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Abstract

Over the past few years, a large family of manifold
learning algorithms have been proposed, and applied
to various applications. While designing new manifold
learning algorithms has attracted much research atten-
tion, fewer research efforts have been focused on out-of-
sample extrapolation of learned manifold. In this paper,
we propose a novel algorithm of manifold learning. The
proposed algorithm, namely Local and Global Regres-
sive Mapping (LGRM), employs local regression mod-
els to grasp the manifold structure. We additionally im-
pose a global regression term as regularization to learn
a model for out-of-sample data extrapolation. Based
on the algorithm, we propose a new manifold learn-
ing framework. Our framework can be applied to any
manifold learning algorithms to simultaneously learn
the low dimensional embedding of the training data and
a model which provides explicit mapping of the out-
of-sample data to the learned manifold. Experiments
demonstrate that the proposed framework uncover the
manifold structure precisely and can be freely applied
to unseen data.

Introduction & Related Works

Unsupervised dimension reduction plays an important role
in many applications. Among them, manifold learning, a
family of non-linear dimension reduction algorithms, has at-
tracted much attention. During recent decade, researchers
have developed various manifold learning algorithms, such
as ISOMap (Tenenbaum, Silva, & Langford 2000), Local
Linear Embedding (LLE) (Roweis & Saul 2000), Lapla-
cian Eigenmap (LE) (Belkin & Niyogi 2003), Local Tan-
gent Space Alignment (LTSA) (Zhang & Zha 2004), Local
Spline Embedding (LSE) (Xiang et al. 2009), etc .

Manifold learning has been applied to different applica-
tions, particularly in the field of computer vision, where it
has been experimentally demonstrated that linear dimension
reduction methods are not capable to cope with the data sam-
pled from non-linear manifold (Chin & Suter 2008). Sup-
pose there are n training data X = {x1, ..., xn} densely
sampled from smooth manifold, where xi ∈ R

d for 1 ≤
i ≤ n. Denote Y = {y1, ..., yn}, where yi ∈ R

m(m < d)

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is the low dimensional embedding of xi. We define Y =
[y1, ..., yn]T as the low dimensional embedding matrix. Al-
though the motivation of manifold learning algorithm differs
from one to another, the objective function of ISOMap, LLE
and LE can be uniformly formulated as follows (Yan et al.
2005).

min
Y T BY =I

tr(Y T LY ), (1)

where tr(·) is the trace operator, B is a constraint matrix,
and L is the Laplacian matrix computed according to dif-
ferent criterions. It is also easy to see that (1) generalizes
the objective function of other manifold learning algorithms,
such as LTSA. Clearly, the Laplacian matrix plays a key role
in manifold learning.

Different from linear dimension reduction approaches,
most of the manifold learning algorithms do not provide ex-
plicit mapping of the unseen data. As a compromise, Lo-
cality Preserving Projection (LPP) (He & Niyogi 2003) and
Spectral Regression (SR) (Cai, He, & Han 2007) were pro-
posed, which introduce linear projection matrix to LE. How-
ever, because a linear constraint is imposed, both algorithms
fail in preserving the intrinsical non-linear structure of the
data manifold.

Manifold learning algorithms can be described as Kernel
Principal Component Analysis (KPCA) (Schölkopf, Smola,
& Müller 1998) on specially constructed Gram matrices
(Ham et al. 2004). According to the specific algorithmic
procedures of manifold learning algorithms, Bengio et al.
have defined a data dependent kernel matrix K for ISOMap,
LLE and LE, respectively (Bengio et al. 2003). Given the
data dependent kernel matrix K , out-of-sample data can be
extrapolated by employing Nyström formula. The frame-
work proposed in (Bengio et al. 2003) generalizes Land-
mark ISOMap (Silva & Tenenbaum 2003). Similar algo-
rithm was also proposed in (Chin & Suter 2008) for Maxi-
mum Variance Unfolding (MVU). Note that Semi-Definite
Programming is conducted in MVU. It is very time consum-
ing and thus less practical. One limitation of this family of
algorithms is that the design of data dependent kernel matri-
ces for various manifold learning algorithms is a nontrivial
task. For example, compared with LE, it is not that straight-
forward to define the data dependent kernel matrix for LLE
(Bengio et al. 2003) and it still remains unclear how to de-
fine the kernel matrices for other manifold learning algo-

649

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



rithms, i.e., LTSA.

