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Abstract

Multi-instance learning deals with problems that treat bags
of instances as training examples. In single-instance learn-
ing problems, dimensionality reduction is an essential step
for high-dimensional data analysis and has been studied for
years. The curse of dimensionality also exists in multi-
instance learning tasks, yet this difficult task has not been
studied before. Direct application of existing single-instance
dimensionality reduction objectives to multi-instance learn-
ing tasks may not work well since it ignores the characteristic
of multi-instance learning that the labels of bags are known
while the labels of instances are unknown. In this paper,
we propose an effective model and develop an efficient al-
gorithm to solve the multi-instance dimensionality reduction
problem. We formulate the objective as an optimization prob-
lem by considering orthonormality and sparsity constraints in
the projection matrix for dimensionality reduction, and then
solve it by the gradient descent along the tangent space of the
orthonormal matrices. We also propose an approximation for
improving the efficiency. Experimental results validate the
effectiveness of the proposed method.

Introduction

In single-instance scenario we are given a training set con-
taining N instances with their labels. In multi-instance
learning (Dietterich, Lathrop, and Lozano-Perez 1997) the
training examples are N bags each containing many in-
stances. The labels of training bags are known yet the la-
bels of the training instances are unknown. According to the
standard multi-instance learning assumption, a positive bag
contains at least one positive instance, while all the instances
in negative bags are negative.

Multi-instance learning has been found useful in mod-
eling many real world applications such as drug activity
prediction (Dietterich, Lathrop, and Lozano-Perez 1997),
image retrieval (Andrews, Tsochantaridis, and Hofmann
2003), text categorization (Andrews, Tsochantaridis, and
Hofmann 2003), face detection (Viola, Platt, and Zhang
2006), computer-aided medical diagnosis (Fung et al. 2007),
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etc. Many of these tasks involve high-dimensional data and
thus encounter the curse of dimensionality.

In single-instance scenario the curse of dimensionality has
attracted much attention. There are two major paradigms,
i.e., feature selection and dimensionality reduction. Fea-
ture selection tries to select a subset of the original features
according to some measurements such as the mutual infor-
mation or distance-based measures. Raykar et al. (2008)
have studied multi-instance feature selection using Bayesian
method which automatically considers the feature relevance.
In most cases, searching an optimal feature subset is hard
and heuristic methods are often used. Dimensionality re-
duction, which tries to extract a small number of new fea-
tures by projecting the original features into a new space,
is generally with better theoretical foundation. Existing di-
mensionality reduction techniques can be roughly divided
into two categories, that is, unsupervised approaches such as
PCA (principal component analysis) (Jolliffe 2002), and su-
pervised approaches such as LDA (linear discriminant anal-
ysis) (Fukunaga 1990). To the best of our knowledge, multi-
instance dimensionality reduction has not been studied be-
fore. It is noteworthy that multi-instance dimensionality re-
duction is even harder than single-instance dimensionality
reduction since the input space of multi-instance learning
task is ambiguous.

In this paper, we propose the MIDR (Multi-Instance
Dimensionality Reduction) approach based on a specifi-
cally designed dimensionality reduction objective for multi-
instance learning. We formulate the objective as an opti-
mization problem by considering orthonormality and spar-
sity constraints in the projection matrix for dimensionality
reduction, and then solve it by gradient descent along the
tangent space of the orthonormal matrices. We also propose
an approximation to improve the efficiency. Experimental
results validate the effectiveness of the proposed method.

The rest of this paper is organized as follows. We start by
a brief review of related work. Then, we propose MIDR and
report our experiments, which is followed by the conclusion.

Related Work

In single instance scenario, we are given a training set
{(x1, y1) , · · · , (xN , yN)} where xi ∈ R

D is an instance
and yi ∈ {1, · · · , k} is its label. To extract d ≪ D fea-
tures, linear dimensionality reduction methods apply a lin-
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ear transformation A ∈ R
D×d to project each data point xi

into a lower-dimensional space R
d as AT

xi.

