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Abstract

Non-metric distances are often more reasonable compared
with metric ones in terms of consistency with human per-
ceptions. However, existing locality-sensitive hashing (LSH)
algorithms can only support data which are gauged with met-
rics. In this paper we propose a novel locality-sensitive hash-
ing algorithm targeting such non-metric data. Data in original
feature space are embedded into an implicit reproducing ker-
nel Kreı̆n space and then hashed to obtain binary bits. Here
we utilize the norm-keeping property of p-stable functions to
ensure that two data’s collision probability reflects their non-
metric distance in original feature space. We investigate var-
ious concrete examples to validate the proposed algorithm.
Extensive empirical evaluations well illustrate its effective-
ness in terms of accuracy and retrieval speedup.

Introduction

Over the last decade we have witnessed an explosive growth
in the scale of image and video data. Billions of visual
data are publicly available on the Web, part of which are
accompanied with manual annotation. It brings both chal-
lenges and opportunities to traditional algorithms developed
on small to median scale data sets. Particularly, approximate
nearest-neighbor (ANN) search has become a key ingredi-
ent in many large-scale machine learning and computer vi-
sion tasks.

A well-defined distance is crucial in ANN. Most of the
popular distances are subject to the metric axioms, i.e., non-
negativity, symmetry and triangular inequality. Although
these metric distances empirically prove successful, how-
ever, it is argued that in many real-world applications they
are actually inconsistent with the perceptual distances of hu-
man beings (Laub et al. 2006). Such an example is presented
in Figure 1. As can be seen, both the objects “man” and
“horse” are perceptually similar to their composition, but the
two obviously differ from each other. In the computer vi-
sion research, some authors reported superior performance
of non-metric distances over traditional metric ones (Jacobs,
Weinshall, and Gdalyahu 2000).

In this paper we devise a novel locality-sensitive hash-
ing (LSH) scheme for non-metric distances, which extends
traditional metric-based LSH algorithms (Andoni and Indyk
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Figure 1: An example to illustrate non-metric distance that
deviates from triangular inequality. The

√
symbol indicates

that two samples are similar while the × symbol means that
these two samples are dissimilar.

2008). Examples of non-metric distances include Chamfer
distance between curves, the Kullback- Leibler distance, the
dynamic time warping (DTW) distance for comparing time
series, the edit distance for comparing strings and the hy-
perbolic tangent kernel k(x, x′) = tanh

(
< x, x′ > −1

)

of neural networks. Particularly, many non-metric distances
such as KL can be regarded as special cases of Bregman di-
vergence (Bregman 1967). We give its definition to illustrate
non-metrics: let φ be a real-valued strictly convex function
defined over a convex set S ⊆ R

m. The φ-induced Bregman
divergence is defined as:

Dφ(p, q) = φ(p) − φ(q) −
〈
∇φ(q), p− q

〉
. (1)

Figure 2 gives an intuitive interpretation for this definition.
Table 1 lists some widely used non-metric Bregman diver-
gences and the corresponding φ’s. Throughout the paper we
constrain the distances to be symmetrized, e.g., for Breg-

man divergence, we use the symmetric form D̃φ(q, p) =
Dφ(p, q) +Dφ(q, p).

In the rest of this paper, we first survey related works, and
then elaborate on the proposed algorithm after introducing
several related concepts. Finally, empirical evaluations on
various benchmarks are presented.

Related Works

Those previous works tightly related to this research can be
roughly casted into two categories:
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Figure 2: Illustration for Bregman divergence (1-D case).

Table 1: Some convex functions and the corresponding
Bregman divergences.