In (Saul & Roweis 2003), a nonparametric approach
was proposed for out-of-sample extrapolation of LLE. Let
xo ∈ R

d be the novel data to be extrapolated and Xo =
{xo1, ..., xok} ⊂ X be a set of data which are k nearest
neighbor set of xo in R

d. The low dimensional embedding

yo of xo is given by
∑k

i=1 wiyoi, in which yoi is the low
dimensional embedding of xoi and wi (1 ≤ i ≤ k) can be
obtained by minimizing the following objective function.

min
∑k

i=1
‖xo − wixoi‖

2
, s.t.

∑k

i
wi = 1. (2)

This algorithm is a general one and can be applied to any
other manifold learning algorithms for out-of-sample data
extrapolation. A limitation is that, as indicated in (Saul
& Roweis 2003), the mapping may discontinuously change
as the novel points move between different neighborhoods.
Furthermore, if the novel data are off manifold, i.e., the lo-
cally linear condition is not satisfied, it is uncertain how the
algorithm will behave (Chin & Suter 2008).

In this paper, we propose a new manifold learning al-
gorithm, namely Local and Global Regressive Mapping
(LGRM), which learns a novel Laplacian matrix for man-
ifold learning. In the proposed algorithm, we additionally
add a kernelized global regression regularization to learn a
model, which is used to extrapolate the unseen data. Based
on the algorithm, we propose a new framework, which can
be applied to many other manifold learning algorithms for
out-of-sample data extrapolation. An interesting observa-
tion is that several well-known unsupervised dimension re-
duction algorithms are special cases of our framework. We
observe in the experiment that the proposed algorithm pre-
serves the manifold structure precisely during the projection
and it works well when applied to unseen data.

The rest of this paper is organized as follows. Firstly, we
detail the proposed algorithm. Then, based on the new al-
gorithm, we propose a new framework for manifold learn-
ing and discuss the connections between our algorithm and
other existing algorithms. After that, we show the experi-
mental results and give conclusions.

The Proposed Algorithm

It is crucial to exploit the local structure in manifold learn-
ing. Inspired by (Roweis & Saul 2000; Zhang & Zha 2004;
Yang et al. 2009), we construct a local clique Ni =
{xi, xi1, ..., xik−1} for each data xi, which comprises k
data, including xi and its k−1 nearest neighbors. We assume
that the low dimensional embedding yp of xp ∈ Ni can be
well predicted by a local prediction function fi, and use it to
predict the low dimensional embedding of all the data in Ni.
To obtain a good local prediction function, we minimize the
following regularized local empirical loss function(Yang et
al. 2009):

∑

xp∈Ni

ℓ(fi(xp), yp) + γΩ(fi), (3)

where ℓ is a predefined loss function, Ω(fi) is a regulariza-
tion function measuring the smoothness of fi and γ > 0 is a

regularization parameter. Note that our objective is intrinsi-
cally different from (Wu & Schölkopf 2006) which only uti-
lizes a local learning model to predict the cluster identifica-
tion of a single datum in Ni. Traditional manifold learning
aims to map each datum xi ∈ X to yi ∈ Y . Alternatively,
our framework additionally learns a mapping function which
can be used to cope with unseen data. We therefore propose
to minimize the following objective function:

min
Y T Y =I,fi,f

∑n

i=1

(

∑

xj∈Ni

ℓ(fi(xj), yj) + γΩ(fi)

)

+
∑n

i=1
ℓ (f(xi), yi) + γΩ(f). (4)

