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Abstract

Methods for discovering causal knowledge from observa-
tional data have been a persistent topic of AI research for sev-
eral decades. Essentially all of this work focuses on knowl-
edge representations for propositional domains. In this paper,
we present several key algorithmic and theoretical innova-
tions that extend causal discovery to relational domains. We
provide strong evidence that effective learning of causal mod-
els is enhanced by relational representations. We present an
algorithm, relational PC, that learns causal dependencies in a
state-of-the-art relational representation, and we identify the
key representational and algorithmic innovations that make
the algorithm possible. Finally, we prove the algorithm’s the-
oretical correctness and demonstrate its effectiveness on syn-
thetic and real data sets.

1 Introduction
The causal mechanisms that underlie many real world do-
mains can be challenging to represent and learn. While
statistical associations between variables can be observed
and measured, knowledge of the underlying causal model
must be inferred from a pattern of such associations and
prior knowledge. Any given statistical association may re-
sult from one of several different causal structures, and dis-
tinguishing among these structures can be difficult.

Despite these difficulties, causal models are vital for ef-
fective reasoning in many domains. Causal knowledge is
necessary for reasoning about the consequences of actions,
whereas knowledge of statistical associations alone can only
inform expectations as a passive observer. Causal knowl-
edge can also provide more robust models in the face of
changing underlying distributions, whereas the parameters
of many associational models must be recalibrated if the un-
derlying distributions change.

As a concrete example, consider the domain of scholarly
publishing. A causal model of such a domain (Figure 1)
might include entities (authors, papers, and venues), rela-
tionships (published-in, authored-by), and attributes (topic,
research interest). Such a model might indicate that the re-
search interest of an author affects the topics of the papers
that he or she writes. Similarly, the focus of a publish-
ing venue might affect the topic of papers published in that
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venue. More elaborate causal models could indicate actions
that facilitate particular outcomes. For example, a model
might allow reasoning about which actions would affect a
paper’s citation rate.

Methods for discovering causal dependencies from obser-
vational data have been the focus of decades of work in AI,
statistics, philosophy, and social science. This work has un-
covered a number of basic methods, including the PC algo-
rithm for learning the structure of causal dependencies, rules
for edge orientation that correctly infer the direction of in-
ferred causal dependencies, and fundamental principles and
assumptions necessary for valid causal reasoning (Spirtes,
Glymour, and Scheines 2000; Pearl and Verma 1991; Hol-
land and Rubin 1988).

However, the vast majority of this work has focused on
a single knowledge representation: directed graphical mod-
els of propositional data. Such models effectively represent
individual directed causal dependencies, and efficient algo-
rithms exist for reasoning about the conditional indepen-
dence assumptions that a pattern of such causal dependen-
cies encodes. However, such propositional representations
rarely capture causal dependencies between entity types and
almost never represent dependencies that involve the exis-
tence or cardinality of entities or relationships.

There is a growing community of researchers aiming
to learn models of relational domains; however, all algo-
rithms to date are not intended for learning causal mod-
els. These algorithms are typically based on the search-and-
score paradigm, with the objective of learning a model of
high likelihood and not of explicitly learning the generative
structure of the data (Getoor et al. 2007; Richardson and
Domingos 2006; Taskar, Abbeel, and Koller 2002).

In this paper, we present several key algorithmic and theo-
retical innovations that enable causal discovery in relational
domains. We provide strong evidence that effective learning
of causal models in relational domains requires a relational
representation. We show that to identify correct causal struc-
tures, we must explicitly model the uncertainty over rela-
tionships (referred to as existence uncertainty), and we also
characterize how patterns of associations can constrain the
space of causal models for relational data. Additionally, we
present the first algorithm, relational PC, that learns causal
dependencies from relational data. We prove its correctness
and demonstrate its effectiveness on synthetic and real data.
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Figure 1: Citation database in the DAPER language.

2 Relational Representations
The directed acyclic probabilistic entity-relationship
(DAPER) model is a highly expressive extension of the
standard entity-relationship (ER) model that incorporates
probabilistic dependencies (Heckerman, Meek, and Koller
2007). The DAPER model has been proven to unify existing
representations, including probabilistic relational models
and plate models, and is strictly more expressive.