φ(x) Dφ(x, x
′)

Itakura-Saito −∑
i log xi

∑
i(
xi

x′

i

− log xi

x′

i

− 1)

Kullback-Leibler
∑
xi log xi

∑
xi log xi

x′

i

Hinge |x| max(0,−2sign(x′)x)

Tree based methods: researchers in computational ge-
ometry and database management communities developed
various tree-based structures for fast nearest neighbor re-
trieval, such as KD-tree (Bentley 1975) and VP-tree (Yiani-
los 1993). Most of these methods perform hierarchical space
decomposition, attaching similar data to adjacent leaf nodes.
These methods can be easily adapted to handle non-metric
data, including Bregman divergences. For example, the so-
called Bregman ball tree (BB-tree) was proposed in (Cayton
2008), where each tree node is pertained to a Bregman ball
B(µ, R) = {x | Dφ(x, µ) ≤ R} (µ and R are center and
radius respectively). Given a query, the search for k-NN pro-
ceeds in a branch-and-bound way. A tree node is pruned if
the distance between query datum and its projection onto the
Bregman ball exceeds current upper bound. In (Zhang et al.
2009), similar tricks are developed to adapt for R-tree and
VA-file. The major disadvantages of these tree-based meth-
ods lie in the tremendous requirement of memory to store
tree node information (exponentially grows with respect to
data number and feature dimensionality) and limited perfor-
mance enhancement when handling high-dimensional data.

LSH based methods: For many machine learning tasks, an
approximate nearest neighbor is almost as good as the exact
one in existence of noises. The concept of locality-sensitive
hashing (LSH) is supposed to well fit this appeal, especially
for high-dimensional data, c.f. (Andoni and Indyk 2008) for
a brief survey. Denote H as a family of hash functions map-
ping Rd to binary space. H is called “locality sensitive” if
under any hash function h ∈ H, the collision probability
PH

[
h(p) = h(q)

]
= Sim(p, q) (other formulations exist

but are in spirit the same), where Sim(·, ·) is a function mea-
suring pairwise similarity.

Existing LSH families rely on well-defined metrics or
similarity functions in the original feature space, e.g., Jac-

card coefficient (Broder et al. 1997), Hamming distance (In-
dyk and Motwani 1998), Arccos distance (Charikar 2002),
and ℓp distance with p ∈ [0, 2)(Datar et al. 2004). However,
none prior LSH work is devoted to the non-metric distances
such as Bregman divergence (although some of its special
cases are metrics, in general it is not).

Indefinite Kernels and Kreı̆n Space

Given a data set X = {xi}, i = 1 . . . n, we can construct
an n × n distance matrix D = (Dij). As stated above, D
is assumed to be symmetric, and zero only for the diagonal
element. D is called squared-Euclidean if it is derived from
the ℓ2 metric. Let K = − 1

2QDQ where Q = I − 1
nee

T .
Q is the projection matrix onto the orthogonal complement
of e = (1, 1, . . . , 1)T . The transform results in a central-

ized kernel matrix K = (Kij), with Kij =
〈
ψ(xi), ψ(xj)

〉
,

where ψ is unknown mapping function. We have the follow-
ing observation (Young and Householder 1938) (Laub and
Müller 2004):

Theorem 1. D is squared-Euclidean if and only ifK is pos-
itive semi-definite.

To plugK into kernel-based learning algorithms like sup-
port vector machine (SVM), one of the key requirements is
the positive definiteness. Unfortunately, kernel matrixK in-
duced from non-metric distance matrix D occasionally vi-
olates this condition and falls into the family of indefinite
kernels (Pekalska and Haasdonk 2009). Figure 3 shows the
spectrum of such a matrix, where negative eigenvalues are
observed.

Figure 3: Typical spectrum of non-metric distance matrices.

Indefinite kernels fail to be embedded into the so-called
reproducing kernel Hilbert space (RKHS) (Scholkopf and
Smola 2001), but is fortunately interpreted by the nota-
tion of reproducing kernel Kreı̆n space (RKKS) (Bognar
1974)(Pekalska and Haasdonk 2009). Here “Kreı̆n space”
refers to a vector space K equipped with an indefinite in-
ner product

〈
·, ·

〉
K : K × K → R such that K admits

an orthogonal decomposition as a direct sum K = K+ ⊕
K−, where (K+, κ+(·, ·)) and (K−, κ−(·, ·)) are separable
Hilbert spaces with their corresponding positive definite in-
ner products. The inner product of K, however, is the dif-
ference of κ+ and κ−, i.e., for any ξ+, ξ

