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Abstract

Transfer learning aims at reusing the knowledge in some
source tasks to improve the learning of a target task. Many
transfer learning methods assume that the source tasks and the
target task be related, even though many tasks are not related
in reality. However, when two tasks are unrelated, the knowl-
edge extracted from a source task may not help, and even
hurt, the performance of a target task. Thus, how to avoid
negative transfer and then ensure a “safe transfer” of knowl-
edge is crucial in transfer learning. In this paper, we propose
an Adaptive Transfer learning algorithm based on Gaussian
Processes (AT-GP), which can be used to adapt the transfer
learning schemes by automatically estimating the similarity
between a source and a target task. The main contribution
of our work is that we propose a new semi-parametric trans-
fer kernel for transfer learning from a Bayesian perspective,
and propose to learn the model with respect to the target task,
rather than all tasks as in multi-task learning. We can for-
mulate the transfer learning problem as a unified Gaussian
Process (GP) model. The adaptive transfer ability of our ap-
proach is verified on both synthetic and real-world datasets.

Introduction
Transfer learning (or inductive transfer) aims at transfer-
ring the shared knowledge from one task to other related
tasks. In many real-world applications, we expect to re-
duce the labeling effort of a new task (referred to as tar-
get task) by transferring knowledge from one or more re-
lated tasks (source tasks) which have plenty of labeled
data. Usually, the accomplishment of transfer learning is
based on certain assumptions and the corresponding trans-
fer schemes. For example, (Lawrence and Platt 2004;
Schwaighofer, Tresp, and Yu 2005; Raina, Ng, and Koller
2006; Lee et al. 2007) assume that related tasks should share
some (hyper-)parameters. By discovering the shared (hyper-
) parameters, the knowledge can be transferred across tasks.
Other algorithms, such as (Dai et al. 2007; Raina et al.
2007), assume that some instances or features can be used
as a bridge for knowledge transfer. If these assumptions fail
to be satisfied, however, the transfer may be insufficient or
unsuccessful. In the worst case, it may even hurt the perfor-
mance, which can be referred to as negative transfer (Rosen-
stein and Dietterich 2005). Since it is not trivial to verify
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which assumptions hold for real-world tasks, we are inter-
ested in pursuing an adaptive transfer learning algorithm
which can automatically adapt the transfer schemes in dif-
ferent scenarios and then avoid negative transfer. We expect
the adaptive transfer learning algorithm to at least demon-
strate the following properties:

• The shared knowledge between tasks should be trans-
ferred as much as possible when these tasks are related.
An extreme case is that when they are exactly the same
task, the performance of the adaptive transfer learning al-
gorithm should be as good as that when it is considered as
a single-task problem.

• Negative transfer should be avoided as much as possible
when these tasks are unrelated. An extreme case is when
these tasks are totally unrelated, the performance of the
adaptive transfer learning algorithm should be no worse
than that of the non-transfer-learning baselines.

Two basic transfer-learning schemes can be constructed
based the above requirements. One is a no transfer scheme,
which discards the data in the source task when training a
model for the target task. This would be the best scheme
when the source and the target tasks are not related at all.
The other is transfer all scheme that considers the data in
the source task to be the same as those in the target task.
This would be the best scheme when the source and target
tasks are exactly the same. What we wish to get is an adap-
tive scheme that is always no worse than the two schemes.
However, given that there are so many transfer learning algo-
rithms that have been proposed, a mechanism has been lack-
ing to automatically adjust its transfer schemes to achieve
this.

In this paper, we address the problem of constructing an
adaptive transfer learning algorithm that satisfies both prop-
erties mentioned above. We propose an Adaptive Trans-
fer learning algorithm based on Gaussian Process (AT-GP)
to achieve the goal of adaptive transfer. Advantages of
Gaussian process methods include that the priors and hyper-
parameters of the trained models are easy to interpret as
well as that variances of predictions can be provided. Dif-
ferent from previous works on transfer learning and multi-
task learning using GP which are either based on transfer-
ring through shared parameters (Lawrence and Platt 2004;
Yu, Tresp, and Schwaighofer 2005; Schwaighofer, Tresp,

