked computers (for example), and an edge
connects two vertices that are related or interacting in some
way. Some modern examples of social networks include on-
line social networks, where vertices are user accounts and
edges represent ‘friendships’ between accounts, and com-
munications networks, where vertices represent e-mail ad-
dresses or telephone numbers, and edges represent e-mails
sent or telephone calls placed between vertices.

Definition 1. A social network is a directed or undirected
graph G = (V, E), where a labeled vertex v ∈ V repre-
sents an individual in some physical system, and an edge
(u, v) ∈ E represents an interaction between two individu-
als. A dynamic social network is a multigraph G = (V, E),
where E is a bag of edges, and each timestamped edge
(u, v)t ∈ E represents an interaction (u, v) that occurred
at time t ∈ Z

+.

In a typical ‘susceptible-infected’ setting for a diffusion
process, a set of vertices in the network is initially marked
as activated. The diffusion process proceeds in discrete
timesteps. At each timestep, an activated vertex might come
into contact with inactive vertices. The inactive vertex then
has a chance of being activated through this contact, accord-
ing to the probabilistic rules specified in the diffusion model.
This process repeats until a pre-specified stopping criterion
is satisfied, such as a particular fraction of vertices being in
an active state, or for a specified number of timesteps.

Within this framework, the following are some typical
questions associated with diffusion processes:

1. (Extent) Given a specific subset of initially activated ver-
tices in a network and a diffusion model, how many ver-
tices are expected to become activated after a specified
period of time?

2. (Targeting) Which vertices should be targeted as initia-
tors to result in the maximum extent of spread (Domingos
and Richardson 2001)? This problem is NP-hard to solve
optimally, regardless of the diffusion model used (Kempe,
Kleinberg, and Tardos 2003).

3. (Blocking) Which vertices should be targeted for immu-
nization to minimize the expected number of activated
vertices (Habiba et al. 2008; Anshelevich et al. 2009)?

The targeting and blocking problems both depend on the
extent of a diffusion process, which in turn depends on a
specific diffusion model.

Definition 2. A diffusion model accepts as input a graph

structure G = (V, E), a state vector S
(t)
v for every vertex

v ∈ V at time t, and an optional vector of internal pa-
rameters P . Based on the state of all interacting individ-

uals, it outputs a new state vector S
(t+1)
v for every vertex

at time t + 1. For a static (non-dynamic) social network,
the graph structure is the same at each timestep. For a dy-
namic social network, the graph at each timestep is defined
as Gt = (V, Et), where Et = {(u, v) : (u, v)t ∈ E} is the
set of edges marked with timestamp t.

As an example, consider the independent cascade
model (Kempe, Kleinberg, and Tardos 2003; Kleinberg

2007), which is closely related to the Susceptible-Infected-
Susceptible (SIS) and Susceptible-Infected-Removed (SIR)
models in mathematical epidemiology (Hethcote 1989).

Definition 3. In the independent cascade diffusion model,

the state vector S
(t)
v of each vertex v at time t is of di-

mension 1, i.e., a single binary variable, where a value of
1 means that the vertex is activated. A global parameter p
represents the probability of an inactive vertex becoming ac-
tivated on each contact with an activated vertex. In a static
social network, each freshly activated vertex is allowed to
activate each of its neighbors exactly once, with probabil-
ity p each time (Kempe, Kleinberg, and Tardos 2003). In a
dynamic network, each contact at a particular timestep can
result in an activation, with probability p each time (Lahiri
et al. 2008).

The GA Diffusion Model

We now show how the canonical genetic algorithm (Gold-
berg 1989), i.e., one with binary string chromosomes and
one-point crossover, can be used as the framework for a
large, rich class of diffusion models. The description of the
model in this section applies to both static and dynamic so-
cial networks.