The ER model describes the contents of a relational
database D = {E ,R} as a set of entity classes E =
{E1, . . . , Em} and relationship classesR = {R1, . . . , Rn}.
Along with the structure, there exist attribute classes A(B)
for each B ∈ E ∪ R. The DAPER model consists of an ER
model over E ,R, andA, and a set of arc classes defined over
A × A. An arc class corresponds to a probabilistic depen-
dence from some A.X to some B.Y , where A,B ∈ E ∪ R,
X ∈ A(A), and Y ∈ A(B), constrained by an arbitrary
first-order expression. The set of arc classes is paired with
a corresponding set of local probability distributions. See
Figure 1 for an example represented in DAPER. For simpli-
fication, first-order expressions are omitted and existence is
represented with a dot.

The DAPER model fully encodes a set of conditional in-
dependencies defined over its attribute classes. The ground
graph of a DAPER model (sometimes referred to as the
model “rolled out” over the data), consists of a node for ev-
ery attribute a.X ∈ A(σER) and an arc from b.Y to a.X
if there is an arc class from B.Y to A.X and the arc’s con-
straint is satisfied in the skeleton, σER. The DAPER model
can be viewed as a powerful tool for modeling a joint prob-
ability distribution over relational data. As we show in this
paper, the DAPER model is also a sufficient language for
representing causal dependencies in relational data.

A common alternative to relational representations is
propositionalization, which transforms relational data into
propositional data. It was introduced as a way to continue to
rely on existing algorithms instead of developing new ones
to handle the increased complexity (Kramer, Lavrač, and
Flach 2001). We show that propositionalization is largely in-
adequate for effective causal learning in relational domains.

2.1 Common causes
Statistical association between two variables X and Y is a
necessary but not a sufficient condition for causal depen-
dence. These two variables can be marginally dependent,
yet conditionally independent given a common cause. Fail-

ing to explicitly condition on a common cause will result in
an incorrect inference of causal dependence between X and
Y . As a result, identifying causal structure is challenging
when common causes are unrepresented or latent.

DAPER models and other relational formalisms typically
represent a superset of those dependencies that can be repre-
sented in any given propositional formalism. Thus, common
causes are more likely to be explicitly representable. For ex-
ample, an author’s research interests could be the common
cause of the topic chosen for papers and research grants.
However, most propositional models would not represent
authors or their research interests, so a causal dependence
could appear to hold between paper topics and grant topics.

2.2 Common effects
If two variables X and Y are causally independent but have
a common effect Z, then X and Y will be conditionally
dependent given Z, even though they are marginally inde-
pendent. This phenomenon is known as Berkson’s paradox
(Berkson 1946). If Z is a latent variable, and we implicitly
condition on its value, then we could falsely conclude that
X and Y are causally dependent.

Methods for propositionalizing relational data frequently
create implicit conditioning that can produce cases of Berk-
son’s paradox. When testing the association between two
variables on different entities linked by a relationship, we
implicitly condition on the existence of that relationship. If
the relationship is a common effect of the variables (e.g., a
citation relationship caused jointly by the topic of the cited
paper and the topic of the citing paper), then a propositional-
ized data set will induce a dependence between the variables.

The importance of this effect for causal discovery has not
been identified in prior research. Modeling the probability
of link existence—often called existence uncertainty—has
been recognized as an inherently interesting topic in its own
right (Getoor, Friedman, Koller, and Pfeffer 2007), but its
effects on learning other causal dependencies have not been
clearly identified. In addition, the distinction between dif-
ferent causal interpretations of link existence is well known
in social science research—it is the question of homophily
vs. social influence (Friedkin 1998)—but that work has not
explored the implications of this distinction for knowledge
representation and causal discovery.

2.3 Representation needs
Because of the difficulty of identifying correct causal struc-
ture in the presence of latent common causes and common
effects, representations should not unnecessarily preclude
such variables. As described in Sections 2.1 and 2.2, propo-
sitionalized relational data may be unable to represent key
variables that are common causes or common effects. Con-
sequently, propositionalization has a high likelihood of vio-
lating causal sufficiency (see Appendix A).

Proposition 1 Propositionalization can violate causal suf-
ficiency.

