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Abstract

A significant challenge to make learning techniques
more suitable for general purpose use in AI is to move
beyond i) complete supervision, ii) low dimensional
data and iii) a single label per instance. Solving this
challenge would allow making predictions for high di-
mensional large dataset with multiple (but possibly in-
complete) labelings. While other work has addressed
each of these problems separately, in this paper we show
how to address them together, namely the problem of
semi-supervised dimension reduction for multi-labeled
classification, SSDR-MC. To our knowledge this is the
first paper that attempts to address all challenges to-
gether. In this work, we study a novel joint learning
framework which performs optimization for dimension
reduction and multi-label inference in semi-supervised
setting. The experimental results validate the perfor-
mance of our approach, and demonstrate the effective-
ness of connecting dimension reduction and learning.

Introduction

Motivation. Typical learning algorithm assumes each in-
stance has exactly one label, unlabeled instances can be ig-
nored for training and the data is in low-dimensional space.
However, much data available today violates these assump-
tions. This is particularly true for complex objects such as
images, video and music which can have multiple labels that
are only partially filled in. The relaxation of each of these
assumptions gives rise to the fields of multi-label learning,
semi-supervised learning and dimension reduction respec-
tively. While each of these fields has been well studied pro-
ducing much excellent work, little work has looked at mul-
tiple relaxations simultaneously. The purpose of this work
is to address all three problems (semi-supervision, multi-
label and dimension reduction) simultaneously which to our
knowledge is the first paper to attempt this. We believe (and
will experimentally show) that this is advantageous as each
problem is best not solved independently of the others.

Consider this simple experiment to illustrate the weak-
ness of existing approaches. We collect 50 frontal and well
aligned face images of five people in ten different expres-
sions, each of which associated with four attributes, i.e.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

name, sex, bearded, glasses (see Figure 1). The face images
are projected into a 2D space by different dimension reduc-
tion techniques, where the five symbols denote five people,
and the three colors indicate the attributes associated to the
face images. “Red” stands for female, unbearded, and non-
glasses; “green” denotes male, unbearded, and non-glasses;
and “blue” indicates male, bearded, and glasses. For Princi-
pal Component Analysis (PCA) (Jolliffe 2002), an unsuper-
vised dimension reduction technique, we see that it finds a
mapping of the images into a 2D space (Figure 2(a)) where
the people are not well separated. Though supervised di-
mension reduction is useful, it requires that each image has
been completely labeled which is often not the case if la-
beling is expensive or not readily available. Thus we only
label 30% images for supervision, we see that PCA+LDA
(Belhumeur et al. 1997) performs only marginally better
in Figure 2(b) because the missing labels can not be in-
ferred. Since dimension reduction and learning could bene-
fit each other, we establish the connection between them by
the SSDR-MC approach. As shown in Figure 2(c) to 2(e),
our algorithm allows the interaction between dimension re-
duction and label inference. This leads to accurate predic-
tions and improvement in the dimension reduction result, it-
eration by iteration, until convergence. During the iterative
process, images belonging to the same person or associated
with similar attributes aggregate gradually while dissimilar
images move far apart. Note that green marks are nearer to
red marks than to blue marks, since they share more labels.

Figure 1: Sample face images

Related Works. Various dimension reduction methods have
been proposed to simplify learning problems, and can be cat-
egorized as unsupervised, supervised, and semi-supervised.
In contrast to traditional classification tasks where classes
are mutually exclusive, the classes in multi-label learning
are actually overlapped and correlated. Thus, two special-
ized multi-label dimension reduction algorithms have been
proposed in (Zhang and Zhou 2008) and (Yu, Yu, and Tresp
2005), both of which try to capture the correlations between
multiple labels. However, the usefulness of these methods is
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(a) PCA (b) PCA+LDA (c) SSDR-MC Iteration 1 (d) SSDR-MC Iteration 2 (e) SSDR-MC Iteration 3

Figure 2: 2D projected faces from different methods. Symbols denote different people, and colors denote different attributes.