′
+ ∈ K+ and

ξ−, ξ
′
− ∈ K−, we have

〈
ξ+ + ξ−, ξ

′
+ + ξ′−

〉
K = κ+(ξ+, ξ

′
+) − κ−(ξ−, ξ

′
−). (2)

Strong relationship between Kreı̆n space and indefinite
matrix K exists. Perform singular value decomposition
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K = V TΛV 1 and decompose the elements in the spectrum
Λ = Diag(λi) into two parts, i.e., Λ+ = max(Λ, 0) and
Λ− = −min(Λ, 0). K can be transformed to be the differ-
ence of two positive semi-definite matrices:

K = K+ −K− = V TΛ+V − V TΛ−V, (3)

which implies that K can be embedded into a RKKS. Same
to the kernel tricks in RKHS, we need not know the explicit
mapping functions for K+ and K−.

The Proposed Hashing Algorithm

Step 1: ℓ2-Keeping Projection in Hilbert Space

Based on the embedding into RKKS as in Equation 2, we
devise a two-step LSH scheme. The goal of step 1 is to pur-
sue two LSH families H+ and H− such that ∀h+ ∈ H+,
PH+

[
h+(p) = h+(q)

]
monotonically decreases with re-

spect to the ℓ2 distance between p and q in K+, i.e., ℓ2-
LSH in K+. The situation in K− is the same. Note that the
operations in K+ and K− are independent, thus in sequel
we ignore the subscripts +, − without confusion. Previous
work in (Datar et al. 2004) discovers that ℓp-norm keeping
hashing is feasible based on p-stable distribution, which is
defined as below:

Definition 1. (p-stable Distribution): a distribution Π over
R is called p-stable, if ∃p ≥ 0 such that for any n real
numbers v1 . . . vn and i.i.d. variables X1 . . . Xn from Π,∑

i viXi shares the same distribution with (
∑

i |vi|p)1/pX ,
where X is a random variable from Π.

Such stable distributions exist for any p ∈ (0, 2], e.g.,

• Cauchy distribution ΠC with density function c(x) =
1
π

1
1+x2 is 1-stable,

• Gaussian distribution ΠG with density function g(x) =
1√
2π

exp
(
− x2

2

)
is 2-stable.

Here we are interested in the case of p = 2 and thus cap-
italize on the above Gaussian distribution. Suppose the data
lie in R

d. Existing hashing family H : R
d → R, each h ∈ H

has the form h(x) = rT x for any x ∈ R
d. Here each entry

of the hashing vector r ∈ R
d is randomly sampled from ΠG.

It is provable that H is norm-keeping, i.e. for v1 and v2, the
difference |rT v1 − rT v2| = |rT (v1 − v2)| is distributed as
‖v1 − v2‖2X where X is a random variable from ΠG.

Unfortunately, since all we have is the kernel matrices
K+, K−, such a linear representation is infeasible. Here
we resort to a trick similar to the ones previously used in the
kernel PCA (Schölkopf, Smola, and Müller 1998) and ker-
nel LSH (Kulis and Grauman 2009). Our main observation
is as below:

Theorem 2. (ℓ2-Keeping Projection in RKHS) Denote
κ(·, ·) to be the inner product in Hilbert space K. Given
an m-cardinality data set X and corresponding Gram ma-
trix G, the ℓ2-metric keeping projection can be expressed as
p(x) =

∑m
i=1 ω(i)κ(x, xi), where ω(i) only relies on G.

1In this paper we use K or G for the Gram matrices and K for
Hilbert spaces.

Proof. Denote the implicit Hilbert mapping function as
ψ. The geometric mean can be computed as µψ =
1
m

∑m
i=1 ψ(xi). For a t-cardinality subset S ⊂ {1 . . . n},

let z = 1
t

∑
i∈S ψ(xi) and z̃ =

√
t(z − µψ). Accord-

ing to the central limit theorem, z̃ is distributed as Gaus-
sian Φ(0,Σ), where Σ is the covariance matrix of X . Fur-
ther applying a whitening transform, we can obtain the de-

sired hash vector in K, i.e. r = Σ1/2z̃. For any datum x,

h(x) = ψ(x)TΣ1/2z̃.
Given Gram matrix G = ΨTΨ, where each column of

Ψ corresponds to a feature vector in data set X . Similar
to (Schölkopf, Smola, and Müller 1998), it is easily veri-

fied that z̃TΣ1/2ψ(x) = z̃T (ΨQ)(QGQ)−
1
2 (ΨQ)Tψ(x),

whereQ = I− 1
mee

T . Substituting z̃ =
√
tΨ(1

t δS− 1
me)

