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Abstract

Multi-task learning aims at combining information across
tasks to boost prediction performance, especially when the
number of training samples is small and the number of predic-
tors is very large. In this paper, we first extend the Sparse Dis-
criminate Analysis (SDA) of Clemmensen et al.. We call this
Multi-task Sparse Discriminate Analysis (MtSDA). MtSDA
formulates multi-label prediction as a quadratic optimization
problem whereas SDA obtains single labels via a nearest class
mean rule. Second, we propose a class of equicorrelation
matrices to use in MtSDA which includes the identity ma-
trix. MtSDA with both matrices are compared with single-
task learning (SVM and LDA+SVM) and multi-task learning
(HSML). The comparisons are made on real data sets in terms
of AUC and F-measure. The data results show that MtSDA
outperforms other methods substantially almost all the time
and in some cases MtSDA with the equicorrelation matrix
substantially outperforms MtSDA with identity matrix .

Introduction

Multi-task learning attempts using the latent information
hidden in related tasks. When applied appropriately, multi-
task learning has advantages over traditional single task
learning and therefore has many potential applications. De-
pending on how information is shared among the tasks, dif-
ferent algorithms have been devised. For example, hier-
archical Bayesian modeling assumes that model parame-
ters are shared by a common hyper prior (Yu, Tresp, and
Schwaighofer 2005). For problems where the input lies in a
high-dimensional space with a sparsity structure and only
a few common important predictors are shared by tasks,
regularized regression methods have been proposed to re-
cover the shared sparsity structure across tasks (Lounici et
al. 2009).

Multi-class (single-task) linear discriminant analysis
(MLDA) is equivalent to the multi-response linear regres-
sion by optimal scoring (Hastie, Buja, and Tibshirani 1995).
A benefit of performing MLDA via regression is the ability
to introduce penalties to MLDA. In order to tackle problems
of overfitting in situations of large numbers of highly corre-
lated predictors, Hastie et al. (1995) introduced a quadratic
penalty with a symmetric and positive definite matrix Ω into
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the objective function. Taking into account the ability of
elastic net (Zou and Hastie 2005) which simultaneously con-
ducts automatic variable selection and group selection of
correlated variables, Clemmensen et al. (2008) formulated
(single-task) MLDA as sparse discriminant analysis (SDA)
by imposing both ℓ1 and ℓ2 norm regularization. However,
it remained open how to extend penalized discriminant anal-
ysis to multi-task learning with overlapping categories.

In this paper, we are interested in the multi-task binary
classification problem. Assume that we have a training set
of n labeled data samples with J labels: {(xi, yi) ∈ Rp ×
{0, 1}J , i = 1, 2, . . . , n}, where xi = (xi1, . . . , xip)

′ ∈ Rp

represents the predictors for the ith data sample, and yi =
(yi1, . . . , yiJ)′ ∈ {0, 1}J is the corresponding response,
yij = 1 if the ith data sample belongs to the jth category
and yij = 0 otherwise. In multi-label setting, each data
sample could belong to multiple categories and we want to
learn a rule to predict the categories that a new unlabeled da-
tum belongs to. Let X = (x1, . . . , xn)′ be the n×p training
data matrix, and Y = (y1, . . . , yn)′ the corresponding n×J
indicator response matrix. Unlike the traditional multi-task
problem where each sample only belongs to a single cate-

gory:
∑J

j=1 yij = 1, in overlapped multi-task learning we

relax the constraint to
∑J

j=1 yij ≥ 0.

We extend single-task SDA to the multi-task problem with
a method we call multi-task sparse discriminant analysis
(MtSDA). MtSDA uses a quadratic optimization approach
for prediction of the multiple labels. In SDA the identity
matrix is commonly used as the penalty matrix. Here we
introduce a larger class of equicorrelation matrices with the
identity matrix as a special case. We provide a theoretical re-
sult that indicates that an equicorrelation matrix has a group-
ing effect under some conditions.