407

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



and Yu 2005) or shared representation of instances (Raina
et al. 2007), the model proposed in this paper can automati-
cally learn the transfer scheme from the data. Our key idea
is to learn a transfer kernel to model the correlation of the
outputs when the inputs come from different tasks, which
can be regarded as a measure of similarity between tasks.
What to transfer is based on how similar the source is to the
target task. On one hand, if the tasks are very similar then
the knowledge would be transferred from the source data
and the learning performance would tend to the transfer all
scheme in the extreme case. On the other hand, if the tasks
are not similar, the model would only transfer the prior in-
formation on the parameters to approximate the no transfer
scheme. Since we have very few labeled data for the target
task, we consider a Bayesian estimation of the task similarity
rather than point estimation (Gelman et al. 2003). A signifi-
cant difference between our problem and multitask learning
is that we only care about the target task rather than all tasks,
which is a very natural scenario in real world applications.
For example, we may want to use the previous learned tasks
to help learn a new task. Therefore, our target is to improve
the new task rather than the old ones. For this purpose, the
learning process should focus on the target task rather than
all tasks. Therefore, we propose to learn the model based
on the conditional distribution of the target task given the
source task, which is a novel variation of the classical Gaus-
sian process model.

The Adaptive Transfer Learning Model via

Gaussian Process
We consider regression problems in this paper. Suppose that
we have a regression problem as a source task S with a large
amount of training data and another regression problem as a

target task T with a small amount of training data. Let y
(S)
i

denote the observed output corresponding to the input x
(S)
i

of the ith instance in the source task and y
(T )
j denote the

observed output of the jth instance x
(T )
j in the target task.

We assume that the underlying latent function between the

input and output for the source task is f (S). Let f (S) be the

vector with nth element f (S)(x
(S)
i ) and we have a notation

f (T ) for the target task. Suppose we have N data instances
for the source task and M data instances for the target data,

then f (S) is of length N and f (T ) is of length M . We model
the noise on observations by an additive noise term,

y
(S)
i = f

(S)
i + ǫ

(S)
i , y

(T )
j = f

(T )
j + ǫ

(T )
j

where f (·) = f (·)(x(·)) 1. The prior distribution (GP prior)

over the latent variables f (·), is given by a GP p(f (·)) =
N (f (·)|0,K(·)), with the kernel matrix K(·). The notation 0
denotes a vector with all entries being zero.

We assume that the noise ǫ(·) is a random noise variable
whose value is independent for each observation y(·) and
follows a zero-mean Gaussian,

p(y(·)|f (·)) = N (y(·)|f (·), β−1
(·) ) (1)

1We use (·) to denote both (S) and (T ) to avoid redundancy.

where βs and βt are hyper-parameters representing the pre-
cision (inverse variance) of the noise in the source and target
tasks, respectively.

Since the noise variables are i.i.d., the distribution of

observed outputs y(S) = (y
(S)
1 , · · · , y

(S)
N )T and y(T ) =

(y
(T )
1 , · · · , y

(T )
M )T conditioned on corresponding inputs

f (S) and f (T ) can be written in a Gaussian form as follows

p(y(·)|f (·)) = N (y(·)|f (·), β−1
(·) I)) (2)

where I is the identity matrix with proper dimensions.
In order to transfer knowledge from the source task S to

the target task T , we need to construct connections between
them. In general, there are two kinds of connections be-
tween the source and the target tasks. One is that the two
GP regression models for the source and target tasks share
the same parameters θ in their kernel functions. This in-
dicates that the smoothness of the regression functions of
the source and target tasks are similar. This type of trans-
fer scheme is introduced in (Lawrence and Platt 2004) for
GP models. Many other multi-task learning models also use
similar schemes by sharing priors or regularization terms
over tasks (Lee et al. 2007; Raina, Ng, and Koller 2006;
Ando and Zhang 2005). The other kind of connection is
the correlation between outputs of data instances between
tasks (Bonilla, Agakov, and Williams 2007; Bonilla, Chai,
and Williams 2008). Unlike the first kind (Lawrence and
Platt 2004), we do not assume the data in different tasks to
be independent of each other given the shared GP prior, but
consider the joint distribution of outputs of both tasks. The
connection through shared parameters gives it the paramet-
ric flavor while the connection through correlation of data
instances gives it the nonparametric flavor. Therefore our
model may be regarded as a semiparametric model.