weakened by the lack of complete label knowledge, which
is very expensive to obtain and even impossible for those
extremely large dataset, e.g. web images annotation. In or-
der to utilize unlabeled data, there are many semi-supervised
multi-label learning algorithms (Chen et al. 2008) (Sun, Ji,
and Ye 2008) been proposed, which solve learning problem
by optimizing the objective function over graph or hyper-
graph. However, the performance of such approach is lim-
ited by the lack of connection between dimension reduction
and learning. To the best of our knowledge, (Ji and Ye 2009)
is the first attempt to establish the connection between di-
mension reduction and multi-label learning, but it suffers
from the inability of utilizing unlabeled data. Multi-label
prediction is known to be hard, thus many specialized algo-
rithms that exploit the structure of the output space (Finley
and Joachims 2008) (Rai and Daume 2009) have been pro-
posed. This tells us that incorporating the correlations be-
tween multiple labels is the key for multi-label inference.
Overview, Contribution and Claims. In this work, we
propose a general-purpose joint learning framework called
SSDR-MC. We exploit reconstruction error as the criterion
to measure how well a data point is represented by its near-
est neighbors, which will lead us to locate the intrinsic ge-
ometric relations between data points, and provide helpful
information for both dimension reduction and label infer-
ence. We establish the connection between dimension re-
duction and multi-label learning by an alternating optimiza-
tion procedure: 1) Learn a weight matrix from both fea-
ture description and the available labels; 2) Infer the miss-
ing labels based on the weight matrix; Repeat 1) and 2)
until the predictions stabilize. The alternating optimiza-
tion can be viewed as a process during which the labeled
data points gradually propagate their labels to those unla-
beled data points along the weighted edges in the neighbor-
hood. The main contribution of our work is that we tightly
connect the dimension reduction and multi-label learning,
and also successfully introduce semi-supervision. We show
the SSDR-MC approach has following benefits:1) It is a
general-purpose multi-label learning algorithm 2) It incor-
porates the correlation between multiple labels; 3) Simulta-
neously solving dimension reduction and multi-label learn-
ing is beneficial; 4) Alternating optimization avoids the de-
cay of label influence in the label propagation process; 5)
The parameters in our approach are easily tunable, and the it-
erative optimization converges in a small number of steps. In
the following sections, we validate these claims, and demon-
strate the effectiveness and efficiency of the algorithm.

Algorithm

In this section, we outline the proposed algorithm starting
from describing notations and the objective function. We
then propose an alternating optimization approach where
one unknown is held constant and the other is optimally
solved. We summarize the algorithm in Table 1 and provide
an approach for spectral embedding.

Notation

We define a finite label set C = (1, · · · , c), thus there are at
most c labels associated with each data point. Given a data
point set X = (x1, · · · ,xl,xl+1, · · · ,xn) ⊂ R

m(l ≪ n),
without loss of generality, we let the first l points be labeled
and set a prior label matrix Y ∈ B

c×l, where Yij = 1 if
xj ∈ Ci and Yij = 0 otherwise. An asymmetric k-NN graph
G(V, E) can be constructed over the n data points, in which
an edge eij is established only if node vj is among the k
nearest neighbors of node vi. We also define the weight ma-
trix W ∈ R

n×n (set Wii = 0 to avoid self-reinforcement),
and the binary classification function F = [f1, · · · fn] ∈
B

c×n of which fi ∈ B
c is the predicted label vector cor-

responding to instance xi. We let Ni denote the index set
composed of k nearest neighbors of xi (xNi,j

is the j-th
nearest neighbor of xi). The instance xi with missing label
will have its labels inferred from the set Ni.