Multi-task Sparse Discriminant Analysis

(MtSDA)

In the non-overlapping category case, where each sample
only belongs to one category, Clemmensen et al. (2008) pro-
posed SDA based on formulating classification as regression
as in Hastie et al. (1995). Define J mapping functions θj ,
j ∈ {1, 2, . . . , J}, where

θj : {1, 2, . . . , J} → R
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assigns a score to each category. Denote by θ the J × J
score matrix, with (i, j) element θij defined as

θij = θj(i).

θij is the score assigned to the ith category by mapping
θj . Denote by θj the jth column of θ. Let Ω be any p × p
positive definite matrix and IJ×J the J × J identity matrix.
Denote by βj ∈ Rp the coefficient vector from a linear re-

gression of Yθj on X and β = (β1, . . . ,βJ ) the p × J
coefficient matrix. The SDA in (Clemmensen, Hastie, and
Ersbøll 2008) is formulated as

min
β,θ

1

n

J
∑

j=1

(

||Yθj − Xβj ||22 + λ2β
′
jΩβj + λ1||βj ||1

)

,

s.t.
1

n
(Yθ)′(Yθ) = I,

(1)

where ||A||22 =
∑

i,j A2
i,j is the ℓ2 norm of matrix A.

After all of the parameters β and θ in (1) are obtained and
a new unlabeled datum with p predictors x∗ ∈ Rp is given,
SDA (Clemmensen, Hastie, and Ersbøll 2008) implemented
nearest class mean rule to predict a group for x∗ . It assigns
x∗ into category j0, such taht

j0 = arg min
j

(x∗′β̂ − M ′
jβ̂)′(ΣW + λ2Ω)(x∗′β̂ − M ′

jβ̂),

(2)
where Mj is the mean of predictors in the jth category, ΣW

is the so-called within common covariance matrix and Ω is
the penalty matrix.

Prediction of Multi-label

In multi-label learning settings, the above nearest class mean
rule cannot be applied because each data example belongs to
multiple categories rather than exactly one category. From
Equation (2), we see that each point (x, y) is represented
by x′β and nearest class mean rule is implemented on the
transformed point. By using optimal scoring and solving
optimization problem (1), x′β can be approximated by yθ
with learned θ. Therefore, we have two approximate ways
to represent x , namely x′β and yθ.

Given new x∗ with unknown class label y∗, we also can
represent x∗ with x∗′β. Another potential representation
y∗θ of x∗ can be obtained by minimizing the Euclidean dis-
tance between x∗′β and y∗θ over all possible values of y∗

and the label vector of x∗ is the minimizer of the minimiza-
tion problem.

Denote by 1 a vector with all elements equal to 1. For
non-overlapping categories, y∗ can be obtained by the fol-
lowing quadratic optimization problem:

ŷ∗ = arg min
y∈{0,1}J

‖yθ − x∗′β̂‖2

s.t. y1 = 1.
(3)

Suppose the estimated ŷ∗ has j0th element 1 and 0 else-
where, then x∗ is classified to the j0th class.

Let θj,: be the jth row of θ. For the non-overlapping cat-
egory case, when (x, y) belongs to the jth category, yθ =
θj,:. So Equation (3) is equivalent to

j0 = argmin
j

‖θ̂j,: − x∗′β̂‖2. (4)

The equivalence is in the sense that the optimizer ŷ of
(3) has its j0th element ŷj0 = 1 and 0 elsewhere. (4) has a
very good geometric interpretation: each data example in the
training data set is represented by Y θ and all of the training
data are distributed into J points, i.e., θj,: (j = 1, ..., J).
The new unlabeled x∗ is represented by x∗′β which is an
approximation of y∗θ. x∗ is assigned to the class whose
centroid in the new represented space is the closest to x∗′β
in term of Euclidean distance. From this geometric point of
view, (4) is a nearest class mean rule.