T ,
where δS is a binary indicator vector for subset S. Finally
we get

p(x) =
[√
t(

1

t
δS − 1

m
e)GQ(QGQ)−

1
2QT

]
ΨTψ(x) (4)

Let ω ,

[√
t(1
t δS − 1

me)GQ(QGQ)−
1
2QT

]
, thus the con-

clusion holds.

Step 2: LSH in Kreı̆n Space

The relationship between the Kreı̆n Space K and the asso-
ciated Hilber spaces K+,K− can be summarized in Equa-
tion 2. For any ξ, ξ′ ∈ K, denote the pairwise ℓ2 distance in
K as ‖ξ − ξ′‖K. Based on Equation 2 and the orthogonality
of K+,K−, we have

‖ξ − ξ′‖2
K = ‖ξ+ − ξ′+‖2

K+
− ‖ξ− − ξ′−‖2

K−

=
(
‖ξ+ − ξ′+‖K+

− ‖ξ− − ξ′−‖K−

)
×

(
‖ξ+ − ξ′+‖K+

+ ‖ξ− − ξ′−‖K−

)
(5)

DenoteD−(ξ, ξ′) , (|p+(ξ)−p+(ξ′)|−|p−(ξ)−p−(ξ′)|)
andD+(ξ, ξ′) , (|p+(ξ)−p+(ξ′)|+|p−(ξ)−p−(ξ′)|). It is
easy to verify that the means ofD− andD+ are proportional
to the magnitudes of the two factors in Equation 5. We can
thus make the following approximation:

‖ξ − ξ′‖2
K ∝

(
|p+(ξ) − p+(ξ′)| − |p−(ξ) − p−(ξ′)|

)
×

(
|p+(ξ) − p+(ξ′)| + |p−(ξ) − p−(ξ′)|

)
(6)

Based on the project functions p+, p− obtained in step 1,
we introduce two auxiliary functions a1, a2, whose defini-
tions are as below:

a1(ξ) = p+(ξ) − p−(ξ) (7)

a2(ξ) = p+(ξ) + p−(ξ) (8)

Without loss of accuracy, both a1(ξ) and a2(ξ) are nor-
malized to [0, 1]. Denote as ã1(ξ) and ã2(ξ) respectively.
The adopted hash function h : R

2 → {0, 1}2 casts 2-D vec-
tor (a1(·) a2(·))T into two binary bits (h1(·) h2(·))T . The
scheme is as below (here k denotes 1 or 2):

hk(ξ) =

{
1, ãk(ξ) > θ
0, ãk(ξ) ≤ θ

(9)
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where θ is a real number randomly sampled from [0, 1]. In
this way, for any ξ, ξ′ ∈ K, the Hamming distance between
their hashing bits shall be one number of {0, 1, 2}. It is in-
teresting to investigate how the Hamming distance is related
to the distance in original feature space, i.e., ‖ξ − ξ′‖2

K. In
fact, we have the following observation:

Theorem 3. (Collision Probability) For any ξ, ξ′ ∈ K, de-
note |ã1(ξ) − ã1(ξ

′)| = p1 and |ã2(ξ) − ã2(ξ
′)| = p2.

Let Dham be the Hamming distance between h(ξ) and
h(ξ′). Under the hash scheme in Equation 9, Dham at-
tains values 0, 1, 2 with probabilities (1 − p1)(1 − p2),
p1(1 − p2) + (1 − p1)p2, and p1p2 respectively.