Consider a simple relational domainRwith entitiesA and
B, a many-to-many relationship AB, and attributes A.X1,
A.X2, B.Y1, and B.Y2. The causal structure contains the
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following dependencies: The degree (cardinality) of related
B entities to A is a common cause of A.X1 and A.X2 and
the degree of related A entities to B is a common cause
of B.Y1 and B.Y2. Propositionalization of this relational
schema will create a single table from the perspective of ei-
ther A or B in which each column represents a variable that
is formed from the attributes and relational structure of R.
For example, from A’s perspective there might be variables
forA.X1 andA.X2, variables for a function of the attributes
Y1 and Y2 on related B entities, and one for the structural
variable that counts the number of related B entities. In this
case, however, the structural variable that is a common cause
of B.Y1 and B.Y2 is unrepresentable, which violates causal
sufficiency. Propositionalization from the perspective of B
will also violate causal sufficiency.

Even if a propositionalized data set is assumed to be
causally sufficient, it still may violate an important condi-
tion for effective causal learning. In order to connect causal
structure to probability distributions, a causal representation
must satisfy the causal Markov condition (see Appendix A).
Propositionalization techniques are responsible for manipu-
lating and generating variables while a propositional algo-
rithm learns a model over the joint set of variables; in other
words, feature construction is decoupled from model con-
struction.

Proposition 2 Propositionalization can violate the causal
Markov condition.

As currently practiced, the process of propositionalization
leads to individual attribute values participating in multiple
aggregate variables. This duplication leads to statistical de-
pendence among the values of those aggregates and between
any aggregate and the original value. Consider a relational
domain R with entities A and B, attributes A.X and B.Y ,
and two different paths through the schema connecting A
andB. The sole causal dependence is thatA.X causesB.Y .
Let Y1 and Y2 be two aggregates ofB.Y created by proposi-
tionalizing from the perspective of A through the two paths
that connect A to B. The aggregate variables Y1 and Y2 are
non-descendants but could be correlated since they may in-
clude common attribute values. Y1 and Y2 have the same
parent set (A.X) but will be correlated even after condi-
tioning on those parents due to correlated residual variation.
This violates the causal Markov condition.

In addition to supporting the causal Markov condition,
causal representations must support the transitive, irreflex-
ive, and antisymmetric nature of causation (Spirtes, Gly-
mour, and Scheines 2000). We show that the DAPER model
is capable of representing a causal model over relational
data.

Theorem 1 The DAPER model is a sufficient representation
of causality in relational domains.

Proof Sketch For propositional domains, the directed
acyclic graph (DAG) has been shown to be sufficient to rep-
resent causal knowledge (Pearl 2000). For relational do-
mains, the set of possible ground graphs of DAPER models
is a strict subset of all possible DAGs since the relational
representation explicitly encodes parameter tying (Hecker-

man, Meek, and Koller 2007). Therefore, DAPER is suffi-
cient for representing causality in relational domains. �

Many other relational representations, such as relational
Markov networks (Taskar, Abbeel, and Koller 2002) and
Markov logic (Richardson and Domingos 2006), are insuf-
ficient to represent causality because they fail to satisfy the
requirement that causality be directed and antisymmetric.

3 Relational PC
Given the representation requirements detailed in Section 2,
we developed the first algorithm, relational PC (RPC),1 that
explicitly learns causal models of relational data. RPC is
an extension of the PC algorithm for propositional data
(Spirtes, Glymour, and Scheines 2000). The algorithm re-
tains the same essential strategies employed in PC for iden-
tifying causal structure, but there are several key innovations
that enable learning in relational domains.

3.1 PC algorithm
The PC algorithm takes as input a propositional data set
and outputs a partially directed acyclic graph correspond-
ing to the equivalence class of statistically indistinguishable
causal models consistent with the data. It is guaranteed to be
correct under the three standard assumptions of causal dis-
covery (the causal Markov condition, causal sufficiency, and
faithfulness, see Appendix A).

The first phase, skeleton identification, discovers the undi-
rected graphical structure that encodes the set of conditional
independencies present in the data. An edge between two
variables indicates statistical dependence, whereas the ab-
sence of an edge corresponds to marginal or conditional in-
dependence. The algorithm iteratively tests all pairs of vari-
ables for marginal independence followed by conditional in-
dependence over all possible sets of conditioning variables.

The second phase, edge orientation, orients the edges by
applying specific constraints that limit the set of causal mod-
els to those consistent with the learned correlations from
phase I. PC uses three sets of rules for orienting edges (col-
lider detection, known non-colliders, and cycle avoidance,
see Appendix B), which exploit the rules of d-separation and
acyclicity of causal models.