For situations where the unlabeled x∗ belongs to multiple
categories, we cannot apply nearest class mean rules such
as (2) and (4) anymore. The formula (3) can be extended to
(5) by removing the constraint that each data example only
belongs to one category. The prediction of y∗ for x∗ with
multiple labels is then:

ŷ∗ = arg min
y∈{0,1}J

‖yθ − x∗′β̂‖2. (5)

The only difference between (3) and (5) is that the latter
equation does not have the single-category constraint, while
the former one has this constraint.

Choice of Penalty Matrix Ω

The quadratic penalty is used to avoid overfitting when pre-
dictors have high correlations or the number of predictors
are much larger than the number of data samples (p ≫
n). Several different penalty matrices have been proposed
for various practical applications. For example, a second
derivative-type penalty matrix is used for hyperspectral data
analysis (Yu et al. 1999). In (Clemmensen, Hastie, and
Ersbøll 2008), the identity matrix Ω = Ip×p is used. But
there are no theoretical results about how to choose a good
penalty matrix. In this paper, we consider a more general
penalty matrix than the identity matrix. We choose Ω to be
an equicorrelation matrix ∆, defined as follows.

Definition 1 (Equicorrelation Matrix). Equicorrelation
matrix ∆ is a symmetric definite matrix,

∆ = (1 − ρ)Ip×p + ρ1p1
′
p

=









1 ρ . . . ρ
ρ 1 . . . ρ
...

...
...

...
ρ ρ . . . 1









, (1 − p)−1 < ρ < 1,

where 1p is a p × 1 vector with all of its elements 1.

This equicorrelation matrix is more general than the iden-
tity matrix, because when ρ = 0, it specializes to the identity
matrix.

We argue that SDA with equicorrelation matrix ∆ in for-
mula (1) will not only avoid overfitting, but also produce
a grouping effect. That is, given the jth task, the distance
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of the coefficients of highly positively correlated predictors
will tend to be close when they have the same sign, if λ2 is
large and ρ is not too close to 1.

Theorem 1. Assume that predictors Xl(l = 1, . . . , p), are
normalized such that 1

n

∑n
i=1 Xil = 0 and 1

n

∑n
i=1 X2

il =

1. Let θ̂, β̂ denote the solution of (1), and rl1l2 the empiri-
cal correlation of Xl1 and Xl2 . Define the distance of l1th
predictor and l2th predictor for jth task as

D
(j)
l1,l2

=

∣

∣

∣β̂l1j − β̂l2j

∣

∣

∣

‖Yθ̂j‖2

.

If sign(β̂l1j) = sign(β̂l2j) then we have

D
(j)
l1,l2

≤
√

2(1 − rl1l2)

λ2(1 − ρ)
.

A proof of Theorem 1 can be found in the appendix.

Algorithm of MtSDA
This section provides detailed descriptions on the estimation
of parameters in (1) and the prediction of class label for un-
labeled data.

Parameter Estimation There are two parameter vectors
to be estimated, i.e., β and θ in (1). We design an iterative
optimization algorithm for (1).

For fixed θ in (1) we obtain the elastic-net like problem
for the jth (j = 1, . . . , J) task as follows

β̂j = arg min
βj

1

n

(

||Yθj − Xβj ||22 + λ2β
′
j∆βj + λ1||βj ||1

)

.

(6)
In this section, we assume ρ is known. When it is not as in

the data section, we use cross validation to choose one from
data. Equation (6) takes the form of a modified naı̈ve elastic
net problem (Zou and Hastie 2005). Since the matrix ∆ is

symmetric and positive definite,
√

∆ always exists. Define

an artificial data set (ỹ, X̃) by

X̃(n+p)×p = (1+λ2)
−1/2

(

X√
λ2∆

)

, ỹ(n+p) =

(

Yθj

0

)

.