LDA (Fukunaga 1990), a representative of supervised lin-
ear dimensionality reduction method, tries to maximize the
between-class distance and minimize the within-class dis-
tance at the same time. In order to make the resulting fea-
tures uncorrelated, A is required to be orthonormal. Thus,
the optimization problem of LDA is

max
ATA=Id

tr

(

ATSbA

ATSwA

)

,

where Sb and Sw are the between-class and within-class co-
variance matrix, respectively, and tr(·) is the matrix trace.

PCA (Jolliffe 2002), a representative of unsupervised lin-
ear dimensionality reduction method, tries to maximize the
variance of the projected data. With the orthonormality con-
straint, the optimization problem of PCA is

max
ATA=Id

ATSA ,

where S is the data covariance matrix.

In multi-instance scenario, the training set is {(X1, y1) ,
· · · , (XN , yN )}, where Xi = {xi1, · · ·xini

} ⊆ R
D is a

bag and yi ∈ {0, 1} is the label ofXi, xij denotes the jth in-

stance in the ith bag and its hidden label is yij ∈ {0, 1}. Ac-
cording to the standard multi-instance assumption, if there
exists at least one instance xij ∈ Xi has label yij = 1, Xi’s
label yi = 1 and xij is the key (positive) instance. If all
instances xij ∈ Xi have label yij = 0, Xi’s label yi = 0.
The ambiguity of input space makes the direct application of
single-instance dimensionality reduction methods to multi-
instance tasks improper. For example, to apply LDA to
multi-instance problems, we need to assign a label for each
instance. One approach is to assign each instance to the label
of the bag it belongs to. However, although all the instances
in the negative bags are negative, most instances in positive
bags are generally not positive. Thus, LDA may be misled
by the negative instances in positive bags. Figure 1(b) gives
an illustration. LDA tries to push all the instances in positive
bags together in order to reduce the “within-class” distance
no matter what their potential labels are. This may actually
decrease the “between-class” distance between positive and
negative instances. To apply PCA, we can treat instances in
all the bags as the input. However, PCA does not take label
information into account and thus the labels of the bags are
ignored. Figure 1(c) illustrates that the direct application of
PCA could not result in good performance. Another possi-
bility is to estimate the positive instances in positive bags at
first, and then apply single-instance supervised dimension-
ality reduction methods. However, estimating positive in-
stances in positive bags is a challenging problem, and just
recently there are a few studies (Zhou, Xue, and Jiang 2005;
Li et al. 2009).

Since single-instance dimensionality reduction methods
could not meet the requirement of multi-instance learning
problems, we study the dimensionality reduction for multi-
instance learning and propose the MIDR method.

(a) Original data (b) LDA

(c) PCA (d) Our objective

Figure 1: Illustration of applying single-instance dimensionality
reduction methods to multi-instance learning task. Triangles repre-
sent positive instances, circles represent negative instances, and the
numbers in the triangles/circles indicate the index of the bag where
bag 1 is positive while bag 2 is negative. For a better representation,
each bag is shown with a contour. (a) the original multi-instance
data, (b) and (c) the projection direction and projected results of
LDA and PCA, respectively, (d) our objective.

The MIDR Approach

Formulation

Our motivation of multi-instance dimensionality reduction
is to learn a projection matrixA and after the projection it is
easy to discriminate positive and negative bags. Denote the
ith projected bag as ATXi = {AT

xi1, · · · , A
T
xini
}, and

we want its posterior probability of being positive, Pr(yi =
1|ATXi), to be close to one if it is positive and zero if it is
negative. By introducing the squared loss, it is equivalent to
solve the optimization problem

min
A

∑

i

(

Pr(yi = 1|ATXi)− yi

)2

. (1)

According to the standard multi-instance learning as-
sumption, i.e., a key (positive) instance decides a bag’s label,
we can express the posterior probability of a bag in terms of
the posterior probabilities of its instances as

Pr(yi = 1|ATXi) = max
j

Pr
(

yij = 1|AT
xij

)

.