Recall that a dynamic social network consists of a set of
individuals V = {v1, ..., vn} interacting over a period of T
discrete timesteps. We begin by mapping every individual in
the social network to a chromosome in a GA population. Let
the state of each individual Sv be a binary chromosome of
length β in the GA population. This can initially be set to all
zeros, or chosen according to some random distribution. We
also define an objective function f(x) that assigns an objec-
tive score to any state string, the exact mechanism of which
will be described shortly. For every edge (u, v) in the social
network at timestep t, we apply the logic of the canonical
genetic algorithm to the corresponding chromosomes in the
GA population:

1. At time t, for edge (u, v), let the corresponding state

strings be S
(t)
u and S

(t)
v respectively. Initially, let

S
(t+1)
u = S

(t)
u and S

(t+1)
v = S

(t)
v .

2. A crossover point c is selected uniformly at random from
the integer range [1, β]. Two new state strings are created

by swapping the tails of S
(t)
u and S

(t)
v , where the tail is

defined as all positions including and after index c. Let
these two new state strings be y1 and y2.

3. The objective score of each new state string is then eval-
uated according to the objective function f(x). If any
of them have a greater objective score than either of their
parents, the corresponding parent’s state string is replaced
for the next iteration.

S(t+1)
u = arg max

x∈{S
(t)
u ,S

(t+1)
u ,y1,y2}

f(x)

S(t+1)
v = arg max

x∈{S
(t)
v ,S

(t+1)
v ,y1,y2}

f(x)

In the case of ties in the objective scores of the original
and a new string, the original state string is retained.
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The algorithm above is similar to a GA with a spatially
distributed population (Min et al. 2006; Payne and Eppstein
2006), except that the GA’s selection operator is replaced
with real social network data that dictates the sequence of
mating operations. The ‘diffusion’ in the GADM occurs
as state vectors are modified using the crossover operator
and subsequently adopted based on their objective scores.
Clearly, the missing component to add meaning to this map-
ping, in terms of a diffusion process, is the choice of objec-
tive function f(x), which we have not defined so far.

Holland’s hyperplane-defined functions (HDFs) are a
class of synthetic objective functions with some interest-
ing properties that fill this gap (Holland 2000). An HDF
is constructed by defining schemata (short substrings with
wildcards that start at a specific position) randomly and hi-
erarchically, starting with relatively short schemata of or-
der 1 occurring at random starting positions within the
string. Pairs of such schemata are concatenated to generate
schemata of order 2, and so on, with each schema receiving
an individual positive or negative score, also specified ran-
domly from some range. HDFs take a binary string as input
and return an objective score that is the sum of the scores
of all the individual schemata contained in it. HDFs can be
used to generate objective functions of arbitrary difficulty
(e.g., nonlinear, nonseparable, nonsymmetric, etc. (Holland
2000)). For our purposes, however, the construction above
is sufficient.

The following example illustrates the generation of a sim-
ple HDF f(x) 7→ R that takes a binary string of length
n = 10 as input. The asterisk character (‘*’) denotes a ‘don’t
care’ character that matches both a zero and a one.

*01******* score 2, order 1 schema

*****110** score 2, order 1 schema

********10 score 3, order 1 schema

*01**110** score -4, order 2 schema

*01*****10 score 4, order 2 schema

The following binary strings are now evaluated using the
HDF above:

1010000011 score: 2

0010011000 score: 2 + 2 + (−4) = 0

1010011010 score: 2 + 2 + 3 + (−4) + 4 = 7

A natural analogy for a GADM paired with a HDF is in-
formation diffusion. Each schema corresponds to a ‘unit’ of
information, with different schemata carrying different val-
ues, as in the example above. Depending on the initial state
strings, every individual in the network knows certain pieces
of information. Some combinations of schemata might be
detrimental when combined, such as the negative-valued or-
der 2 schemata in the example above, while others could
have a value greater than the sum of their parts. Each time
a pair of individuals interact, they randomly exchange infor-
mation, which is modeled by the crossover operator. This
process could result in neither gaining any benefit from the
interaction, or one (directed network) or both (undirected
network) gaining more information than they had before.

We note that information diffusion in a network has been
analyzed using epidemic models, in the specific instances
of a blog network (Gruhl et al. 2004) and wireless net-
works (Khelil et al. 2002), but the notion of ‘information’
is restricted to a binary variable, or a single ‘unit’ of in-
formation in our terminology. The GADM overcomes this
restriction by using schema to model units of information.
The connection to diffusion models in general also raises
some interesting theoretical questions beyond the scope of
this paper, such as the relationship between the rate of
diffusion of schema in genetic algorithms with network-
structured populations, and the epidemic threshold of the
network (Chakrabarti et al. 2008).