The PC algorithm is a constraint-based method. An alter-
native class of approaches, the search-and-score paradigm,
searches the space of models for the structure with the high-
est likelihood over the data. Although these methods accu-
rately model the probability distribution of the data, they are
computationally intensive. Since the search space of rela-
tional models is much larger than that for propositional data,
the need to constrain the search space is even more pressing.

Recent experimental results in the propositional setting
provide strong evidence that hybrid algorithms (combin-
ing constraint-based and search-and-score approaches) are

1We implemented RPC in Prolog to identify unit classes, Java
for skeleton identification and edge orientation, R for statistical
tests, and Postgres for data storage and access. For source code,
visit www.kdl.cs.umass.edu/causality.
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more effective for learning the structure of directed graphi-
cal models than are methods that use only one of the compo-
nent techniques (Tsamardinos, Brown, and Aliferis 2006).
However, all algorithms that learn statistical models of re-
lational data are based exclusively on search-and-score ap-
proaches. RPC is the first constraint-based algorithm for
learning causal models of relational data, and it can be used
alone or as a component of a hybrid algorithm.

3.2 Key differences of relational data
RPC takes as input an ER model represented in first-order
logic and the corresponding instantiated relational database.
RPC then outputs a partially directed DAPER model repre-
senting the equivalence class of statistically indistinguish-
able causal models. The RPC algorithm retains the essential
strategy used in PC; however, extending the algorithm to the
relational domain requires several key innovations.

Variable space To learn a causal model of relational data,
we must transform the contents of the database into the
necessary components for a relational causal learning algo-
rithm. First, we define the notion of a unit class. Given
a relational database, we can construct a set of unit classes
U ⊂ (E ∪R)+ such that each unit class U consists of one or
more entity or relationship classes. The combination of en-
tity and relationship classes must be relationally connected,
as governed by the ER schema, and they combine to form
a subgraph over the data. The unit class is defined from the
perspective of a base entity or relationship class, b(U).

A unit attribute class is any attribute class defined over an
entity or relationship class within the unit. More formally,
A(U) =

⋃
B∈U A(B). The set of potential causal depen-

dencies we consider is a subset of all possible arc classes
over A(U)×A(U). A potential causal dependency is com-
posed of a treatment variable T ∈ A(U) and an outcome
variable O ∈ A(b(U)). The constraint on any arc class in
this setting is a first-order expression corresponding to the
relational path from b(U) to C, where C ∈ U is the class for
which the treatment variable is defined. This is substantially
different than causal learning in a propositional setting, in
which the set of potential causal dependencies is equivalent
to the set of all possible variable pairs.

For example, let unit class U = {AUTHOR (A), AU-
THOREDBY (AB), PAPER (P), PUBLISHEDIN (PI), VENUE
(V)} and b(U) = A. Each unit in this unit class consists of
an author, the papers that he or she writes, and the venues
in which those papers are published. The base item is
the author. The set of unit attribute classes, A(U), could
include A.RESEARCH-INTEREST, P.TOPIC, and V.FOCUS,
among others. From this set, the only potential causal depen-
dencies considered are 〈P.TOPIC, A.RESEARCH-INTEREST〉
and 〈V.FOCUS, A.RESEARCH-INTEREST〉. A causal depen-
dency with outcome P.TOPIC exists in a separate unit class,
in which PAPER is the base.

In relational domains, the set of possible causal dependen-
cies has several restrictions. Since the data are atemporal,
no attribute can be time-varying, so treatment and outcome
variables must be different. Because the existence of the re-
lationship is a necessary precondition for the attribute itself

to exist, relationship attributes cannot be treatment variables
when the outcome is the relationship existence.

The first phase of RPC requires identifying the set of pos-
sible common causes for the treatment and outcome vari-
ables of a potential dependency 〈A.X,B.Y 〉. RPC enu-
merates all possible pairs of unit attribute classes subject
to the aforementioned restrictions. The set of potential
common causes for 〈A.X,B.Y 〉 is the union of the set
of treatment variables when A.X and B.Y are considered
outcomes {C.Z| 〈C.Z,A.X〉} ∪ {D.Z| 〈D.Z,B.Y 〉}. The
union, rather than the intersection, is required because the
set of direct common causes of the treatment and outcome
may be empty, whereas a direct cause of one could be an
indirect cause of the other. As the algorithm identifies
marginal and conditional independencies, the set of possi-
ble common causes reduces because only those for which a
possible dependence exists are included.

