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Abstract

Non-negative matrix factorization (NMF), as a useful
decomposition method for multivariate data, has been
widely used in pattern recognition, information retrieval
and computer vision. NMF is an effective algorithm
to find the latent structure of the data and leads to a
parts-based representation. However, NMF is essen-
tially an unsupervised method and can not make use of
label information. In this paper, we propose a novel
semi-supervised matrix decomposition method, called
Constrained Non-negative Matrix Factorization, which
takes the label information as additional constraints.
Specifically, we require that the data points sharing the
same label have the same coordinate in the new repre-
sentation space. This way, the learned representations
can have more discriminating power. We demonstrate
the effectiveness of this novel algorithm through a set
of evaluations on real world applications.

Introduction

Dimensionality reduction techniques have been receiving
more and more attentions as fundamental tools for data rep-
resentation (Lee and Seung 1999; He, Cai, and Min 2005;
Min, Lu, and He 2004; He et al. 2005). Among them, ma-
trix decomposition approaches have been developed by us-
ing different criteria. The most popular techniques include
Principal Component Analysis (PCA), Singular Value De-
composition (SVD) and Vector Quantization. Central to the
matrix factorization is to find two or more matrix factors
whose product is a good approximation to the original ma-
trix. In real applications, the dimension of the decomposed
matrix factors is usually much smaller than that of the origi-
nal matrix. This gives rise to compact representations of the
data points which can facilitate other learning tasks such as
clustering and classification.

Among matrix factorization methods, Non-negative Ma-
trix Factorization (NMF)(Lee and Seung 1999; Li and Ding
2006) specializes in that it enforces the constraint that the
factor matrices must be non-negative, i.e., all elements must
be equal to or greater than zero. This non-negative con-
straint leads NMF to a parts-based representation of the ob-
ject in the sense that it only allows additive, not subtractive

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

combination of the components. Therefore, it is an ideal di-
mensionality reduction algorithm for image processing, face
recognition (Lee and Seung 1999; Li et al. 2001) and docu-
ment clustering (Xu, Liu, and Gong 2003), where it is natu-
ral to consider the object as a combination of parts to form
a whole. As in the scope of non-negative matrix factoriza-
tion, the related work includes pLSA (Hofmann 2001), co-
clustering (Dhillon, Mallela, and Modha 2003) etc.

NMF is an unsupervised learning algorithm. That is,
NMF is inapplicable to many real-world problems where
limited knowledge from domain experts is available. How-
ever, many machine learning researchers have found that un-
labeled data, when used in conjunction with a small amount
of labeled data, can produce considerable improvement in
learning accuracy (Chapelle, Schölkopf, and Zien 2006;
He 2010). The cost associated with the labeling process may
render a fully labeled training set infeasible, whereas acqui-
sition of a small set of labeled data is relatively inexpensive.
In such situations, semi-supervised learning can be of great
practical value. Therefore, It would be great benefit to ex-
tend the usage of NMF to a semi-supervised manner.

Recently, Cai et al. (Cai et al. 2008; 2009) proposed a
Graph regularized NMF (GNMF) approach to encode the
geometrical information of the data space. GNMF con-
structs a nearest neighbor graph to model the local mani-
fold structure. When label information is available, it can
be naturally incorporated into the graph structure. Specifi-
cally, if two data points share the same label, a large weight
can be assigned to the edge connecting them. If two data
points have the different labels, the corresponding weight is
set to be 0. This gives rise to semi-supervised GNMF. The
major disadvantage of this approach is that there is no the-
oretical guarantee that data points from the same class will
be mapped together in the new representation space, and it
remains unclear how to select the weights in a principled
manner.

In this paper, we propose a novel matrix decomposition
method, called Constrained Non-negative Matrix Factoriza-
tion (CNMF), which takes the label information as addi-
tional hard constraints. The central idea of our approach
is that the data points from the same class should be merged
together in the new representation space. Thus, the obtained
parts-based representation has the consistent label with the
original data, and therefore can have more discriminating
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power. Another advantage of our approach is that it is pa-
rameter free, which avoids the cost of tuning parameters in
order to get the best result. It makes our algorithm appli-
cable to many real world applications easily and efficiently.
We also discuss how to solve the corresponding optimization
problem efficiently.