Special Cases

The primary reason for using a HDF as the objective func-
tion in the GADM is the flexibility it offers in terms of mod-
eling diffusion processes, specifically in the fact that care-
fully defined initial states and HDFs result in commonly
used diffusion models for social networks. Thus, reductions
of existing diffusion models to special cases of the GADM
establish a formal connection between the two. We now de-
scribe a few such reductions.

Proposition 1. The independent cascade diffusion model
for dynamic social networks, in the susceptible-infected (SI)
case, is a special case of the GADM, when the probability of
activation 0 < p < 1 is a rational number. For irrational p,
an arbitrarily precise approximation can be obtained.

Proof. We define the HDF by creating a single schema of
length α at an arbitrary position within the state string, with
all bits equal to 1. This schema has value 1, so that any
state that contains the entire schema will evaluate to objec-
tive score 1, while all other states will evaluate to objec-
tive score 0. The initially activated individuals receive the
schema in their states, while all other individuals receive
a zero string for their state. When an activated individual
comes into contact with an inactive one, the probability that
the activation schema will be transfered to the inactive indi-
vidual is equal to the probability that the crossover point c
falls outside the schema. Let the schema begin at position i
and end at position j, inclusive of both positions. Thus,

P (activation) = P (c ≤ i) + P (c > j)

If these conditions on c are satisfied, then one of the child
state strings will contain the schema. However, since c is
chosen uniformly at random from the interval [1, β], we can
rewrite this probability in terms of the relative lengths of the
schema and state string.

P (activation) = 1 −
α − 1

β
=

β − α + 1

β

Thus, to model the SI independent cascade process with a
probability p, we fix β at an arbitrary (but sufficiently large)
value and create a HDF with a single schema of value 1 and
length α, where

α = β(1 − p) + 1
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To ensure that we are replicating the exact probabilities as-
sociated with the independent cascade process, we note that
since p is a rational number, (1 − p) = a

b
, where a and b

are integers. We can then choose β to be a multiple of b, so
that the resulting value of α is an integer. This replicates the
probability of infection precisely, with the side-effect that
the sum of objective values in the GA’s population is equal
to the number of activated individuals.

Another example of a special case is that of two or more
processes spreading on the same network, such as recruiting
for competing clubs (Bharathi, Kempe, and Salek 2007), or a
virus and an immunizing alert spreading through a computer
network (Aspnes, Rustagi, and Saia 2007). Each individual
starts out either by belonging to a specific club or being unaf-
filiated. As unaffiliated individuals interact with their neigh-
bors, they are recruited into their neighbors’ affiliations with
possibly different, but fixed and independent, probabilities,
but an individual once affiliated does not switch affiliations
(hence, they are mutually exclusive).

Definition 4. The mutually exclusive competing processes
diffusion model for dynamic networks is defined as follows.

1. Each vertex v is initially assigned to one of n categori-
cal states s(v)0 = {m1, ..., mn}, or an extra unaffiliated
state.

2. Individuals who are affiliated with a state do not change
states. When an unaffiliated individual vi comes into con-
tact with an affiliated individual vj who is in state mj , vi

switches to affiliation mj with probability p(mj).

Proposition 2. The mutually exclusive competing processes
diffusion model for dynamic networks is a special case of the
genetic diffusion model, when p(mj) is a rational number
for all j ∈ [1, n].