Different from all of the previous manifold learning algo-
rithms, such as ISOMap, LLE, LE and LTSA, the objective
function shown in (4) not only learns the low dimensional
embedding Y of the input data, but also learns a mapping
function f : R

d → R
m for out-of-sample data extrapola-

tion. Observing the connection between KPCA and mani-
fold learning, we first map the data into a Hilbert space H
and assume that there is a linear transformation between H
and R

m, i.e. yi = φ(W )T φ(xi)+b, where φ(W ) is the pro-
jection matrix from H to R

m and b ∈ R
m is bias term. The

data number in Ni is usually small. Following (Zhang &
Zha 2004), we perform local PCA to reduce the dimension
of each datum in Ni as preprocessing to avoid overfitting.
Because the local structure of manifold is linear (Roweis &
Saul 2000), fi is defined as a linear regression model, i.e.
fi(x) = WT

i x + bi, where Wi ∈ R
p×m is the local projec-

tion matrix and bi ∈ R
m is bias and p ∈ [m, d) is the dimen-

sion of each datum after local PCA being performed. The
least squares loss function gains comparable performance to
other complicated loss functions, provided that appropriate
regularization is added (Fung & Mangasarian 2005). We
therefore propose the following objective function to simul-
taneously learn the low dimensional embedding Y and the
mapping function φ(W )φ(·) + b:

min
φ(W ),Wi,b,bi,Y

n
∑

i=1

∑

xj∈Ni

(

∥

∥WT
i xj + bi − yj

∥

∥

2
+ γ ‖Wi‖

2
F

)

+µ
[

∑n

i=1

∥

∥φ(W )T φ(xi) + b − yi

∥

∥

2
+ γ ‖φ(W )‖2

F

]

s.t.Y T Y = I,

where ‖·‖2
F denotes the Frobenius norm of a matrix. Let

Xi = [xi, xi1, ..., xik−1] ∈ R
p×k (p < d) be the data

matrix of Ni after local PCA being performed and Yi =
[yi, yi1, ..., yik−1]

T ∈ R
k×m be the low dimensional em-

bedding of Ni. The objective function can be rewritten as:

min
φ(W ),Wi,b,bi,Y

n
∑

i=1

(

∥

∥XT
i Wi + 1kbT

i − Yi

∥

∥

2

F
+ γ ‖Wi‖

2
F

)

+µ(
∥

∥φ(X)T φ(W ) + 1nbT − Y
∥

∥

2

F
+ γ ‖φ(W )‖2

F )

s.t.Y T Y = I, (5)

where 1k ∈ R
k and 1n ∈ R

n are two vectors of all ones. By

employing the property that ‖M‖2
F = tr(MT M) for any
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matrix M , the first term of (5) can be written as:

n
∑

i=1

{

tr
[

(XT
i Wi + 1kbT

i − Yi)
T (XT

i Wi + 1kbT
i − Yi)

]

+γtr(WT
i Wi)

}

. (6)

By setting its derivative w.r.t. Wi and bi to zero, we have:

WT
i Xi1k + kbi − Y T

i 1k = 0

⇒ bi =
1

k
(Y T

i 1k − WT
i Xi1k); (7)

XiX
T
i Wi + Xi1kbT

i − XiYi + γWi = 0

⇒ Wi = (XiHkXT
i + γI)−1XiHkYi,

(8)

where Hk = I − 1
k
1k1T

k is the local centering matrix. Sub-
stituting Wi and bi by (7) and (8), (6) can be written as:

n
∑

i=1

tr(Y T
i AiYi), (9)

where

Ai = Hk − HkXT
i (XiHkXT

i + γI)−1XiHk. (10)

Note that Xi and Yi are selected from X and Y . Define a
selection matrix Sp ∈ {0, 1}n×k in which (Sp)ij = 1 if xi

is the j-th element in Ni and (Sp)ij = 0 otherwise. It is

easy to see that Yi = ST
i Y and thus (9) can be rewritten as:

n
∑

i=1

tr(Y T SiAiS
T
i Y ) = tr

[

Y T

(

n
∑

i=1

SiAiS
T
i

)

Y

]

. (11)

Then (6) is reformulated as (Yang et al. 2009)

Y T LlY, (12)

where Ll =
n
∑

i=1

SiAiS
T
i . Similarly, the second term of (5)

can be written as:

tr
{

[

φ(X)T φ(W ) + 1nbT − Y
]T [

φ(X)T φ(W )

+1nbT − Y ]
}

+ γtr
[

φ(W )T φ(W )
]

. (13)

Denote H = I − 1
n
1n1T

n as the global centering matrix. The
same as before, we rewrite (13) as:

Y T LgY, (14)

where

Lg = H − Hφ(X)T
[

φ(X)Hφ(X)T + γI
]−1

φ(X)H.