Suppose the distribution of observed outputs conditioned

on the inputs X is p(y|X), where y = (y(S),y(T )) and

X = (X(S),X(T )). For multi-task learning problems
where the tasks are equally important, the objective would
be the likelihood p(y|X). However, for transfer learning
where we have a clear target task, it is not necessary to
optimize the parameters with respect to the source task.
Therefore, we directly consider the conditional distribution

p(y(T )|y(S),X(T ),X(S)). Let f = (f (S), f (T )), we first
define a Gaussian process over f ,

p(f |X, θ) = N (f |0,K),

and the kernel matrix K for transfer learning

Knm ∼ k(xn,xm)e−ζ(xn,xm)ρ, (3)

where ζ(xn,xm) = 0 if xn and xm come from the same
task, otherwise, ζ(xn,xm) = 1. The intuition behind Equa-
tion (3) is that the additional factor makes the correlation
between instances of the different tasks are less or equal to
the correlation between the ones in the same task. The pa-
rameter ρ represents the dissimilarity between S and T . One
difficulty in transfer learning is to estimate the (dis)similarity
with limit amount of data. We propose a Baysian approach
to tackle this difficulty. Therefore, instead of using a point
estimation, we can consider ρ is from a Gamma distribution

ρ ∼ Γ(b, µ).
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We now have the transfer kernel as

K̃nm = E[Knm] = k(xn,xm)

∫
e−ζ(xn,xm)ρρb−1 e−ρ/µ

µbΓ(b)
dρ.

By integrating out ρ, we can obtain,

K̃nm =





k(xn,xm)

(
1

1 + µ

)b

, ζ(xn,xm) = 1,

k(xn,xm), otherwise.

(4)

The factor before kernel function has range of [0, 1]. There-
fore, the above form of kernel does not consider the negative
correlation between tasks. Therefore, we can further extend
it into the following form

K̃nm ∼ k(xn,xm)(2e−ζ(xn,xm)ρ − 1), (5)

and its Bayesian form

Knm =
k(xn,xm) 2

1

1 + µ

b

− 1 , ζ(xn,xm) = 1,

k(xn,xm), otherwise.
(6)

Theorem 1 shows that the kernel matrices defined in
Equation (4) and Equation (6) are positive semidefinite
(PSD) matrices as long as k is a valid kernel function. Both
transfer kernel models the correlation of outputs based on
not only the similarity between inputs but also the similarity
between tasks. Since the kernel in Equation (6) has the abil-
ity to model negative correlation between tasks and there-
fore has stronger expression ability, we use it as the transfer
kernel. We will further discuss its properties in later section.

Thus, the conditional distribution of f (T ) given f (S) can
be written as follows

p(f (T )|f (S)
,X

(T )
, θ) = N (K21K

−1
11 f

(S)
,K22 − K21K

−1
11 K12),

where K =

(
K11 K12

K21 K22

)
is a block matrix. K11 and K22

are the kernel matrices of the data in the source task and
target task, respectively. K12 (= KT

21) is the kernel matrix
across tasks.

Theorem 1. Let K =

(
K11 K12

K21 K22

)
be a PSD matrix with

K12 = KT
21. Then for |λ| ≤ 1, K∗ =

(
K11 λK12

λK21 K22

)
is

also a PSD matrix.

We omit the proof here to reduce space. 2 So far, we have
described how to construct a unified GP regression model
for adaptive transfer learning. In the following subsections,
we will discuss how to do inference and parameter learning
in our proposed GP regression model.

Inductive Inference

For a test point x in the target task, we want to predict its
output value y by determining the predictive distribution

2The proof of the theorem can be found at
http://ihome.ust.hk/∼caobin/papers/atgp ext.pdf

p(y|y(S),y(T )), where, for simplicity, the input variables
are omitted.

The inference process of the model is the same as that in
standard GP models. The mean and variance of the predic-
tive distribution of the target task data are given by

m(x) = kxC̃
−1y, σ2(x) = c − kx

TC̃−1kx, (7)

where C̃ = K̃ + Λ and Λ =

(
β−1

s IN 0

0 β−1
t IM

)
, and

c = k(x, x) + β−1
t and kx can be calculated by the trans-

fer kernel defined in Equation (3). Therefore, m(x) can be
further decomposed as follows

m(x) =
∑

xj∈X(T )

αjk(x,xj) +
∑

xi∈X(S)

λαik(x,xi), (8)

where λ = 2( 1
1+µ)b − 1 and αi is the ith element of C̃−1y.