Objective Function

Our aim is to solve dimension reduction and multi-label in-
ference simultaneously. For this task, a reasonable choice of
cost function is reconstruction error (Roweis and Saul 2000),
which attempts to discover nonlinear structure in high di-
mensional data by exploiting the local symmetries of linear
reconstructions. We assume that both data and label vectors
can be represented by a weighted linear combination of the
corresponding k nearest neighbor vectors, then the problem
is to optimize the weights W and classification function F
simultaneously. We formulate the objective function as:

Q(W, F ) = (1−α)
n

i=1

‖xi −
j∈Ni

Wijxj‖
2 +α

n

i=1

‖fi −
j∈Ni

Wijfj‖
2

(1)

where the first and second terms are the data vector recon-
struction error and label vector reconstruction error respec-
tively, both of which measures the error of the position of
a point written as a linear combination of its nearest neigh-
bors. The tuning parameter 0 ≤ α ≤ 1 determines how
much the weights should be biased by the labels. It is worth
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to point out that the weight matrix W is invariant to rota-
tions and rescalings, which follows immediately from the
form of eq. (1). In order to guarantee the invariance to trans-
lations, we enforce the sum-to-one constraint upon each row
of W . We constrain Fl to take values of the true labels Y on
the labeled data (will relax later) so as to capture the label in-
formation. The optimal W and F matrix can be obtained by
minimizing the reconstruction error function, and thus the
problem can be expressed as a constrained optimization:

min Q(W, F )

s.t. Fl = Y
∑

j∈Ni

Wij = 1, i = 1, · · · , n. (2)

Alternating Optimization

In the proposed joint learning framework, the cost function
involves two variables to be optimized. While simultane-
ously recovering both unknowns is intractable due to the
mixed integer programming problem over the binary F and
the continuous W , instead we solve eq. (2) for each un-
known optimally (assuming the other unknown is a con-
stant) in closed form and create an iterative approach based
on these two steps. The minimization of Q(W, F ) iterates
between weight matrix learning step and transductive label
inference step until F stabilized, which will asymptotically
lead to a reliable local optimal weighting and labeling.

Learning Weight Matrix In the weights learning step, we
assume F is fixed, then solve for the weight matrix W as a
constrained least squares problem in closed form. In con-
trast with many graph-based learning methods in which the
weight matrix W is unsupervised and calculated by a cer-
tain distance metrics, in our approach W is semi-supervised
and recovered by optimization. Since the optimal weights
to reconstruct a particular point is recovered only from its
own neighbor set, each row of the W can be obtained inde-
pendently. We let vector wi be composed of the non-zero
entries in the i-th row of W in the order of the index set Ni,
the problem turns to minimizing the following function:

min
wi

(1 − α)‖xi −XN
i wi‖

2 + α‖fi − FN
i wi‖

2

s.t. w
T
i 1 = 1 (3)

where XN
i = [xNi,1

, · · · ,xNi,k
] is the neighbor set of data

vector xi, and FN
i = [fNi,1

, · · · fNi,k
] is the neighbor set of

label vector fi. Note that we use the same index set Ni for
both of them, which is determined only by the data vectors.
1 denotes a k by 1 unit vector. Using a Lagrange multiplier
to enforce the constraint wT

i 1 = 1, the optimal solution can
be written in terms of the inverse local covariance matrix

wi =
[(1− α)Pi + αQi]

−1
1

1T [(1− α)Pi + αQi]
−1

1
(4)

where Pi = (xi1
T − XN

i )T (xi1
T − XN

i ) ∈ R
k×k de-

notes the local covariance matrix of data vector xi, and
Qi = (fi1

T −FN
i )T (fi1

T −FN
i ) ∈ R

k×k indicates the lo-
cal covariance matrix of label vector fi. As we obtained wi

of all n instances, the optimal weight matrix W can be con-
structed by simply placing each weight to its corresponding
coordinates in the matrix. Notice that eq. (4) can not guaran-
tee the weights are non-negative. A straightforward solution
is to discard the negative weights, since by observing the ex-
periments, we found that the negative weights are sparse and
relatively small (generally≪ 0.1), and thus won’t affect the
learning accuracy much. However, in the proposed frame-
work we just leave the negative weights there. The explana-
tion is, if a positive weight means two points are similar, then
on the contrary, a negative weight indicates they are dissim-
ilar. Similarly, if a positive weight means the corresponding
neighbor constructively contributes to the reconstruction, a
negative weight indicates destructive contribution.