Let γ = λ1/
√

(1 + λ2) and β̃ =
√

(1 + λ2)β, then (6)
can be written as

L(γ, β̃) = ||ỹ − X̃β̃||22 + γ||β̃||1,
which is a standard lasso problem (Tibshirani 1996). Per-
forming the LARS algorithm (Tibshirani 1996) on this aug-
mented problem yields the solution of (6).

For fixed β we have

θ̂ = arg min
θ

1

n
||Yθ − Xβ||22.

s.t.
1

n
(Yθ)′(Yθ) = I.

(7)

Rewrite (7) as

θ̂ = arg min
θ

||n−1/2Yθ − n−1/2Xβ||22,

s.t.
(

n−1/2Yθ

)′ (
n−1/2Yθ

)

= I,
(8)

Algorithm 1 The Calculation of Threshold

Input training data X ∈ Rn×p as well as its correspond-
ing indicator matrix Y ∈ {0, 1}n×J and predicted class

label Ŷ ∈ Rn×J by (11).

1: Convert Ŷ ∈ Rn×J into 1 × (n × J) vector S.
2: Sort S and set the values of the first k0 ( k0 = 1, . . . , n
) smallest values of Ŷ as 0 and the rest values of Ŷ as 1,
calculate the F-measure.
3: Obtain the final k0 which achieve best F-measure.
4: Set the threshold thresh as (Sk0

+ Sk0+1)/2.
Output threshold.

which is a standard Procrustes problem (Eldén and Park

1999). Taking SVD
(

n−1/2Xβ
)

= USV′, by solution of

Procrustes we have n−1/2Yθ = UV′. Thus the solution for
(7) is

θ̂ = n1/2Y†UV′, (9)

where Y† denotes the Moore-Penrose inverse (Golub and
Van Loan 1996) of Y.

Prediction of Labels After β̂ and θ̂ are estimated, the la-

bel matrix Ŷ∗ for m test examples X∗ ∈ Rm×p is given by
(5) discussed before . That is,

Ŷ∗ = arg min
Y

‖Yθ − X∗β‖2
2, (10)

the solution of which is

Ŷ∗ = X∗βθ†. (11)

It is apparent that the values in Ŷ∗ are continuous rather

than binary. Here a threshold is learned to quantize Ŷ∗ by
algorithm 1. After the thresh is learned from training data,

we could use thresh to quantize Ŷ∗ .
We summarize our MtSDA in Algorithm 2.

Algorithm 2 MtSDA for Classification with Overlapping
Categories

Input training data matrix X ∈ Rn×p, corresponding
indicator matrix Y ∈ {0, 1}n×J and test data matrix
X∗ ∈ Rm×p.

1: Initialize θ = n1/2Y†E:,1:J , where E = In×n

2: For l = 1, . . . , J solve the elastic-net like problem (6);
3: For fixed β compute the optimal scores by (9);
4: Repeat step 2 and 3 until convergence;
5: Update β for fixed θ by solving (6);

6: Compute Ŷ∗ by (11) and Algorithm 1.

Output indicator matrix Ŷ∗ for test data.

Related Work

A straightforward approach to perform multi-label learning
is to construct a binary classifier for each label. Instances
relevant to each given label form the positive class, and the
rest form the negative class (Joachims, Nedellec, and Rou-
veirol 1998). However, the one-against-the-rest approach
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fails to keep the correlation information among different la-
bels and significantly deteriorates the classification perfor-
mance. Bucak et al. (2009) proposed multi-label ranking to
address the multi-label learning problem. Multi-label rank-
ing avoided constructing binary classifiers and intended to
order all the relevant classes at higher rank than the irrele-
vant ones. Although multi-label ranking is applicable when
the number of classes is very large, it suffers from the in-
ability of capturing the correlation of labels. Recently, a
number of approaches have been developed for multi-label
learning that exploit the correlation among labels such as
RankSV M (Elisseeff and Weston 2002) and Hypergraph
learning (Sun, Ji, and Ye 2008). When structure can be im-
posed on the label space, some sparsity-based multi-task
learning approaches were used with a mixed (2, 1)-norm
(Argyriou, Evgeniou, and Pontil 2008) to induce common
features across tasks. In this paper, the structure of the pre-
diction coefficients is also sparse, but we do not have any
other structure information on them. Actually, our data does
not seem to support further structure information.