Aggregates and asymmetry Relational learning algo-
rithms construct variables based on attributes of related en-
tities and relationships. Unless the entity classes are con-
nected via a one-to-one relationship, a unit attribute class
consists of set-valued attributes (e.g., the topics of all pa-
pers an author writes). As a result, RPC uses aggregation
functions, a common technique used in relational learning
algorithms, to create a single value for each unit attribute,
i.e., f(A.X). Currently these functions are limited to mode
and count.

The implications of aggregate causality are ambiguous. It
is not entirely clear how a treatment affects an aggregated
outcome because the dependence would not specify any-
thing about the individual values that comprise the aggrega-
tion. Because of this, RPC limits the definition of potential
causal dependencies to those pairs of unit attribute classes
for which the outcome is a non-aggregated single value (i.e.,
an attribute of the base class of the unit). Any found depen-
dencies provide knowledge of the cause of individual values,
which themselves can be used as inputs to an aggregate.

Since relational variables may require aggregates, there is
an inherent asymmetry for pairs of unit attributes depending
on the perspective of the base class of the unit. In propo-
sitional data, testing the correlation between two variables
X and Y is identical to the test of correlation between Y
and X . But because of asymmetry, RPC tests the associa-
tion from both perspectives, 〈f(X), Y 〉 and 〈f(Y ), X〉. If a
statistical dependence is detected in either, we conclude that
the association exists between X and Y (irrespective of the
direction of causality). This provides stronger guarantees
under practical sample size limitations for which the power
of a test from one perspective may be limited.

Structural variables RPC learns dependencies for the re-
lational structure of the data. To correctly learn the causal
structure of relational data, existence uncertainty must be
explicitly represented, see Section 2.2. Thus, RPC includes
existence as an attribute for each relationship class.

Existence uncertainty behaves differently when viewed as
a treatment or as an outcome variable. As a treatment, RPC
uses the count aggregate to represent cardinality, avoiding
the degree disparity problem of relational data identified by
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Figure 2: The four sets of possible causal models that can
explain a given pattern of association for two relational vari-
ables and the existence of a relationship between them.

Jensen, Neville, and Hay (2003). As an outcome, RPC ex-
plicitly tests for association between a treatment variable and
the existence of the relationship. We rely on statistical de-
tails described by Getoor et. al. (2007) to test the association
of relationship existence with the treatment variable.

Edge orientation RPC uses the original rules from PC, as
well as a new set of constraints, referred to as restricted ex-
istence models (REM), introduced by the representation of
existence uncertainty. There are four unique patterns of as-
sociation involving two unit attribute classes X and Y and
the relationship existence attribute class E for a relationship
class on the path between them. We consider only the cases
in which a dependence is observed between X and Y . Fig-
ure 2 illustrates the four cases and the set of plausible causal
models that can explain the observed correlations.

We derive the restricted sets of causal models using
acyclicity (atemporal causal models contain no cycles), ex-
istence precondition (X can only have an effect on Y if a
relational connection between them exists, so E must be a
causal precondition for Y ), and common effects (existence
uncertainty can induce a spurious correlation betweenX and
Y , see Section 2.2). For example, in case (a) the invalid
causal model is eliminated because if X caused Y , then the
existence precondition would requireE (the existence of the
relationship between X and Y ) to also be a cause of Y .

A direct consequence of implicitly conditioning on exis-
tence uncertainty is that relationship existence always ap-
pears in the separating set of two relational variables. Con-
sequently, collider detection never applies when the collid-
ing variable is relationship existence. If two variables have a
common effect of relationship existence, then a pattern of as-
sociation could result in the removal of an edge (see the first
potential causal model in case (d) in Figure 2). As a result,
collider detection can only orient triples (X → Y ← Z)
for which neither 〈X,Y 〉 nor 〈Y,Z〉 exhibit associations to
a common existence variable.