A Review of NMF
Non-negative Matrix Factorization (NMF) (Lee and Seung
2001) is an unsupervised learning algorithm used to decom-
pose multivariate data under the constraint that all entries in
the decomposed matrix factors have to be non-negative.

Suppose we have n data points {xi}
n
i=1. Each data point

xi ∈ R
m is m-dimensional and is represented by a vector.

The vectors are placed in the columns and the whole data
set is represented by a matrix X = [x1, · · · ,xn] ∈ R

m×n.
NMF aims to find two non-negative matrix factors U and V

where the product of the two factors is an approximation of
the original matrix, represented as:

X ≈ UV
T (1)

The approximation is quantified by a cost function which
can be constructed by some distance measure. If we take
the Frobenius norm as an example, the goal of NMF can be
restated as follows: to factor X into an m× k matrix U and
a k×n matrix V

T such that the following objective function
is minimized:

O = ‖X−UV
T ‖ (2)

This objective function is not convex in both variables U

and V. Thus, it is hard to find the global minima for O.
Lee and Seung proposed an iterative update algorithm (Lee
and Seung 2001) to find the locally optimal solution for the
above optimization problem.

In the NMF factorization, each column vector of U, ui,
can be regarded as a basis and each data point xi is approx-
imated by a linear combination of these k bases, weighted
by the components of V. In other words, NMF maps each
data xi to vi from m-dimensional space to k-dimensional
space. The new representation space is spanned by the k
bases ui. In real applications such as image processing (Lee
and Seung 1999), face recognition (Li et al. 2001) (Liu,
Zheng, and Lu 2003) and document clustering (Xu, Liu, and
Gong 2003), we usually set k ≪ m and k ≪ n. Then the
high dimensional data can be represented by a set of low-
dimensional vectors in the hope that the basis vectors can
discover the latent semantic structure among the data set.
Different from other dimension reduction algorithms such as
PCA, LDA and LPP (He and Niyogi 2003), the non-negative
constraints on U and V only permit the additive combina-
tion of the basis vectors, which is the reason why NMF is
considered as the parts-based representation.

NMF with Constraints
NMF is an unsupervised learning algorithm. It can not be
applied directly to the situation when the label information
is available. In this section, we introduce a novel matrix de-
composition method, called Constrained Non-negative Ma-
trix Factorization (CNMF), which takes the label informa-
tion as additional constraints. This method can guarantee

that the data points sharing the same label can be mapped
into the same class in the low-dimensional space. The al-
gorithm presented in this paper is fundamentally motivated
from semi-supervised graph embedding (He, Ji, and Bao
2009) which also consider label information as additional
constraints.

The Objective Function

Consider a data set consisting of n data points {xi}
n
i=1,

among which the label information is available for the first
l data points x1, · · · ,xl, and the rest n − l data points
xl+1, · · · ,xn are unlabeled.

Suppose there are c classes. Each data point from
x1, · · · ,xl is labeled with one class. We first build an l × c
indicator matrix C where ci,j = 1 if xi is labeled with the
j-th class; ci,j = 0 otherwise. With the indicator matrix C,
we define a label constraint matrix A as follows:

A =

(
Cl×c 0

0 In−l

)

where In−l is a (n− l)× (n− l) identity matrix. Recall that
NMF maps each data point xi to vi from m-dimensional
space to k-dimensional space. To incorporate the label infor-
mation, we can impose the label constraints by introducing
an auxiliary matrix Z:

V = AZ (3)

From the above equation, it is easy to check that if xi and
xj have the same label, then vi = vj .

With the label constraints, our CNMF algorithm reduces
to minimize the following objective function

O = ‖X−UV
T ‖

= ‖X−U(AZ)
T
‖

= ‖X−UZ
T
A

T ‖ (4)

with the constraint that ui,j and zi,j are non-negative. Since
Z is non-negative, it is easy to see that V is also non-
negative.