Note that

H − Hφ(X)T φ(X)H
[

Hφ(X)T φ(X)H + γI
]−1

= γH(Hφ(X)T φ(X)H + γI)−1H. (15)

Although φ(X) can not be explicitly computed,
φ(X)T φ(X) can be calculated by a kernel function.

We suppose the dot production of xi and xj in H is given
by the following kernel function:

Kxi,xj
= (φ(xi) · φ(xj)) = φ(xi)

T φ(xj), (16)

where K : R
d ×R

d → R can be any positive kernel satisfy-
ing Mercer’s condition. For example, we can use the Radial
Basis Function(RBF) kernel, which is defined as:

Kxi,xj
= exp

(

−‖xi − xj‖
2
/σ2
)

, (17)

where σ is a parameter. Then Lg can be computed by:

Lg = γH(HKH + γI)−1H, (18)

where K is the kernel matrix with its element Kij = Kxi,xj
.

Thus, we have obtained the objective function of the pro-
posed algorithm as follows:

min
Y T Y =I

Y T (Ll + µLg)Y. (19)

The low dimensional embedding Y can be obtained by
eigen-decomposition of (Ll + µLg). Note that by setting
the derivative of (13) w.r.t. Wi and bi to zero, we have:

φ(W ) = (φ(X)Hφ(X)T + γI)−1φ(X)HY

= φ(X)H(Hφ(X)T XH + γI)−1Y (20)

b =
1

n
Y T 1n −

1

n
WT φ(X)1n =

1

n
Y T 1n −

1

n
Y T (Hφ(X)T φ(X)H + γI)−1Hφ(X)T φ(X)1n. (21)

Therefore, given a novel data x which is out of training set,
its low dimensional embedding y = φ(W )T φ(x) + b can be
computed by:

y = Y T (Hφ(X)T φ(X)H + γI)−1Hφ(X)T φ(x) +
1

n
Y T 1n

−
1

n
Y T (Hφ(X)T φ(X)H + γI)−1Hφ(X)T φ(X)1n.

Denote Kx ∈ R
n as a vector with its i-th element Kxi =

(φ(x) · φ(xi)) = φ(x)T φ(xi), where xi ∈ X is the i-th
instance in training set. y can be computed by:

y = Y T (HKH + γI)−1HKx +
1

n
Y T 1n

−
1

n
Y T (HKH + γI)−1HK1n. (22)

Discussions

A new framework for manifold learning.

The objective function of different manifold learning algo-
rithms, such as ISOMap, LLE, LE and LTSA, can be uni-
fied by (1)(Yan et al. 2005). We can prove that Ll and
Llg = Ll + µLg are Laplacian matrices. Therefore our
algorithm coincides with previous manifold learning algo-
rithms. Yet, our algorithm additionally learns a model for
out-of-sample data extrapolation. The proposed algorithm is
a general one and can be applied to other manifold learning
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Figure 1: 2D embedding of Swiss roll. The upper line shows 1000 training data sampled from Swiss roll in R
3 and their low

dimensional embedding in R
2. The lower line shows 1000 unseen data and their low dimensional embedding in R

2.

algorithms for out-of-sample data extrapolation. In general,
the new framework can be formulated as:

min
Y T Y =I

tr
[

Y T (Lloc + µLg)Y
]

, (23)

where Lloc can be any Laplacian matrix computed accord-
ing to local structure of data manifold. For example, we
can replace Lloc in (23) by the well-known Gaussian Lapla-
cian matrix Lle, which is employed by LE (Belkin & Niyogi
2003), for manifold learning. It is easy to see that when
µ = 0, our framework reduces to traditional manifold learn-
ing algorithms.1 Due to the space limitation, we omit the
detailed discussion.

Connection with dimension reduction algorithms

Besides traditional manifold learning algorithms, our frame-
work also generalizes many unsupervised dimension reduc-
tion algorithms. In this subsection, we present the connec-
tion between our framework and other representative dimen-
sion reduction algorithms by the following propositions.
Proposition 1. When µ → ∞, µγ → 0, Locality

Preserving Projection (LPP) (He & Niyogi 2003) is a spe-
cial case of our proposed framework, provided that Lloc in
(23) is Gaussian Laplacian (denoted as Lle), and Kxi,xj

is a
linear kernel function.