Label Inference In the multi-label inference step, the goal
is to fill in those missing labels based on the weight matrix
W . To recover the optimal F in closed form, we relax the bi-
nary classification function F to be real-valued. Since only
the second term (label reconstruction error) in eq. (1) are
accessed in minimization, we rewrite it in matrix format:

min
F

Q(F ) =
1

2
tr

(

F (I −W )T (I −W )FT
)

s.t. Fl = Y (5)

The cost function above is convex allowing us to recover the
optimal F by setting the partial derivative ∂Q

∂F
= 0

{

(I −W )FT = 0
Fl = Y

(6)

The optimization problem above yields a large, sparse sys-
tem of linear equations, which could be solved by a number
of standard methods. The most straightforward one is the
close-form solution via matrix inversion. To compute the
solution explicitly in terms of matrix operations, we split
the weight matrix W into 4 blocks after the l-th row and

column W =

[

Wll Wlu

Wul Wuu

]

. Letting F =

[

Fl

Fu

]

where

Fu denotes the missing label vectors, the optimal Fu can be
recovered in closed form via matrix inversion:

FT
u = (I −Wuu)−1WulF

T
l = (I −Wuu)−1WulY

T (7)

To complete the prediction at each iteration, we set up a
threshold H where 0 ≤ H ≤ 1. Then, ceil all the entries
in Fu ≥ H to 1, and floor all the entries in Fu < H to
0. As we manipulate each multi-label vector as an entirety
throughout the computation, the correlation and overlap be-
tween labels have been incorporated in our approach. The
transductive label inference step can be viewed as a process
during which the labeled data points propagate labels along
the weighted edges to their neighbors. In other words, each
predicted label vector of a data point is actually the weighted
linear combination of its k nearest neighbors’ label vectors.
In the same sense, the alternating optimization can be inter-
preted as a progressive label propagation process, i.e. we
only make confident predictions at each iteration, and the
size of predicted labels gradually grows. In this way, the
label influence decay effect could be dramatically reduced.
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Table 1: SSDR-MC Algorithm

Input:
data points X = (x1, x2, · · · , xn), prior label Y ∈ B

c×l
,

classification function F, number of neighbors k,

bias 0 ≤ α ≤ 1, threshold 0 ≤ H ≤ 1.

Training Stage:
initialize Fl = Y , F ′

u = 0;

do{

set Fu = F ′
u;

for each i ∈ (1, n), recover wi using eq.(4);

construct weight matrix from wi;

recover missing labels F ′
u using eq.(7);

finish prediction F ′
u using threshold H;

}while(Fu! = F ′
u)

Output:
weight matrix W, predicted labels Fu.

Spectral Embedding

Since the weight matrix W completely captured the intrin-
sic geometric relations between data points, we can use it
to perform dimension reduction. Note that the spectral em-
bedding step is unnecessary for the learning purpose. Now,
we show how to compute the dimension reduced data vector
explicitly. Let d denote the desired dimension of the fea-
ture vector, the dimension reduced instance x

′
i minimizes

the embedding cost function:

Q(X ′) =

n
∑

i=1

‖x′
i −

n
∑

j=1

Wijx
′
j‖

2 (8)

where X ′ ∈ R
d×n is the dimension reduced data matrix.

The embedding cost in eq. (8) defines a quadratic form in
the vector x

′
i. Subject to constraints that make the problem

well-posed, the minimization can be solved as a sparse eigen
decomposition problem

min Q(X ′) = tr
(

X ′MX ′T
)

(9)

where M = (I−W )T (I−W ). The optimal embedding can
be recovered by computing the bottom d+1 eigenvectors of
the matrix M , then discard the smallest eigenvector which
is an unit vector with all equal components (represents a
free translation mode of eigenvalue zeros). The remaining
d eigenvectors are the optimal embedding coordinates.