The Algorithm

The objective function of CNMF in Eq. (4) is not convex
in both variables U and Z. It is, thus, unrealistic to find
the global minima for O. Int the following, we describe an
iterative updating algorithm to obtain the local optima ofO.

Using the matrix property Tr(AB) = Tr(BA), the ob-
jective functionO can be rewritten as:

O = Tr((X−UZ
T
A

T )(X−UZ
T
A

T )T )

= Tr((XX
T − 2XAZU

T + UZ
T
A

T
AZU

T ))

= Tr(XX
T )− 2Tr(XAZU

T ) + Tr(UZ
T
A

T
AZU

T )

Let αij and βij be the Lagrange multiplier for constraint
uij ≥ 0 and zij ≥ 0, respectively, and α = [αij ], β = [βij ].
The Lagrange L is

L = O + Tr(αUT ) + Tr(βZT ) (5)
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Requiring that the derivatives of L with respect to U and Z

vanish, we have:

∂L

∂U
= −2XAZ + 2UZ

T
A

T
AZ + α = 0 (6)

∂L

∂Z
= −2AT

X
T
U + 2AT

AZU
T
U + β = 0 (7)

Using the Kuhn-Tucker condition αijuij = 0 and βijzij =
0, we get the following equations for uij and zij :

(XAZ)ijuij − (UZ
T
A

T
AZ)ijuij = 0 (8)

(AT
X

T
U)ijzij − (AT

AZU
T
U)ijzij = 0 (9)

These equations lead to the following updating rules:

uij ← uij

(XAZ)ij

(UZ
T
AT AZ)ij

(10)

zij ← zij

(AT
X

T
U)ij

(AT AZU
T
U)ij

(11)

We have the following theorem regarding the above iterative
updating rules.

Theorem 1. The objective function O is nonincreasing un-
der the update rules in Eq. (10) and (11). The objective
function is invariant under these updates if and only if U

and Z are at a stationary point.

Theorem 1 grantees the convergence of the iterations in
Eq. (10) and (11) and therefore the final solution will be
a local optima. In the following, we will give the proof of
Theorem 1.

To prove Theorem 1, we use a similar auxiliary function
as used in the Expectation-Maximization algorithm (Demp-
ster, Laird, and Rubin 1977; Saul and Pereira 1977).

Definition G(x, x′) is an auxiliary function for F (x) if the
conditions

G(x, x′) ≥ F (x), G(x, x) = F (x)

are satisfied.

Regarding the above auxiliary function, we have the fol-
lowing lemma, which will be used to prove the convergence
of the objective function.

Lemma 2. If G is an auxiliary function, then F is nonin-
creasing under the update

xt+1 = arg min
x

G(x, x′). (12)

Proof. F (xt+1) ≤ G(xt+1, xt) ≤ G(xt, xt) = F (xt)

The equality F (xt+1) = F (xt) holds only if xt is a local
minimum of G(x, xt). By iterating the updates in Eq. (12),
the sequence of estimates will converge to a local minimum
xmin = argminx F (x). We will show this by defining
an appropriate auxiliary function for the objective function

‖X−UZ
T
A

T ‖.
First, we prove the convergence of the update rule in

Eq. (11). For any element zab in Z, let Fzab
denote the part

ofO relevant to zab. Since the update is essentially element-
wise, it is sufficient to show that each Fzab

is nonincreasing
under the update step of (11). We prove this by defining the
auxiliary function regarding zab as follows.

Lemma 3. Let F ′ denote the first order derivative with re-
spective to Z. The function

G(z, zt
ab) = Fzab

(zt
ab) + F ′

zab
(zt

ab)(z − zt
ab)

+
(AT

AZU
T
U)ab

zt
ab

(z − zt
ab)

2 (13)

is an auxiliary function for Fzab
, which is the part of O that

only relevant to zab.