Experiments
We use data from three open benchmark data collections to
evaluate our method. The first one is the 11 top-level multi-
topic webpage data set from Yahoo (Kazawa et al. 2005;
Ji et al. 2008). For details of the Yahoo data collection
please refer to Ji et al. (2008). The second is annotated
images from the NUS-WIDE data collection (Chua et al.
2009) with multiple tags. We randomly sampled 10, 000
images from the NUS-WIDE data collection. Five types of
low-level visual features (predictors) extracted from these
images were concatenated and normalized into one 634-
dimension predictor vector for each image. For the ground
truth of image annotation we chose two indicator matrices
for the selected data samples to form two data sets– NUS-
6 and NUS-16. For the two data sets, the top 6 and 16
tags which label the maximum numbers of positive instances
(NPI) were respectively selected. So, the correlations be-
tween tags in NUS-6 is more dense than those in NUS-16.
The third annotated image data set is from the MSRA-MM
dataset (Version 2.0) (Wang, Yang, and Hua 2009). We ran-
domly sampled 10,000 multi-tagged images and the top 25
tags which label the maximum number of positive instances
(NPI) were selected. Six types of low-level visual features
were extracted from these images and concatenated and nor-
malized into one 892-dimension vector for each image. We
call this dataset MM2.0. We summarize some statistics for
these data sets in Table 1. MaxNPI and MinNPI denote the
maximum and the minimum number of positive instances
for each topic (label) respectively in Table 1.

For the training data, we randomly sampled 1,000 sam-
ples from each of the 11 Yahoo data sets same as (Ji et al.
2008). For each of NUS-6, NUS-16 and MM2.0, we ran-
domly sampled 5,000 samples as training data. The remain-
ing data were used as the corresponding test data. This pro-
cess was repeated five times to generate five random train-
ing/test partitions. At the first random partition, we tuned
the tuning parameters ρ, λ1 and λ2. These tuning parame-
ters were then fixed to train the MtSDA model for all these

Table 1: Statistics for the data sets used. J , p, and N de-
note the number of tasks, the number of predictors, and the
total number of instances. MaxNPI and MinNPI denote the
maximum and the minimum number of positive instances
for each topic (label) respectively. The statistics of the Ya-
hoo data collection are the average of the 11 data sets.

Dataset J p N MaxNPI MinNPI

Yahoo 18 23,970 10,626 4,488 129

NUS-6 6 634 10,000 2,686 1,004

NUS-16 16 634 10,000 2,686 337

MM2.0 25 892 10,000 3,988 107

five partitions. For each partition, we obtained the predic-
tion performance. The average performance and standard
deviations are reported.

Different penalty matrices can be used in MtSDA for
multi-label learning. The MtSDA with identity matrix I and
equicorrelation matrix ∆ are named as MtSDA (Ω = I)
and MtSDA (Ω = ∆) respectively. To evaluate classi-
fication and annotation performance, we compare MtSDA
with two single-task learning algorithms and one recently
developed multi-task learning algorithm. The single-task
learning algorithms consist of SVM with a linear kernel
and LDA+SVM. The SVM is applied on each label using
a one-against-the-rest scheme. For LDA+SVM, the Linear
Discriminant Analysis (LDA) is applied first on each label
for dimension reduction before linear SVM is applied. The
compared multi-task learning algorithm is HSML (Hyper-
graph spectral multi-label) (Sun, Ji, and Ye 2008). HSML
constructs a hypergraph to capture the correlation informa-
tion in different labels, and learns a lower-dimensional em-
bedding in which the linear Support Vector Machine (SVM)
is applied for each label separately.