Proof. We create an HDF with n overlapping schema, one
for each affiliation, all starting at position 1 and bounded by
1 bits at their endpoints. As in Proposition 1, each schema
has value 1 and lengths α1, ..., αn, and the length of the state
vector is β. Let the probabilities of an unaffiliated vertex
taking on each affiliation be p1 = a1

b
, ..., pn = an

b
, where

the rational probabilities have been scaled to have common
denominator b. Similar to Proposition 1, we derive the fol-
lowing expressions for αi:

αi =
β

b
· (b − ai) + 1 1 ≤ i ≤ n

We also scale all lengths uniformly such that mini(αi) ≥
n + 2. Since each schema starts at position 1, an individual
cannot have more than one affiliation at a time. Unaffili-
ated individuals receive state strings of all zeros. However,
with multiple overlapping schemata of varying length, if the
schemata are not chosen carefully, a crossover between two
affiliated individuals could cause one or both to switch af-
filiations. The following solves this issue: each schema is
bounded by 1 bits, with the middle bits being comprised of
the binary representation of 2i, where i is the index of the
schema ordered by length. Each schema therefore has ex-
actly 3 bits set.

It is easy to show that any two schemata in such a set,
when spliced together at an arbitrary location, will result in
a string that contains at most one valid schema from the set.
This is because all schemata start at position 1 in the string,
and only the relative spacing between the first three 1 bits
define a valid schema according to our definition. Thus, at
most one schema in the set will be matched. Since the GA
retains the original string in cases of objective score ties, and
splicing the strings of two affiliated individuals will not re-
sult in a child string with a higher objective score, affiliated
individuals will never switch affiliations.

As an example of the construction in Proposition 2, when
β = 20, the following schemata define affiliation probabili-
ties of 0.75, 0.65, and 0.45 respectively:

110001**************

10100001************

100100000001********

Experimental Evaluation

We stated earlier that the GADM can be used to model
complex, non-linear phenomena. To illustrate this point,
we now present a short case study applying the GADM
to simulate information diffusion through a real dynamic
social network. We assume that individuals in the network
communicate with each other to exchange information, with
the goal of selfishly maximizing the amount of information
that each possesses. A key difference from earlier studies
on information diffusion, such as (Gruhl et al. 2004;
Khelil et al. 2002), is that we model multiple ‘units’ of
information propagating from person to person, where
different units can interact in complex, non-linear ways,
according to a randomly generated HDF, to affect the total
‘information value’ of each person. The objective is to
estimate the information value of each vertex over multiple
random state initializations and HDFs, in order to determine
if everyone in the network is positioned to receive the same
amount of information, on average, as a result of their
interactions with other individuals. Social networks are
known to generally be structurally dominated by a relatively
small set of high-degree vertices (Newman 2003); does a
similar stratification exist for information flow?

Dataset. The Enron e-mail dataset is a publicly avail-
able repository of e-mails sent by and to executives of
the former Enron Corporation1. It is one of the largest
public datasets of a corporate e-mail environment, and is
naturally represented as a dynamic social network. Each
vertex in the network is an e-mail address, and a directed
and timestamped edge represents an e-mail sent between
two addresses. We parsed the headers of all e-mails and
obtained 1,326,771 timestamped edges corresponding to
individual e-mails sent between 84,716 e-mail addresses.
There were 215,841 unique timestamps, non-uniformly

1A reference C++ implementation of the GADM, the Enron
dataset, and other supporting material may be found online at
http://code.google.com/p/gadm/
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Figure 1: Cumulative distribution of initial (left) and final
(right) ANO values for the Enron e-mail dataset.

covering a period of approximately 4 years.

Setup. We start by generating a random HDF of ar-
bitrary length, and random initial state strings for each
individual. After the GADM processes all timestamped
edges, the final objective value of all vertices are normalized
relative to the maximum objective value in the population.
Intuitively, a vertex with a high final objective value has
accumulated the most valuable combination of units of
information, which could be the result of its inherent
position in the network, or a chance occurrence based on
its randomly chosen initial state string. To account for the
latter bias, we run multiple trials with different HDFs and
random initial state strings. Over many trials, this gives
us the average normalized objective (ANO) value for each
vertex, where a vertex with a high ANO ends up with
valuable information relative to other vertices, regardless
of what it starts with. This is the ‘information value’ of a
vertex that was referred to earlier.

Results. All ANO values were found to converge in
under 250 random trials. Figure 1 (left) shows the initial
cumulative distribution of the ANO values of all individuals
in the network, which are strongly clustered and have very
low dispersion. We would expect a similar final ANO
distribution if all individuals were, on average, comparable
in terms of their network position, i.e., no vertex would
consistently end with high normalized objective values
from different starting states. Figure 1 (right) shows that
this is clearly not the case. The final distribution of ANO
values exhibits stratification; there are a small number
of vertices that consistently end with the highest-scoring
schemata, regardless of their initial state. The highest
scoring individual, for example, ends with an objective
value that is on average equal to 92% of the best objective
value in the population, regardless of initial state.