Proof. Obviously, G(z, z) = Fzab
(z). According to the

definition of auxiliary function, we only need to show that
G(z, zt

ab) ≥ Fzab
(z). In order to do this, we compare

G(z, zt
ab) in Eq. (13) with the Taylor series expansion of

Fzab
(z)

Fzab
(z) = Fzab

(zt
ab) + F ′

zab
(z − zt

ab)

+
1

2
F ′′

zab
(z − zt

ab)
2, (14)

where F ′′ is the second order derivative with respect to Z. It
is easy to check that

F ′
zab

=

(
∂O

∂Z

)

ab

= (−2AT
X

T
U + 2AT

AZU
T
U)ab

(15)

F ′′
zab

= 2(AT
A)aa(UT

U)bb (16)

Putting Eq. (16) into Eq. (14) and comparing Eq. (13) and
(14), we can see that, instead of showing G(z, zt

ab) ≥
Fzab

(z), it is equivalent to show

(AT
AZU

T
U)ab

zt
ab

≥
1

2
F ′′

zab
= (AT

A)aa(UT
U)bb (17)

To prove the above inequality, we have

(AT
AZU

T
U)ab =

k∑

l=1

(AT
AZ)al(U

T
U)lb

≥ (AT
AZ)ab(U

T
U)bb

≥
k∑

l=1

(AT
A)alz

t
lb(U

T
U)bb

≥ zt
ab(A

T
A)aa(UT

U)bb

Then we define an auxiliary function for the update rule
in Eq. (10). Similarly, let Fuab

denote the part of O relevant
to uab. Then the auxiliary function regarding uab is defined
as follows.

Lemma 4. The function

G(u, ut
ab) = Fuab

(ut
ab) + F ′

uab
(ut

ab)(u − ut
ab)

+
(UZ

T
A

T
AZ)ab

ut
ab

(u− ut
ab)

2 (18)

is an auxiliary function for Fuab
, which is the part of O that

only relevant to uab.
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The proof of Lemma 4 is essentially similar to the proof of
Lemma 3 and is omitted here due to space limitation. With
the above lemmas, now we give the proof of Theorem 1.

Proof of Theorem 1: Putting G(z, zt
ab) of Eq. (13) into

Eq. (12), we get:

zt+1

ab = zt
ab − zt

ab

F ′
zab

(zt
ab)

(AT AZU
T
U)ab

= zt
ab

(AT
X

T
U)ab

(AT AZU
T
U)ab

(19)

Since Eq. (13) is an auxiliary function, Fzab
is nonincreasing

under this update rule, according to Lemma 3.
Similarly, putting G(u, ut

ab) of Eq. (18) into Eq. (12), we
get:

ut+1

ab = ut
ab − ut

ab

F ′
uab

(zt
ab)

(AT AZU
T
U)ab

= ut
ab

(XAZ)ab

(UZ
T
AT AZ)ab

(20)

Since Eq. (18) is an auxiliary function, Fuab
is nonincreasing

under this update rule, according to Lemma 4.

Experimental Results

In this section, we investigate the use of our proposed CNMF
algorithm for data clustering. We begin with a description of
the data sets used in our experiments.

Data Sets

The experiments are conducted on two data sets. One
is the AT&T database 1, and the other is the Yale Face
database 2. The AT&T database consists of ten different im-
ages for each of 40 distinct subjects, thus 400 images in to-
tal. The Yale Database contains 165 grayscale images of 15
individuals. All images demonstrate variations in lighting
condition (left-light, centerlight, right-light), facial expres-
sion (normal, happy, sad, sleepy, surprised, and wink), and
with/without glasses.

In all the experiments, images are preprocessed so that
faces are located. Original images are first normalized in
scale and orientation such that the two eyes are aligned at
the same position. Then the facial areas were cropped into
the final images for clustering. Each image is 32× 32 pixels
with 256 gray levels per pixel.