3.3 Complexity and correctness
In the best case, no associations are present in the data, re-
quiring a single iteration of RPC in Ω(n) time, where n is the

Figure 3: The entity-relationship schema used in experi-
ments includes relationships with different cardinalities.

number of potential dependencies. In the theoretical worst
case, every pair of variables has every other variable as a
potential common cause, and the hypothesis tests never con-
clude independence. This would require testing every pos-
sible marginal and conditional test in O(nd+1) time, where
d is the size of the maximum conditioning set used in the
first phase of RPC. When d � n, RPC is a polynomial-
time algorithm; however, the number of conditional inde-
pendence tests grows exponentially in d (Spirtes, Glymour,
and Scheines 2000). In practice, the algorithm has reason-
able average-case complexity for moderately sized data sets.
This is in contrast to the computationally intensive search-
and-score approach, for which identifying the correct model
structure is NP-hard (Chickering 1996). For both propo-
sitional and relational data, the size of the space of possi-
ble models is exponential with the number of potential de-
pendencies. RPC and other constraint-based algorithms are
efficient because they exploit constraints (e.g., conditional
independencies) to reduce the space of causal models.

Theorem 2 RPC correctly identifies the equivalence class
of statistically indistinguishable causal models.

Proof Sketch The proof is implied by the correctness of
both phases of the algorithm and the assumptions listed in
Section 3.1.

Phase I correctness: (Extension of proof for PC (Spirtes,
Glymour, and Scheines 2000)). Assuming faithfulness, the
data support exactly the conditional independencies present
in the true model. Given correct hypothesis tests and that
RPC runs to a sufficient depth to exhaust the set of poten-
tial common causes for each dependency, an edge will be
present in the learned DAPER model if and only if it exists
in the true model. Unlike in the propositional setting, the
correct skeleton includes an edge between two variables if
they have a common effect over existence uncertainty since
the presence or absence of the edge cannot be differentiated
statistically. In this case, REM applied in phase II will re-
move the edge if that constraint can be uniquely identified.

Phase II correctness: The collider detection and known
non-collider rules correctly orient edges given the rules of d-
separation. By Theorem 1, the DAPER representation sup-
ports d-separation, so these two rules are correct for RPC.
The cycle avoidance rule correctly orients edges since the
true causal model is known to be acyclic. Finally, the re-
stricted existence models were previously shown to limit the
set of causal models to smaller sets of statistically indistin-
guishable models. �
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Figure 4: Precision and recall after skeleton identification and edge orientation for synthetic data over increasing sample sizes
for 5, 10, and 15 true dependencies. The thin dashed line indicates the ceiling for compelled recall given a correct skeleton.

4 Analysis
To demonstrate the effectiveness of RPC, we evaluated
learned models against models with known ground truth. We
implemented a simple causal model generator that randomly
chooses a valid causal model with a pre-specified number of
dependencies. The generator creates conditional probabil-
ity tables from either a Dirichlet distribution for attributes
or a bounded Pareto distribution for relationship existence.
Attributes with no direct causes have a uniform prior, while
relationships with no causes are generated from a Poisson
distribution. We populated the database given the generative
model and its underlying distributions. For all synthetic ex-
periments, we used the schema depicted in Figure 3 and lim-
ited the set of potential causal dependencies to unit classes
with at most five entity and relationship classes.

Figure 4 presents precision and recall after each phase of
RPC. Precision is the proportion of edges included in the
learned model that are correct, while recall is the proportion
of edges in the true model that are included in the learned
model. The results are averages over 20 random causal mod-
els with 5, 10, and 15 dependencies and generated data over
5 parameterizations of each model. For each class of causal
models, we examine the effect of increasing sample size
(from 100 to 3200) by examining precision and recall.

These graphs indicate that RPC makes few type I errors
(high skeleton precision), and type II errors are reduced by
increasing the power of the statistical tests through larger
sample sizes (skeleton recall increases). Skeleton errors
made by the algorithm necessarily decrease the precision
and recall of the compelled model. Edge orientation rules
are guaranteed to be correct only for a correct underlying
skeleton. Even with perfect information, only the partially
directed model consistent with the conditional independen-
cies can be identified. The thin dashed line in Figure 4 indi-
cates the corresponding ceiling for compelled recall.

False negatives occurring in phase I decrease the com-
pelled precision since the edge orientation rules can incor-
rectly orient edges with incomplete information. The com-
pelled recall similarly increases with sample size as more
undirected edges are discovered in phase I. As the complex-
ity of the true causal model increases, additional erroneous

decisions can occur during skeleton identification, which ac-
counts for the drop in performance as we increase the num-
ber of true causal dependencies.