Proof. The two terms D+(ξ, ξ′), D−(ξ, ξ′) in Equation 6
can be determined as below:
Case 1: (p+(ξ) − p+(ξ′)) × (p−(ξ) − p−(ξ′)) ≥ 0:

D−(ξ, ξ′) = |(p+(ξ) − p−(ξ)) − (p+(ξ′) − p+(ξ′))|
= |ã1(ξ) − ã1(ξ

′)| (10)

D+(ξ, ξ′) = |ã2(ξ) − ã2(ξ
′)| (11)

Case 2: (p+(ξ) − p+(ξ′)) × (p−(ξ) − p−(ξ′)) < 0:

D−(ξ, ξ′) = |ã2(ξ) − ã2(ξ
′)| (12)

D+(ξ, ξ′) = |ã1(ξ) − ã1(ξ
′)| (13)

In either case,Dham can be determined by p1 and p2, thus
the conclusion can be easily verified.

The Retrieval Algorithm

After the construction of hash tables, another challenge is
to encode out-of-sample data and retrieve its approximate
nearest neighbors. Given a query x, we calculate its non-
metric distance to all elements in X to get DΨ,ψ(x). Let

Vdiag(K) ∈ R
n be the vector formed by the diagonal el-

ements of K . Recall that K ∈ R
n×n contains the inner

products of centralized data, it can be verified that κ(x, x) =
1
ne

(
DΨ,ψ(x)−Vdiag(K)

)
, and further obtain the inner prod-

uct between X and x:

ΨTψ(x) = −1

2
Q

(
DΨ,ψ(x) − Vdiag(K)

)
(14)

Recall that K can be decomposed as V ΛV T , let K̃ be the
new kernel matrix with x plugged in. As an approximation,

we assume K̃ can be expressed in the following form:

K̃ =

(
K

uT

)
≈

(
V

uT

)
Λ+V

T −
(
V

uT

)
Λ−V

T , (15)

where the vector u ∈ R
n is the parameter to estimate. The

optimal u∗ can be pursued by solving the following least-
squared problem:

u∗ = argmin
u

∥∥∥
(
V Λ+u− V Λ−u

)
− ΨTψ(x)

∥∥∥
2

2

= argmin
u

∥∥V Λu− ΨTψ(x)
∥∥2

2
(16)

whose closed-form solution is available, i.e., u∗ =
((V Λ)T (V Λ))−1(V Λ)TΨTψ(x). After that, the inner
products in K+, K− can be simply determined according
to κ+(xk, x) = vkΛ+u

∗ and κ−(xk, x) = vkΛ−u
∗ respec-

tively, where vk is the k-th row of V .

Table 2: Data sets description and the corresponding non-metric
distances (or similarities).

DATA SET SAMPLE NUMBER DISTANCE/SIMILARITY

INTERNETADS 2359 TVERSKY

LOCAL-PATCH 300K ITAKURA-SAITO

CIFAR-10 60K KL
USPS-DIGIT 10K CHAMFER

Experiments

Dataset Description

In this section we provide quantitative study for the pro-
posed non-metric LSH algorithm. We adopt four bench-
marks, whose information and the corresponding applied
non-metric distances are listed as below:
InternetAds represents a set of possible advertisements on
Internet pages. Most features are binary, conveying web-
page’s information including the image’s URL and alt text,
the anchor text, and words occurring near the anchor text.
On this data set, we adopt the Tversky linear contrast simi-
larity (Tversky 1977) to measure the pairwise similarity.
CIFAR-10 is a labeled subset of the well-know 80 mil-
lion “tiny image” data set constructed at MIT, consisting
of 60K 32 × 32 highly-smoothed images in 10 categories.
The dataset is constructed to learn meaningful recognition-
related image filters whose responses resemble the behavior
of human visual cortex. For each image, we extract 387-d
GIST feature, and apply the Itakura-Saito divergence.
Local-Patch is a large-scale data set used to compare image
matching algorithms in computer vision. It contains roughly
300K 32× 32 image patches from photos of Trevi Fountain
(Rome), Notre Dame (Paris) and Half Dome (Yosemite).
For each image patch, we compute a 128-d SIFT vector
as the holistic descriptor. These SIFT vectors are then ℓ1-
normalized and measured by KL-distance.
USPS-digit contains grayscale handwritten digit images
scanned from envelopes by the U.S. Postal Service. It in-
cludes roughly 10K samples for digits 0 ∼ 9. For each im-
age, we first convert it into binary image via thresholding,
and then adopt Chamfer distance (Barrow et al. 1977) as
distance measure.