Evaluation Metrics

We use two metrics to evaluate the clustering perfor-
mance (Xu, Liu, and Gong 2003; Cai et al. 2008). The
result is evaluated by comparing the cluster label of each
sample with the label provided by the data set. One metric
is accuracy (AC), which is used to measure the percentage
of correct labels obtained. Given a data set containing n im-
ages, for each sample image mi, let li be the cluster label

1http://www.uk.research.att.com/facedatabase.html
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html

we obtained by applying different algorithms and ri be the
label provided by the data set. The accuracy (AC) is defined
as:

AC =

∑n

i=1
δ(ri, map(li))

n
(21)

where δ(x, y) is the delta function that equals one if x = y
and equals zero otherwise, and map(li) is the mapping func-
tion that maps each cluster label li to the equivalent label
from the data set. The best mapping can be found by using
the Kuhn-Munkres algorithm (Lovasz and Plummer 1986).

The second metric is the normalized mutual information
(M̂I). In clustering applications, mutual information is used
to measure how similar two sets of clusters are. Given two
sets of image clusters C and C′, their mutual information
metric MI(C, C′) is defined as:

MI(C, C′) =
∑

ci∈C,c′
j
∈C′

p(ci, c
′
j) · log

p(ci, c
′
j)

p(ci) · p(c′j)
(22)

where p(ci), p(c′j) denote the probabilities that an image ar-
bitrarily selected from the data set belongs to the clusters ci

and c′j , respectively, and p(ci, c
′
j) denotes the joint proba-

bility that this arbitrarily selected image belongs to the clus-
ter ci as well as c′j at the same time. MI(C, C′) takes val-

ues between zero and max(H(C), H(C′)), where H(C) and
H(C′) are the entropies of C and C′, respectively. It reaches
the maximum max(H(C), H(C′)) when the two sets of im-
age clusters are identical and it becomes zero when the two
sets are completely independent. One important character
of MI(C, C′) is that the value keeps the same for all kinds
of permutations. In our experiments, we use the normalized

metric M̂I(C, C′) which takes values between zero and one:

M̂I(C, C′) =
MI(C, C′)

max(H(C), H(C′))
(23)

Performance Evaluations and Comparisons

We compare the following algorithms:

• Our proposed Constrained Non-negative Matrix Factor-
ization (CNMF).

• Non-negative Matrix Factorization based clustering
(NMF). We implemented a normalized cut weighted ver-
sion of NMF as suggested in (Xu, Liu, and Gong 2003).

• Non-negative Tensor Factorization (NTF) (Shashua and
Hazan 2005). NTF is an extension of NMF to tensor data.
In NTF, each face image is represented as a second order
tensor, rather than a vector.

• Graph regularized Non-negative Matrix Factorization
(GNMF) (Cai et al. 2008) which encode the geometrical
information of the data space into matrix factorization.

• Semi-supervised Graph regularized Non-negative Ma-
trix Factorization on Manifold (SemiGNMF)(Cai et al.
2008). This method incorporate the label information into
the graph structure by modifying the weight matrix.

As we mentioned before, there is no parameter in our ap-
proach. For other algorithms, the parameters are set to be
the values that each algorithm can achieve its best results.
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Table 1: Clustering Results Comparison on the AT&T database

k
Accuracy (%) Normalized Mutual Information (%)

NMF GNMF NTF SemiGNMF CNMF NMF GNMF NTF SemiGNMF CNMF

2 91.0 ± 11.0 92.0 ± 11.6 84.5 ± 11.7 90.5 ± 11.4 92.4 ± 9.5 69.6 ± 32.5 74.7 ± 34.6 49.5 ± 29.5 69.4 ± 34.5 75.0 ± 30.5

3 80.0 ± 13.1 82.3 ± 12.0 57.7 ± 10.3 78.0 ± 14.3 81.6 ± 12.5 64.6 ± 19.2 67.2 ± 18.2 26.3 ± 17.4 60.5 ± 23.0 68.7 ± 16.7

4 74.0 ± 10.8 76.3 ± 14.1 59.0 ± 9.1 74.0 ± 11.4 79.8 ± 8.0 71.3 ± 8.7 73.6 ± 14.6 49.4 ± 11.0 69.5 ± 9.7 75.3 ± 7.8

5 79.8 ± 10.2 74.8 ± 12.2 63.0 ± 11.2 76.5 ± 10.0 82.5 ± 8.6 74.7 ± 8.2 69.6 ± 13.4 54.8 ± 13.8 69.5 ± 10.9 77.6 ± 9.5