The first term in the above formula represents the correla-
tion between the test data point and the data in the target
task. The second term represents the correlation between the
test data point and the source task data where a shrinkage is
introduced based on the similarity between tasks.

Parameter Learning

Given the observations y(S) in the source task and y(T ) in
the target task, we wish to learn parameters {θi}P

i=1 (P is the
number of parameters in the kernel function) in the kernel
function as well as the parameter b, µ (denoted by θP+1 and
θP+2 for simplicity) by maximizing the marginal likelihood
of data of the target task. Multitask GP models (Bonilla,
Chai, and Williams 2008) consider the joint distribution of
source and target tasks. However, for transfer learning prob-
lems, we may only have relatively few labeled data in the
target task and optimize with respect to the joint distribu-
tion may bias the model towards source rather than target.
Therefore, we propose to optimize the conditional distribu-
tion instead,

p(y(T )|y(S),X(T ),X(S)). (9)

As we analyzed before, this distribution is also a Gaussian
and the model is still a GP. A slight difference between this
model and classical GP is that its mean is not a zero vector
any more and it is also a function of the parameters.

p(y(T )|y(S),X(T ),X(S)) ∼ N (µt,Ct), (10)

where

µt = K21(K11 + σ2
sI)

−1ys,

Ct = (K22 + σ2
t I) − K21(K11 + σ2

sI)
−1K12,

(11)

and K11(xn,xm) = K22(xn,xm) = k(xn,xm) and
K21(xn,xm) = K12(xn,xm) = k(xn,xm)(2( 1

1+µ)b −1).

The log-likelihood equation is given as follows

ln p(yt|θ) = −
1

2
ln |Ct|−

1

2
(yt−µt)

T
C

−1
t (yt−µt)−

N

2
ln(2π).

(12)
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We can compute the derivative of the log-likelihood with
respect to the parameters,

∂

∂θi

ln p(y|θ) = −
1

2
Tr(C−1

t

∂Ct

∂θi

)

+
1

2
(yt − µt)

T
C

−1
t

∂Ct

∂θi

C
−1
t (yt − µt)

+ (
∂µt

∂θi

)TC
−1
t (yt − µt)

The difference between the proposed learning model and
classical GP learning models is the existence of the last term
in the above equation and non-zero mean Gaussian process.
However, the standard inference and learning algorithms can
still be used. Thus, many approximation techniques for GP
models (Bottou et al. 2007) can also be applied directly to
speed-up the inference and learning processes of AT-GP.

Transfer Kernel: Modeling Correlation

Between Tasks

As mentioned above, our main contribution is the proposed
semi-parametric transfer kernel for transfer learning. In this
section, we further discuss its powerful properties for mod-
eling correlations between tasks. In general, the kernel func-
tion in GP expresses that for points xn and xm that are simi-
lar, the corresponding values y(xn) and y(xm) will be more
strongly correlated than for dissimilar points. In the transfer
learning scenario, the correlation between y(xn) and y(xm)
also depends on which tasks the inputs xn and xm come
from and how similar the tasks are. Therefore the transfer
kernel expresses that for points xn and xm from different
tasks, how the corresponding values y(xn) and y(xm) are
correlated. The transfer kernel can transfer through different
schemes in three cases:

• Transfer over priors: λ → 0, meaning we know the source
and target tasks are not similar or have no confidence on
their relation. When the correlations between data in the
source and target tasks are slim, what we transfer is only
the shared parameters in the kernel function k. So we only
require the degree of smoothness of the source and target
tasks to be shared.

• Transfer over data: 0 < |λ| < 1. In this case, besides the
smoothness information, the model directly transfers data
from the source task to the target task. How much the data
in the source task influence the target task depends on the
value of λ.

• Single task problem: λ = 1, meaning we have high con-
fidence the task is extremely correlated, we can treat the
two tasks to be one. In this case, it is equivalent to the
transfer all scheme.

The learning algorithm can automatically determine into
which setting the problem falls. This is achieved by estimat-
ing λ on the labeled data from both the source and target
tasks. Experiments in the next section show that only a few
labeled data are required to estimate λ well.