For the same randomly generated and parameterized
causal models with 10 dependencies as in the previous ex-
periment, we record why each dependency is or is not de-
tected by RPC for each sample size (see Table 1). Each
dependency can either be correctly detected, incorrectly in-
significant at the marginal or conditional level, or insub-
stantive (below a strength of effect threshold of 0.1) at the
marginal or conditional level. In summation, these five cate-
gories completely explain the outcome of all 10 true depen-
dencies. The two contributing factors that lead to error are
low sample size and parameterizations with small effects.

Given the practical limitations of identifying dependen-
cies (i.e., finite data samples rather than in the sample limit),
we complement the previous set of experiments with a data-
independent assessment of the edge orientation rules. We
generate a true causal model with varying numbers of depen-
dencies and treat it as the input to phase II of RPC by remov-
ing directional information. This provides a correct skeleton
for edge orientation to identify the partially directed model
consistent with the conditional independencies encoded by
the skeleton. For each setting of dependencies, we generate
1,000 causal models and average the precision and recall of
the resulting compelled model (see Figure 5).

As expected, precision is 1.0 regardless of the causal
model since Theorem 2 guarantees the correctness of the
edge orientation rules. The recall, however, increases with
the complexity of the causal model. This is a consequence
of a chain reaction occurring within phase II; as each edge is
oriented, it may inform other edge orientation rules. For ex-
ample, if collider detection can orient an edge, the REM rule
may be able to further limit the set of possible causal mod-
els. To determine the applicability and utility of the REM
orientation rule, we compare the performance of RPC edge
orientation with and without REM. Although the average re-
call using REM is not significantly greater than without, the
rule is still used occasionally. The applicability of REM is
infrequent, leading to a minor overall improvement on orien-
tation; however, the constraints on the space of causal mod-
els exploited by REM can be useful in limited situations.
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Table 1: Breakdown of skeleton dependencies for causal models with 10 true dependencies over increasing sample size.
Sample Size Detected Missed Marginal Missed Cond. Insubstantive Marginal Insubstantive Cond.

100 1.47± 0.106 7.45± 0.140 0.83± 0.088 0.21± 0.046 0.04± 0.020
200 2.33± 0.116 6.10± 0.142 1.11± 0.098 0.45± 0.066 0.01± 0.010
400 3.44± 0.134 4.50± 0.138 1.42± 0.105 0.62± 0.078 0.02± 0.020
800 4.70± 0.153 3.51± 0.128 1.09± 0.094 0.64± 0.094 0.06± 0.024
1600 5.74± 0.155 2.49± 0.134 1.05± 0.091 0.68± 0.083 0.04± 0.020
3200 6.46± 0.152 1.88± 0.115 0.69± 0.071 0.85± 0.090 0.12± 0.033

Figure 5: Precision and recall of edge orientation assuming
a correct skeleton.

We recorded the frequency with which each edge orienta-
tion rule applies. Collider detection is the dominant rule, di-
recting 62–86% of the edges, while the known non-collider
rule exhibits relative frequencies of 14–31% of the edges.
Cycle avoidance and REM are used the most infrequently,
orienting at most 5% and 2% of the edges, respectively.

We applied RPC to the MovieLens+ database, a combina-
tion of the UMN MovieLens database (www.grouplens.org)
and box office, director, and actor information collected
from DBpedia (dbpedia.org) and IMDb (www.imdb.com).
Of the 1,285 movies with this additional information, we
sampled 10% of the user ratings yielding over 62,000 rat-
ings. RPC generated the model shown in Figure 6. The
number of actors in a film influences the movie’s budget,
as does the age of the director. RPC likely oriented three
dependencies incorrectly from the number of ratings or the
rating attribute. More plausibly, popular movies and genres
have more ratings, and a movie’s genre influences those rat-
ings. Temporal information, unavailable to RPC, could be
used to improve orientation, a direction we hope to pursue
in the future.

We also applied RPC to Rexa, a citation data set of scien-
tific papers in computer science (www.rexa.info). We con-
structed a subset of over 5,000 authors and 29,000 papers,
eliminating entries with missing values. The model shown
in Figure 1 is actually the learned model for Rexa, except the
edges could not be oriented. RPC discovered associations
between paper topics and author research interest, as well as
paper topics and venue focus. However, collider detection
typically triggers the other edge orientation rules, but did
not apply for this data set. We expect RPC to orient edges as
more variables are included in the domain.