The area under the ROC curve (AUC) is used to measure
the performance for Webpage classification and image anno-
tation. To measure the global performance across multiple
tasks, according to (Lewis 1991) we use the microaverag-
ing method. In order to measure the performance of image
annotation, the F-measure (harmonic mean of precision and
recall) is preferred.

The AUC scores from each algorithm are reported in Ta-
ble 2. As a whole, MtSDA seems to provide much bet-

Table 3: Summary of performance for the four compared
algorithms on NUS-6 , NUS-16 and MM2.0 in terms of F-
measure. All parameters of the four algorithms are tuned
by 5-fold cross-validation, and the average F-measure over
5 random sampling of training instances are reported. The
highest performance is highlighted in each case.

Dataset NUS-6 NUS-16 MM2.0

SVM 0.4018±0.0269 0.2207±0.0229 0.2089±0.0143

LDA+SVM 0.4018±0.0269 0.2207±0.0229 0.2089±0.0143

HSML 0.3994±0.0412 0.2463±0.0116 0.3626±0.0133

MtSDA (Ω=I) 0.4232±0.0706 0.2945±0.0681 0.3509±0.0198

MtSDA (Ω=∆) 0.4554±0.0266 0.3410±0.0113 0.3629±0.0461
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Table 2: Summary of performance for the compared algorithms on 11 Yahoo data sets, NUS-6, NUS-16 and MM2.0 in terms
of AUC. The average performance and standard deviations over 5 random training/test partitions are reported. The highest
performance is highlighted in each case.

Dataset SVM LDA+SVM HSML MtSDA (Ω=I) MtSDA (Ω=∆)

Arts 0.5357±0.0167 0.5238±0.0011 0.5771±0.0022 0.7610±0.0131 0.7620±0.0119

Business 0.8862±0.0070 0.8807±0.0005 0.8895±0.0011 0.8934±0.0171 0.9034±0.0070

Computers 0.7532±0.0030 0.7540±0.0008 0.7664±0.0014 0.8082±0.0152 0.8184±0.0109

Education 0.5915±0.0485 0.5645±0.0659 0.5922±0.0058 0.7200±0.1058 0.7695±0.0135

Entertainment 0.6605±0.0194 0.6137±0.0008 0.6608±0.0041 0.8005±0.0055 0.7978±0.0046

Health 0.7120±0.0241 0.6657±0.0059 0.7220±0.0052 0.8255±0.0577 0.8494±0.0045

Recreation 0.5789±0.0134 0.5589±0.0006 0.5967±0.0023 0.7699±0.0182 0.7705±0.0216

Reference 0.6927±0.0342 0.6453±0.0068 0.7041±0.0030 0.8267±0.0131 0.8383±0.0045

Science 0.5233±0.0067 0.5150±0.0060 0.5575±0.0056 0.7944±0.0178 0.8035±0.0103

Social 0.7463±0.0253 0.6268±0.0080 0.7471±0.0039 0.7925±0.1272 0.8665±0.0282

Society 0.6108±0.0802 0.6194±0.0538 0.6278±0.0051 0.7598±0.0174 0.7604±0.0181

NUS-6 0.6247±0.0777 0.6247±0.0777 0.6548±0.0709 0.6824±0.0316 0.7453±0.0207

NUS-16 0.6002±0.1123 0.6002±0.1123 0.6414±0.0775 0.5752±0.0716 0.6533±0.0384

MM2.0 0.7502±0.0182 0.7502±0.0182 0.7726±0.0175 0.7331±0.0415 0.7591±0.0240

ter multi-label classification performance than the other al-
gorithms even in the p ≫ n situation, i.e., on average
p ≈ 23, 970 and n = 1, 000 for the 11 Yahoo data sets.
The F-measure of image annotation is reported in Table 3.
The MtSDA provides better annotation performance on the
NUS-6, NUS-16 and MM2.0 data sets. Moreover, MtSDA
(Ω = ∆) outperforms MtSDA (Ω = I) slightly.