Proof : When µ → ∞, µγ → 0 and Lloc = Lle, the
objective function shown in (23) reduces to:

min
φ(W )T φ(X)φ(X)T φ(W )=I

tr(φ(W )T φ(X)Lleφ(X)T φ(W )).

If Kxi,xj
is a linear kernel function, then φ(W ) = W and

φ(x) = x. Therefore, the objective function turns to

min
W T XXT W=I

tr(WT XLleX
T W ). � (24)

Proposition 2. When µ → ∞, µγ → 0, Kernel Lo-
cality Preserving Projection (KLPP) (He & Niyogi 2003) is
a special case of our proposed framework, provided that Lloc

in (23) is Gaussian Laplacian.

1Note that min
Y T Y =I

Y
T
LlY yields another new manifold learn-

ing algorithm as well.

This proposition can be similarly proved as Proposition 1.
Proposition 3. When µ → 0, Spectral Regression

(SR) (Cai, He, & Han 2007) is a special case of our frame-
work, provided that Lloc in (23) is Gaussian Laplacian and
Kxi,xj

is a linear kernel function.
Proof : When µ → 0 and Lloc = Lle, the objective

function shown in (23) turns to a two-step approach. In the
first step, it computes Y by minimizing:

min
Y T Y =I

tr(Y T LleY ). (25)

Then, it solves the following optimization problem:

min
φ(W ),b

∥

∥φ(X)T φ(W ) + 1nbT − Y
∥

∥

2

F
+ γ

∥

∥φ(W )T
∥

∥

2

F
.

Given that linear kernel is employed, we can see that it yields
the same results of SR. �

Proposition 4. When µ → 0, Kernel Spectral Re-
gression (KSR) is a special case of our framework, provided
that Lloc in (23) is Gaussian Laplacian.

This proposition can be similarly proved as Proposition 3.

Experiments

In this section, we conduct extensive experiments to test
the performance of the proposed algorithm. Pervious works
on manifold learning (Tenenbaum, Silva, & Langford 2000;
Roweis & Saul 2000; Belkin & Niyogi 2003; Zhang & Zha
2004; Chin & Suter 2008) mainly use synthetic data and
some image data sets, such as teapot images (Weinberger
& Saul 2006) and face expression images (Roweis & Saul
2000). Following the convention of manifold learning, we
also use them in the experiments.

First, we use synthetic data to test the proposed algorithm.
In this experiment, RBF kernel defined in (17) is used with
σ = 10. We set µ = 10−5 and γ = 10−4. Fig.1 shows the
learning results for the data sampled from Swiss roll. The
upper line shows the 1000 training data in R

3 and the map-
ping results in R

2 using different algorithms. We can see that
our LGRM and LTSA perform best. LLE and ISOMap can
preserve the manifold structure to certain extend, but not as
accurate as LGRM and LTSA. The other algorithms, includ-
ing LE, KPCA and KLPP, failed in preserving the intrinsical
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Figure 2: 2D embedding of 1000 data sampled from Swiss roll with hole in it.

Figure 3: 2D embedding of 400 teapot images.

manifold structure. The lower line of Fig.1 shows another
1000 data, which are used as out-of-sample data, to test the
performance of unseen data extrapolation. For the sake of
out-of-sample data extrapolation, we use the algorithm pro-
posed in (Silva & Tenenbaum 2003) for ISOMap, the algo-
rithm proposed in (Saul & Roweis 2003) for LLE and LTSA,
and the algorithm proposed in (Bengio et al. 2003) for LE.
We can see that our algorithm works well when applied to
unseen data. Fig.2 shows 1000 data sampled from Swiss roll
with one hole inside. Again, we observe that our LGRM and
LTSA yield the most faithful projection.