Is the ‘information elitism’ we see in Figure 1 a genuine
feature of the network, or the result of some trivial network
property like degree? In order to determine the answer to
this question, Figure 2 shows a correlation matrix of the final
ANO values of the top 2% of vertices compared to several
simple network features of each node, such as the in-degree
(number of incoming email partners), the total number of
emails received from all neighbors, and the time at which a
vertex was first observed in the dataset. The cell (i, j < i)

Figure 2: A correlation matrix comparing the final average
normalized objective (ANO) score to four network proper-
ties, for individuals in top 2% of ANO. Numerals represent
correlation coefficients between the corresponding pairs of
variables; lines are fitted using locally weighted regression.

in Figure 2 plots feature i against feature j, and the numeral
in cell (j, i) is the corresponding correlation coefficient.

Figure 2 shows that high ANO values cannot be explained
by trivial graph features like degree. Intuition might sug-
gest that a person who receives e-mail from many people,
i.e., a vertex with high in-degree, would be an accumulator
of information, with correspondingly high ANO scores, but
the correlation between ANO and in-degree is just 0.13 for
the top 2% of vertices, and 0.34 for the entire dataset. The
correlations are similarly low for out-degree. The high pair-
wise correlations between in-degree, out-degree, and total
volume of incoming and outgoing e-mails traffic (the Con-
tacts feature) for the top 2% of vertices is to be expected.

The high ANO values also cannot be explained by dy-
namic features of the vertices, such as the total number of
e-mails sent and received by a vertex, or the length of time
that a vertex has been present in the dataset (the FirstSeen
feature). The latter accounts for the possible bias against
vertices introduced later in the dataset, which have less time
to accumulate information. The correlation coefficients for
these two features are also extremely low for both the top
2% of vertices as well as the entire dataset.

Thus, we have shown that there is a stratification in final
ANO values, indicating a corresponding stratification in the
network position of individuals with regard to information
flow, and that simple network features in isolation do not
explain this stratification. Whether a more complex nonlin-
ear relationship exists between the ANO and these or other,
more complicated, network features is an interesting ques-
tion for future research, as is the utility of the ANO as a
ranking measure for nodes in the network.

Conclusion

We have shown that a form of the canonical genetic algo-
rithm paired with Holland’s hyperplane-defined functions
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can be used as a large, rich class of diffusion models for
static and dynamic social networks. We described formal re-
ductions from two diffusion models in the literature: the in-
dependent cascade model, and a similar model in which two
or more mutually exclusive processes are competing with
each other to affect nodes in a network.

We also presented a case study on the Enron e-mail
dataset, modeling probabilistic information flow between
people as they exchange e-mails. The results indicated that
a small section of vertices in the dataset are privileged in
terms of the structure and dynamics of the network, and
consistently receive more information than other vertices,
regardless of how much they start with. We also showed
that this phenomenon in the Enron dataset is not a trivial re-
sult that can be explained by simple network properties. The
relationship between a vertex’s non-trivial network proper-
ties (e.g., PageRank or betweenness centrality), and its level
of ‘information value’ is a relationship that warrants further
study. It would also be interesting to see if this phenom-
ena, like the commonly observed skew in degree distribu-
tion (Newman 2003), exists across different networks.

Finally, we note that the GADM presented here utilizes a
very basic form of the genetic algorithm. Like the profusion
of different types of GAs themselves, it is simple to extend
the model presented here to model even more complex
phenomena. For instance, the incorporation of mutation
into the GADM loop would encompass a richer class
of diffusion models, as would the introduction of more
complex state replacement rules after crossover, instead
of the retain-the-best method described here. Another
interesting avenue of research is to investigate the possible
use of genetic programming to learn a diffusion model that
matches an observed spread (difficult as they are to obtain),
while incorporating external properties of vertices.
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