Figure 6: Learned causal model of the MovieLens+ data set.

5 Conclusions and Future Work
This work presented several key algorithmic and theoreti-
cal innovations that enable causal discovery in relational do-
mains. We provided strong evidence that effective learn-
ing of causal models in relational domains requires a rela-
tional representation to explicitly represent potential com-
mon causes and effects. We introduced the relational PC al-
gorithm, based on the constraint-based paradigm, that learns
causal dependencies of relational domains under certain lim-
ited assumptions.

The causal mechanisms underlying real world domains
are complex and challenging to learn and represent, as the
learned models of the citation database and the movie in-
dustry suggest. Hence, there are several avenues to follow
for future work. To fully learn the complexity of the real
world, we must represent and reason about time. Causal dis-
covery algorithms, such as RPC, can benefit from additional
constraints, such as incorporating prior expert knowledge of
given domains. Combining the constraint-based approach
into a hybrid algorithm could increase the effectiveness of
learning the causal structure and better approximate the un-
derlying probability distributions of the data.
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A Causal Assumptions
Three assumptions are commonly made by causal learn-
ing algorithms to allow for causal interpretations of learned
models (Spirtes, Glymour, and Scheines 2000). We define
them here with respect to relational domains as described in
Sections 2 and 3.2. For the following definitions, let V be the
variable space derived from database D, let P be the prob-
ability distribution over V , and let G be the causal structure
that encodes the conditional indepenencies present in V .

Definition A.1 (Causal sufficiency) V is causally sufficient
if and only if for all potential causal dependencies
〈A.X,B.Y 〉 ∈ V × V , all common causes are measured
and included in V .

As discussed in Section 2.1, if there exist latent common
causes of two variables, then we may incorrectly conclude
causal dependence between them instead of choosing the
correct, albeit unrepresented, causal model.

Definition A.2 (Causal Markov condition) Given that V
is causally sufficient, P is Markov to G if and only if each
variable A.X ∈ V is conditionally independent of its non-
effects given its direct causes.

The causal Markov condition provides a connection be-
tween the causal structure and the probability distribution
of a set of variables. Without satisfying this condition,
two causally unrelated variables may remain correlated after
conditioning on all common causes.

Definition A.3 (Faithfulness) P is faithful to G if and only
if there exist no conditional independencies in P that are not
entailed by the causal Markov condition on G.

The faithfulness assumption ensures that the probability
distribution will not indicate that two variables are condi-
tionally independent when they are actually dependent ac-
cording to the causal structure. Together with the causal
Markov condition, this guarantees that exactly the condi-
tional independencies entailed by G exist in P . All three
assumptions are enough to prove that a constraint-based al-
gorithm, such as PC or RPC, will discover the correct skele-
ton over V .

B Edge Orientation Rules
The PC algorithm employs the following set of three edge
orientation rules that correctly infer causal dependence from
patterns of association (Spirtes, Glymour, and Scheines
2000). These rules are also used in RPC, along with the con-
straints implied by modeling existence uncertainty, and are
subject to the caveats unique to relational data as described
at the end of Section 3.2.

Definition B.1 (Collider Detection) IfX−Y −Z and Y /∈
sepset(X,Z), then orient as X → Y ← Z.

This rule exploits a concept used in d-separation—two
variables become dependent conditional on a common ef-
fect. If a third variable Y does not render X and Z con-
ditionally independent yet exhibits association with both of
them, it must be a collider.

Definition B.2 (Known Non-Colliders) If X → Y − Z
and 〈X,Y, Z〉 is not a collider, then orient asX → Y → Z.

Collider detection enables additional orientations. If
〈X,Y, Z〉 is not oriented as a collider, but X is a known
cause of Y , then only a single causal model can explain the
association between Y and Z (namely, Y causes Z).
Definition B.3 (Cycle Avoidance) If X − Y and X →
V1 · · · → Vk → Y , then orient as X → Y .

The third rule stems from assuming the data are atemporal
and that causality is transitive.
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Kramer, S.; Lavrač, N.; and Flach, P. 2001. Proposition-
alization approaches to relational data mining. In Džeroski,
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