Implementation Issues and Discussion

Solution for Weak Prior Knowledge

In order to extend the generality of our approach, we provide
another efficient solution to utilize the incomplete or noisy
labeled data. Since we enforced the initial labeled data to
be unchangeable previously, the solution provided in eq. (7)
suffers from two problems: i) in multi-label learning task,
the knowledge of labels for a certain labeled instance may
not be complete ii) there may be considerable noise scattered
in labeled data. A reasonable solution to address the two

problems is to relax the constraint by adding a new term
to the inference cost function, namely local fitting penalty
(Zhou et al. 2004) allowing slight changes of the fixed prior
labels. We extend the prior label matrix Y to be a c × n
matrix (fill the missing labels with 0 for the first iteration),
and the new inference cost function can be written as

min
F

Q(F ) =
1

2
tr F (I − W )

T
(I − W )F

T
+ β(F − Y )(F − Y )

T

(10)

where coefficient β > 0 balances the reconstruction error
and local fitting penalty. If we set β =∞, the cost function
will reduce to eq. (5). The minimization problem is straight-
forward since the cost function is convex and unconstrained

∂Q

∂F ∗

= 0 =⇒ (I − W )F ∗T + β(F ∗

− Y )T = 0 (11)

Thus, the optimal F ∗ can be recovered as:

F
∗T =

I − W

β
+ I

−1

Y
T

(12)

After each iteration, we update confident predictions in F to
Y . When the prior label knowledge is weak, the optimal F
can be recovered by this relaxed solution instead of eq. (7).

Efficiency Improvement

Observing eq. (4), we see that the denominator of the frac-
tion is a constant which rescales the sum of wi to 1. There-
fore, in practice, a more efficient way to recover the optimal
wi is simply to solve the linear system of equations, and then
rescale the sum of weights to 1. Let Li denote the mixed lo-
cal covariance matrix (1 − α)Pi + αQi. The optimal wi

can be recovered efficiently by solving the linear system of
equations Liwi = 1, and then rescale the sum of wi to 1.
When the local covariance matrices is singular (k > m or
k > c), the linear system of equations can be conditioned by
adding a small multiple of the identity matrix

Li ← Li +
ξtr(Li)

k
I (13)

where ξ is a very small value (ξ ≪ 0.1).

Convergence

It is possible that the predictions of the current iteration os-
cillate and backtrack from the predicted labelings in pre-
vious iterations. Therefore, the solutions of classification
function F provided in eq. (7) and eq. (12) cannot guaran-
tee convergence. A straightforward method to remove back-
tracking, inconsistency and unstable oscillation is to set up
a small tolerance T . If the number of different entries be-
tween the current prediction Fc the previous prediction Fp

is smaller than the tolerance T , the iteration will be termi-
nated and the latest prediction matrix F will be output as
the final classification result. In practice, we found that by
setting appropriate parameters the alternating optimization
can achieve the convergence in a small number of iterations.
Additionally, the co-occurrence of quick convergence and
high classification accuracy in the experiments implies that
we can achieve both of them (will show in the experiment
section) by selecting appropriate parameters (α and H).
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Experiment Evaluation

Dataset and Experiment Settings

To show the generality of our approach, we carry out experi-
ments on three different types of real world data (Chang and
Lin 2001). Yeast: gene dataset consists of 2,417 samples,
each of which belongs to one or more of 14 distinct func-
tional categories. The feature vector is in 103-dimensional
space, and associated with 4.24 labels averagely. Scene:
image dataset consists of 2,407 natural scene images, each
of which is represented as a 294-dimensional feature vector
and belongs to one or more (1.07 in average) of 6 categories.
SIAM TMC 2007: text dataset for SIAM Text Mining Com-
petition 2007 consisting of 28,596 text samples, each of
which belongs to one or more (2.21 in average) of 22 cat-
egories. In experiment, we take a randomly selected subset
containing 3,000 samples from the original dataset, then use
binary term frequencies and normalize each instance to unit
length (30,438-dimensional vector). We compare our frame-
work with three baseline models: 1) RankSVM (Elisseeff
and Weston 2001), a state-of-the-art supervised multi-label
classification algorithm; 2) PCA+RankSVM, perform PCA
dimension reduction as a separate step before RankSVM; 3)
ML-GFHF, the multi-label version (two-dimensional opti-
mization) of harmonic function (Chen et al. 2008). For
RankSVM, we choose RBF kernel function (σ = the aver-
age of Euclidean distances between all pairs of data points),
and fix the penalty coefficient C = 1000. For ML-GFHF,
we construct a k-NN (k = 15) graph and also use the RBF
kernel (σ =

∑n

i=1 ‖ xi − xik ‖ /n, where xik is the k-
th nearest neighbor of xi) to recover the edge weights. For
our approach, we choose eq. (7) as the inference function,
set the number of neighbors k = 15, the tuning parameter
α = 0.1, the threshold H = 0.3, and the tolerance T = 5.
To evaluate performance, we exploit the standard metrics:
micro-average F1 score (F1 Micro) (Yang 1999).