Experiments

Synthetic Dataset

In this experiment, we show how our proposed AT-GP model
performs when the similarity between the source task and
target task changes. We generate a synthetic data set to test
our AT-GP algorithm first, in order to better illustrate the
properties of the algorithm under different parameter set-
tings. We use a linear regression problem as a case study.
First, we are given a linear regression function f(x) =
wT

0 x + ǫ where w0 ∈ R
100 and ǫ is a zero-mean Gaus-

sian noise term. The target task is to learn this regression
model with a few data generated by this model. In our ex-
periment, we use this function to generate 500 data for the
target task. Among them, 50 data are randomly selected for
training and the rest is used for testing. For the source task,
we use g(x) = wT x+ ǫ = (w0 + δ∆w)T x + ǫ to generate
500 data for training, where ∆w is randomly generated vec-
tor and δ is the variable controlling the difference between
g and f . In the experiment we increase δ and vary the dis-
tance between the two tasks Df = ||w − w0||F . Figure (2)
shows how the mean absolute error (MAE) on 450 target
test data changes at different distance between the source
and target tasks. The results are compared with the transfer
all scheme (directly use all of the training data) and the no
transfer scheme (only use training data in the target task).
As we can see, when the two tasks are very similar, the AT-
GP model performance is as good as transfer all, while when
the tasks are very different, the AT-GP model is no worse
than no transfer. Figure (3) shows the experimental results
on learning λ under a varying number of labeled data in the
target task. It is interesting to observe that the number of
data required to learn λ well (left figure) is much less than
the number of data required to learn the task well (right fig-
ure). This indicates why transfer learning works.

Real-World Datasets

In this section, we conduct experiments on three real world
datasets.

WiFi Localization3: The task is to predict the location
of each collection of received signal strength (RSS) values
in an indoor environment, received from the WiFi Access
Points (APs). A set of (RSS values, Location) data is given
as training data. The training data are collected at a different
time period from the test data, so there exists a distribution
change between the training and test data. In WiFi location
estimation, when we use the outdated data as the training
data, the error can be very large. However, because the lo-
cation information is constant across time, there is a certain
part of the data that can be transferred. If this can be done
successfully, we can save a lot of manual labelling effort for
the new time period. Therefore, we want to use the outdated
data as the source task to help predict the location for cur-
rent signals. Different from multi-task learning which cares
about the performances of all tasks, in this scenario we only
care about the performance of current data corresponding to
the target task.

3http://www.cs.ust.hk/∼qyang/ICDMDMC07/
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Figure 2: The left figure shows the change to MAE with in-
creasing distance with f . The results are compared with trans-
fer all and no transfer; The right figure shows the change to λ
with increasing distance with f . We can see that λ is strongly
correlated with Df .

Figure 3: Learning with different numbers of labeled data in
the target task. The left figure shows the convergence curve
of λ with respect to the number of data. The right figure
shows the change to MAE on test data. (λ∗ is the value of λ
after convergence and λ∗ = 0.3 here.)

Wine4: The dataset is about wine quality including red
and white wine samples. The features include objective tests
(e.g. PH values) and the output is based on sensory data.
The labels are given by experts with grades between 0 (very
bad) and 10 (very excellent). There are 1599 records for the
red wine and 4898 for the white wine. We use the quality
prediction problem for the white wine as the source task and
the quality prediction problem for red wine as the target task.

SARCOS5: The dataset relates to an inverse dynamics
problem for a seven degrees-of-freedom SARCOS anthro-
pomorphic robot arm. The task is to map from a 21-
dimensional input space (7 joint positions, 7 joint velocities,
7 joint accelerations) to the corresponding 7 joint torques.
The original problem is a multi-output regression problem.
It can also be treated as multi-task learning problem by treat-
ing the seven mappings as seven tasks. In this paper we use
one of the task as the target task and another as the source
task to test our algorithm. Therefore, we can form 49 task
pairs in total for our experiments.

In our experiments, all data in the source task and 5%
of the data in the target task are used for training. The
remaining 95% data in the target task are used for evalua-
tion. We use NMSE (Normalized Mean Square Error) for
the evaluation of results on Wine and SARCOS datasets and
error distance (in meter) for WiFi. A smaller value indi-
cates a better performance for both evaluation criteria. The
average performance results are shown in Table 1, where
No and All are GP models with no-transfer and transfer-
all schemes, and Multi-1 is (Lawrence and Platt 2004) and
Multi-2 is (Bonilla, Chai, and Williams 2008).