Next, we use image data to test the performance of the
proposed algorithm. The teapot image set collected by
Weinberger and Saul contains 400 images of teapot in full
rotation (Weinberger & Saul 2006). Each image is repre-
sented by a 23028 dimensional vector. In this experiment,
we similarly set µ = 10−5 and γ = 10−4. For RBF kernel,
we set σ = 100. Fig.3 shows the embedding of all the 400
images R

2. In the figure, the blue dots represent the embed-
ding. The embedding of each exemplar image is indicated
by a marker. We can see in Fig.3 that our LGRM, ISOMap,
LE and LTSA yield the most faithful projection. Compared
with KPCA and LLE, KLPP gains better performance, but
still worse than LGRM, ISOMap, LE and LTSA. We addi-
tionally report the mapping results for the first 200 images
from teapot image set when k = 30. Fig.4 shows the embed-
ding of the 200 images in R

2, in which the incorrectly pro-
jected data are surrounded by circles. We observe in Fig.4
that although LTSA and our LGRM gain best performance
in previous experiments, LGRM outperforms LTSA in this
case. Therefore, we conclude that our LGRM obtains the
best performance over the above 4 cases.

Lastly, we use Swiss roll and the face expression image
database (Roweis & Saul 2000) to compare different algo-
rithms in terms of out-of-sample data extrapolation. Because
KPCA and KLPP are not manifold learning algorithms, we
do not plot the results due to the lack of space. In this ex-
periment, each data set D is divided into two subsets A and
B. Data in A are used as training data to learn the low di-
mensional embedding of data manifold. Data in B are used

as testing data to test the performance of out-of-sample data
extrapolation. We first use D to learn the low dimension
embedding Y of all the data. Without loss of generality,
we can write Y as Y = [Ytrain, Ytest]

T , where Ytrain and
Ytest are the low dimensional embedding of training data
and testing data, respectively. After that, we use A to train
the manifold and then each datum in B is extrapolated into
the learned manifold. Let Y ′

test be a matrix comprising of
the low dimensional embedding of all the data in testing set
after being extrapolated. We define the Embedding Error

as 1
|B| ‖Ytest − Y ′

test‖
2
F , in which Ytest and Y ′

test are nor-

malized to remove the scaling factor. To extrapolate test-
ing data, we use the algorithm proposed by (Silva & Tenen-
baum 2003) for ISOMap, the algorithm proposed by (Saul
& Roweis 2003) for LLE and LTSA, and the algorithm pro-
posed by (Bengio et al. 2003) for LE. In this experiment,
we use 1000 data from Swiss Roll with 800 training data
and 200 testing data, and the 1765 face expression images
(Roweis & Saul 2000) with 1575 training data and 200 test-
ing data. For each database, we randomly split it into two
subsets, which is independently repeated 10 times. For face
expression images, we use the same parameters used for
teapot images. Fig.5 shows the average Embedding Error of
different algorithms. We observe that the error rate of our al-
gorithm is the lowest. Moreover, because our algorithm dose
not need to perform KNN search or compute the shortest
path between data pairs, it is faster. Compared with (Bengio
et al. 2003), our algorithm is a more general one and can be
applied to any manifold algorithms for unseen data extrap-
olation. While the algorithm proposed in (Saul & Roweis
2003) can be applied to other manifold algorithms, the lim-
itation is that the mapping may discontinuously change as
novel points move between different neighborhoods (Saul
& Roweis 2003), and it remains unclear how the algorithm
will behave if the novel points are far from training data.

Conclusions

There are two main contributions in this paper. First, we
propose a new Laplacian matrix, i.e., Ll defined in (12), for
manifold learning, which can be easily extended to many
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Figure 4: 2D embedding of the first 200 teapot images. The incorrectly projected data are indicated by circles.

Figure 5: Average embedding error comparison.

other algorithms, such as semisupervised subspace learning,
classification, feature selection, etc. Second, we propose a
new framework for manifold learning. The new framework
simultaneously learns the low dimensional embedding of the
input data and a model for unseen data extrapolation of the
learned manifold. Connection between our framework and
other algorithms has been discussed. One appealing fea-
ture of our framework is that it does not only generalize the
existing manifold learning algorithms, but also generalizes
several other dimension reduction algorithms. Experiments
show that the proposed algorithm preserves the manifold
structure precisely and can effectively map unseen data to
the learned manifold.
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