Table 2 summaries the information of these benchmarks,
and in Figure 4, we present several images sampled from the
above-mentioned data sets.

Figure 4: Example images from benchmarks used in this paper.

Evaluation Methodology

In our evaluation, each data set is divided into two part: one
is used to construct the hash functions (the sample numbers
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vary among different data set, depending on the whole data
size and intrinsic complexity lying in the data), and the rest
is kept for evaluation. Once hash functions are obtained
from the former subset, all elements in the evaluation sub-
set are projected to the hash buckets accordingly. To gauge
the performance, we adopt the leave-one-out cross valida-
tion (LOOCV) method. In practice, we randomly sample
500 ∼ 1000 data as queries and the final performance is
averaged over all samples.

Specifically, the performance of a hash algorithm is esti-
mated according to the Good Neighbor Ratio (GNR) crite-
rion. Here “good neighbor” indicates the samples which are
adjacent to the query. Given the non-metric distance defini-
tion, it is possible to calculate any sample’s proximity rank
relative to a query. Typically the top 5% nearest samples to
the query are regarded as “good neighbor”. To evaluate, we
can simply count the proportion of good neighbors in the re-
trieved data set below a pre-defined Hamming distance (e.g.,
1 or 2).

Experimental Results

To illustrate the indefinite property of non-metric distances
(or equivalently similarities), we calculate the Gram matri-
ces between 500 random samples for all four benchmarks,
and then perform spectral analysis, as seen in Figure 5. The
positive singular values are plotted in red, while the negative
ones are colored in blue. It can be seen that in most cases
the spectral energy from K− cannot be ignored.

Figure 5: Spectrums corresponding to four different non-metric
distances or similarities. For better viewing, please see original
color pdf file.

Figure 7 presents the experimental results based on the
GNR criterion. On each data set, we run 10 independent
rounds to reduce randomness. The hashing methods in-
volved in the figures are as below:

• Our proposed non-metric LSH algorithm

• Kernelized LSH (Kulis and Grauman 2009) based on K+

• Kernelized LSH based on K−

• First perform hashing based onK+ orK− independently,
and then simply concatenate them (in other words, the
hamming distance between two data are the summation
of their distances calculated from K+ and K−).

Note that Kernelized LSH based on K is infeasible due
to K’s indefinite property. Our aim is to check whether the
two Hilbert spaces pertained to K+ and K− contain com-
plementary information to each other. In Figure 7, it is ob-
served that in most cases the GNR values of the proposed
LSH algorithm is consistently superior to the results based
on either K+ or K−, or their direct concatenation, which
serves as a strong sign thatK− carries useful information for
data transform. Traditional learning algorithms from indefi-
nite kernels tend to ignore negative singular values as noises.
However, here we argue that such a treatment possibly bring
information loss, and the proposed method provides a sim-
ple solution to overcome this issue.

Figure 6: Parameter stability testing results. See text for descrip-
tion. For better viewing, please see original color pdf file.

We also study the influence of parameters m and t (see
Theorem 2) used in hash function construction. We conduct
two additional experiments on the InternetAD data set. In
the first experiment, we vary m and fix t = 1

4m. Figure 6
plots the performance evolutionary curve. While in the sec-
ond experiment, we fix m = 50 an let t vary from 10 to 40,
as shown in Figure 6. In both cases, the proposed method
shows relatively stable performance.

Conclusions

Traditional LSH methods focus on well-known metrics such
as Euclidean distance and Cosine similarity. In this paper
we investigate the practicability of hashing methods given
non-metric distance measure. We show that symmetric
non-metric distances can be elegantly interpreted by Kreı̆n
space theory, and derive a two-step locality-sensitive hash-
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Figure 7: Experimental results. The left and middle columns presents GNR values of the four benchmarks, and the right column shows the
decreasing tendency of retrieved samples when the hash bits increase. For better viewing, please see original color pdf file.

ing method, which captures information contained in nega-
tive singular values, rather than simply abandoning them.
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