Discussion

We further discuss the experimental results in this section.
For the task pairs in the datasets, sometimes the source task
and target task would be quite related, such as the case of
WiFi dataset. In these cases, the λ parameter learned in
the model would be large, allowing the shared knowledge
to be transferred successfully. However, in other cases such
as the ones on the SARCOS dataset, the source and target
tasks may not be related and negative transfer may occur.

4http://archive.ics.uci.edu/ml/datasets/Wine+Quality
5http://www.gaussianprocess.org/gpml/data/

Data No All Multi-1 Multi-2 AT

Wine 1.33+0.3 1.37+0.7 1.69+0.5 1.27+0.3 1.16+0.3

SARCOS 0.21+0.1 1.58+1.3 0.24+0.1 0.26+0.3 0.18+0.1

WiFi 9.18+1.5 5.28+1.3 9.35+1.4 11.92+1.8 4.98+0.6

Table 1: Results on three real world datasets. The NMSE of all
source/target-task pairs are reported for the dataset Wine and SAR-
COS, while error distances (in meter) are reported for the dataset
WiFi. Both means (before plus) and standard deviation (after plus)
are reported. We have conduct t-tests which show the improve-
ments are significant with significance level 0.05.

A safer way is to use parameter transfer scheme (Multi-1
in (Lawrence and Platt 2004)) or the no transfer scheme to
avoid negative transfer. The drawback of parameter transfer
transfer scheme or no transfer scheme is that they may lose
a lot of shared knowledge when the tasks are similar. Be-
sides, since multi-task learning cares about both the source
and target tasks with no difference and the source task may
dominate the learning of parameters, the performance of the
target task may even worse than no transfer case, as for the
SARCOS dataset. However, what we should be focused on
is the target task. In our method, we conduct the learning
process on the target task and the learned parameters would
fit the target task. Therefore, the AT-GP model performs the
best on all three datasets. In many real world applications,
it is hard to know exactly whether the tasks are related or
not. Since our method can adjust the transfer schema auto-
matically according to the similarity of the two tasks, we are
able to adaptively transfer the shared knowledge as much as
possible and avoid negative transfer.

Related Work
Multi-task learning is closely related to transfer learn-
ing. Many papers (Yu, Tresp, and Schwaighofer 2005;
Schwaighofer, Tresp, and Yu 2005) consider multi-task
learning and transfer learning as the same problem. Re-
cently, various GP models have been proposed to solve
multi-task learning problems. Yu et al. in (Yu, Tresp, and
Schwaighofer 2005; Schwaighofer, Tresp, and Yu 2005)
proposed the hierarchical Gaussian process model for multi-
task learning. Lawrence in (Lawrence and Platt 2004) also
proposed a multi-task learning model based on Gaussian
process. This model tries to discover the common ker-
nel parameters over different tasks and the informative vec-
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tor machine was introduced to solve large-scale problems.
In (Bonilla, Chai, and Williams 2008) Bonilla et al. pro-
posed a multi-task regression model using Gaussian pro-
cess. They considered the similarity between tasks and con-
structed a free-form kernel matrix to represent task relations.
The major difference between their model and ours is the
constructed kernel matrix. They consider a point estimation
of the correlations between tasks, which may not be robust
when data in target task is small. They also treat the tasks
equally important rather than the transfer setting.

One difference of transfer learning from multi-task learn-
ing is that in transfer learning we are particularly interested
in transferring knowledge from one or more source tasks
to a target task rather than learning these tasks simultane-
ously. What we concern is the performance in the target task
only. On the problem of adaptive transfer learning, to our
best knowledge, only (Rosenstein and Dietterich 2005) ad-
dressed the problem of negative transfer, but they still failed
to achieve adaptive transfer.

Conclusion
In this paper, we proposed an adaptive transfer Gaussian
process (AT-GP) model for adaptive transfer learning. Our
proposed model can automatically learn the similarity be-
tween tasks. According to our method, how much to trans-
fer is based on how similar the tasks are and negative trans-
fer can be avoided. The experiments on both synthetic and
real-world datasets verify the effectiveness of our proposed
model.
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