6 78.0 ± 11.0 72.7 ± 18.0 62.0 ± 9.5 77.0 ± 10.1 81.3 ± 8.0 76.0 ± 9.4 68.6 ± 16.4 61.0 ± 8.1 75.6 ± 9.2 80.1 ± 7.8

7 77.6 ± 9.3 70.6 ± 6.4 65.7 ± 8.1 77.1 ± 6.8 82.4 ± 5.6 79.1 ± 6.6 69.8 ± 6.6 69.0 ± 6.0 77.7 ± 4.1 82.5 ± 4.6

8 76.9 ± 7.6 66.8 ± 12.3 71.9 ± 7.8 76.0 ± 6.3 83.7 ± 7.9 79.6 ± 6.3 68.4 ± 13.7 73.8 ± 6.7 78.2 ± 5.8 85.3 ± 6.4

9 80.2 ± 7.9 62.2 ± 9.2 66.1 ± 11.7 79.7 ± 6.6 80.4 ± 6.9 80.2 ± 7.7 65.0 ± 8.4 69.1 ± 9.9 80.1 ± 6.8 82.3 ± 5.5

10 75.9 ± 7.3 60.2 ± 10.4 67.0 ± 6.4 73.1 ± 8.2 79.8 ± 5.5 79.4 ± 5.3 65.6 ± 7.9 73.5 ± 4.7 77.6 ± 6.3 83.6 ± 3.9

Avg. 79.3 ± 9.8 73.1 ± 11.8 66.3 ± 9.5 78.0 ± 9.5 82.7 ± 8.1 74.9 ± 11.5 69.2 ± 14.9 58.5 ± 11.9 73.1 ± 12.3 78.9 ± 10.3

(a) Accuracy vs. number of clusters (b) Mutual Information vs. number of clusters

Figure 1: Clustering Performance on AT&T Database

The evaluations are conducted with different cluster num-
bers k ranging from two to ten. For the given cluster num-
ber k, we randomly choose k clusters from the data set, and
repeat this process ten times. The average clustering per-
formance is recorded over the ten tests. For fixed chosen
clusters, we apply different matrix/tensor factorization al-
gorithms to obtain new representations. K-means is then
applied in the new representation spaces 20 times with dif-
ferent start points and the best result in terms of the objective
function of K-means is recorded. Two different images are
randomly selected from each cluster with labels.

Fig. 1 and 2 show the plots of accuracy and normalized
mutual information versus the number of clusters for differ-
ent algorithms. As can be seen, our proposed CNMF al-
gorithm consistently outperforms all the other algorithms.
NMF, GNMF, and SemiGNMF perform comparably to one
another. SemiGNMF fails to make full use of the label infor-
mation, and in some cases performs even worse than GNMF
and NMF. This is because there is no theoretical guarantee
for SemiGNMF that data points sharing the same label can
be mapped sufficiently close to one another.

Table 1 and 2 show the detailed clustering accuracy (nor-
malized mutual information), as well as the standard devia-
tion. The last row of each table shows the average accuracy
(normalized mutual information) over k. On AT&T data set,
comparing to the second best algorithm, i.e. NMF, CNMF

achieves 3.4% improvement in accuracy and 4.0% improve-
ment in normalized mutual information. On Yale data set,
comparing to the second best algorithm, i.e. GNMF, CNMF
achieves 2.0% improvement in accuracy and 2.3% improve-
ment in normalized mutual information.

Conclusions

In this paper, we have presented a novel matrix factorization
method, called Constrained Non-negative Matrix Factoriza-
tion (CNMF), which makes use of both labeled and unla-
beled data points. CNMF imposes the label information to
the objective function as hard constraints. This way, the new
representations of the data points can have more discrimi-
nating power. Moreover, our algorithm is parameter free.
Thus, CNMF can be easily applied to a wide range of prac-
tical problems. The experimental results on two standard
face databases have demonstrated the effectiveness of our
approach.
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