Figure shows the effect of the parameter ρ on MtSDA
(Ω = ∆). It depicts the AUC scores of MSDA (Ω = ∆) on
four data sets with respect to different value of the parameter
ρ = 1

k on different k ∈ {1, 2, . . . , 10}. When we changed
ρ, the other tuning parameters λ1 and λ2 were fixed as the
tuned values at the first random partition. We used the results
of MtSDA (Ω = I) as baseline. For each ρ, the average of
AUC as well as its 95% confidence bounds over five random
training/test partitions are plotted. 95% confidence bound of
the average of a set V = {v1, v2, . . . , vs} is defined as V̄ ±
1.96σV√

s
, where V̄ is the average of V and σV is the standard

deviation of V . We can see that the parameter ρ generally
has impact on the AUC of MtSDA (Ω = ∆). However,
when the variability is taken into account, the impact of ρ 6=
0 is less obvious.

Conclusion

We have extended SDA to MtSDA for multi-label classifica-
tion. A class of equicorrelation matrices is used in MtSDA
which includes the identity matrix. Experiments show that
the MtSDA achieves better results than single-task learning
methods such as SVM and LDA+SVM. It also outperforms
a multi-task learning method HSML in most cases.

Appendix

Proof of Theorem 1.

Proof. By setting the differentiation of objective function

in formula (1) at β̂l1j and β̂l2j to zero (Boyd and Vanden-

berghe 2004), we have

−2XT
l1(Yθ̂j−Xβ̂j)+2λ2(β̂l1j+ρ

∑

l6=l1

β̂l)+λ1sign(β̂l1j) = 0,

(12)
and

−2XT
l2(Yθ̂j−Xβ̂j)+2λ2(β̂l2j+ρ

∑

l6=l2

β̂l)+λ1sign(β̂l2j) = 0,

(13)

where sign(β̂ij) = 1 if β̂ij > 0; sign(β̂ij) = 0 if β̂ij = 0;

sign(β̂ij) = -1 if β̂ij < 0.

If sign(β̂l1j) = sign(β̂l2j), from the difference of the
two equations (12) and (13), we have

−(2Xl1−2Xl2)
′(Yθ̂j−Xβ̂j)+2λ2(1−ρ)(β̂l1j−β̂l2j) = 0.

Then we have

β̂l1j − β̂l2j =
(Xl1 − Xl2)

′(Yθ̂j − Xβ̂j)

λ2(1 − ρ)
,

and by the definition of D
(j)
l1,l2

D
(j)
l1,l2

=
(Xl1 − Xl2)

′(Yθ̂j − Xβ̂j)

λ2(1 − ρ)‖Yθ̂j‖2

.

Because β̂j is the solution of optimization problem (6)

when θj = θ̂j is fixed, and that ‖Y θ̂j‖2
2 is the value of the

objective function of (6) at the point βj = 0, so we have that

‖Yθ̂j − Xβ̂j‖2
2 ≤ ‖Yθ̂j‖2

2.

Because of the normalization of X ,

‖Xl1 − Xl2‖2
2 = 2 − 2rl1l2 .

So, by Cauchy-Schwarz inequality, we have

D
(j)
l1,l2

≤
√

2(1 − rl1l2)

λ2(1 − ρ)
.
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(a) Education (b) Science (c) NUS-6 (d) NUS-16

Figure 1: The effect of parameter ρ on AUC for four datasets from Education and Science categories of Yahoo Webpage as well
as NUS-6 and NUS-16 when 1

ρ varies on {1, 2, . . . , 10}. For each ρ, the average of AUC as well as its 95% confidence bounds

over five random training/test partitions are plotted.
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