Parameter Selection

To explore the parametric stability of the SSDR-MC ap-
proach, we evaluate its performance on the two represen-
tative datasets (Yeast, most samples have several labels;
Scene, most samples have only one label) under a series of
varying parameter settings. We randomly select 35% data
points from the dataset as the labeled data, and then increase
α and H gradually from 0.01 to 0.99 with a step size of
0.01. By observing the result shown in Figure 3, we see
that there is a large continuous region of parameter settings
(marked by the red boundary at the bottom of each figure),
in which the performance of our approach is excellent and
stable. Since the reliable region of parameter settings takes
a relatively large area (55.4% and 35.6% of total area for
Yeast and Scene respectively), we can conclude that the two
parameters in the framework are easily tunable. Based on
the experimental result, SSDR-MC can achieve an accurate
multi-label prediction by choosing 0.05 6 α 6 0.25 and
0.2 6 H 6 0.6. Another interesting phenomenon we ob-
served is the co-occurrence of reliable region and quick con-
vergence. In the reliable parameter region, the alternating
optimization we proposed always converges in a small num-

ber of steps (4 to 8), which means the convergent problem
could also be addressed by choosing appropriate parameters.

(a) Yeast

(b) Scene

Figure 3: F1 Micro of SSDR-MC with respect to α and H .

Performance Comparison

To comprehensively compare the proposed algorithm with
the three base models, we apply all four algorithms to the
three datasets with a series of varying sized labeled data. In
each trial, we randomly select a portion of instances from
the dataset as the labeled set, and the rest of the data points
will be used as the testing set. The portion of labeled data
gradually increases from 2.5% to 50% with a step size of
2.5%, and the result shown in Figure 4 is based on the aver-
age over 50 trials. For the three real-world datasets we ex-
plored in the experiments, the proposed approach performs
statistically significantly better than the competitors at
the 98.77% level when all experimental results (regardless
of step size) are pooled together. We have shown that by
choosing appropriate parameters, the proposed framework
is expected to achieve a quick convergence. We evaluate the
efficiency of the proposed alternating optimization by com-
paring its time consumptions with the three competitors’.
Although the optimization is iterative, statistically, SSDR-
MC is comparably efficient as the others, and even more ef-
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(a) Yeast (b) Scene (c) SIAM TMC 2007

Figure 4: Performance comparison by F1 Micro score

ficient if the data is in high-dimensional space. The reason is
that the weights in the proposed approach are recovered sim-
ply by solving a linear system of equations (eq. (13)) while
the others need to explicitly calculate all pairwise distances.
We observe from Figure 4(c) that PCA+RankSVM does not
outperform RankSVM on the high-dimensional data SIAM
TMC 2007, which indicates the lack of connection between
dimension reduction and learning algorithm will limit the
usefulness of dimension reduction techniques dramatically.
By the superior performance of the proposed framework
shown in experiment, we demonstrated the the effectiveness
of connecting them together, especially when the data is in
high-dimensional space. Moreover, we see from the result
that the performance of the proposed algorithm improves
monotonically as the size of the labeled data increases.

Conclusion

As applications in data mining and machine learning move
towards demanding domains, they must move beyond the
restrictions of complete supervision, single-label and low-
dimensional data. The SSDR-MC algorithm is to our knowl-
edge the only work that attempts to address all three limita-
tions together. It can be viewed as simultaneously solving
for two sets of unknowns: filling in missing labels and iden-
tifying projection vectors that makes points with similar la-
bels close together and points with different labels far apart.
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