Then Eq. 1 becomes

min
A

∑

i

(

max
j

Pr
(

yij = 1|AT
xij

)

− yi

)2

. (2)

Here we can see that in order to minimize Eq. 2, we should
enlarge the distance between the key (positive) instance and
negative instances, as illustrated in Figure 1(d).

To make our objective smooth, we replace the max in
Eq. 2 by softmax as

Pi = softmaxα(Pi1, · · · , Pini
) =

∑

j Pije
αPij

∑

j e
αPij

,
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where we denote Pr(yi = 1|ATXi) and Pr
(

yij = 1|AT
xij

)

as Pi and Pij respectively for convenience. α is a parameter
controlling the extent to which the softmax approximates the
max function.

Similar to single-instance dimensionality reduction meth-
ods, we also require the resulting features to be uncorrelated,
i.e., we require A to be orthonormal. Thus our optimization
problem becomes

min
A

∑

i (Pi − yi)
2

s.t. ATA = Id . (3)

We also want A to be sparse, and this can be achieved
by enforcing the l1-norm regularization. Thus we attempt to
solve the optimization problem

min
A

∑

i (Pi − yi)
2

+ C1

∑

s,t |Ast| (4)

s.t. ATA = Id ,

where A = [Ast]D×d and C1 is a controlling parameter.
Note that the objective function of Eq. 4 is not smooth

because of the additional term
∑

s,t |Ast|. We therefore, ap-

proximate this term by

|Ast| ≈ |Ast (ǫ) | =
√

A2
st + ǫ2, ǫ > 0 ,

where ǫ is a small positive constant (Qi and Sun 2000). Our
optimization problem consequently becomes

min
A

∑

i(Pi − yi)
2 + C1

∑

s,t |Ast(ǫ)| (5)

s.t. ATA = Id .

Gradient-Descent Search

Since the columns of projection matrix A are constrained to
be orthonormal, we consider the problem in a set

St(d,D) = {A ∈ RD×d|ATA = Id}

which contains all D × d matrices with orthonormal
columns. Note that St(d,D) is a compact smooth mani-
fold called the compact Stiefel manifold (Stiefel 1935), and
its tangent space TASt(d,D) at any A ∈ St(d,D) can be
expressed by (Helmke and Moore 1994)

TASt(d,D) = {X ∈ RD×d|XTA+ATX = 0}. (6)

Regarding the manifold St(d,D) as an embedded subman-
ifold of the Euclidean space, the standard inner product, or
the Frobenius inner product for D × d matrices defined by

〈X,Y 〉 = trace(XTY ), ∀ X,Y ∈ TASt(d,D)

is induced and referred as the induced Riemannian metric on
St(d,D).

The projections of any Z ∈ RD×d onto the tangent space
TASt (d,D) at A can be defined as (Chu and Trendafilov
2001)

ΠT (Z) = A(
ATZ − ZTA

2
) + (ID −AA

T)Z . (7)

Suppose a smooth function φ : St(d,D) → R is de-
fined on St(d,D) like the objective function in Eq. 5. Then

the gradient grad(φ(A)) of φ at A ∈ St(d,D) is given by
(Helmke and Moore 1994; Edelman, Arias, and Smith 1998;
Chu and Trendafilov 2001)

grad(φ(A)) = ΠT (∂φ(A)/∂A), ∀A ∈ St(d,D) . (8)

We can compute the gradient of our objective function
∂φ(A)/∂A explicitly, hence we can easily get the gradient
flow in the tangent space from Eq. 8 with the aid of the or-
thonormal projection ΠT (Z) defined by Eq. 7. The gradient
flow is an ordinary differential equation for the minimization
of φ(A) in Eq. 5 (Chu and Trendafilov 2001), i.e.,

dA(t)/dt = −grad(φ(A)) = −ΠT (∂φ(A)/∂A) . (9)

Here the variable t can be interpreted as the time step to-
wards finding the optimal solution of Eq. 5. This is a gra-
dient system based on the optimality conditions of the prob-
lem. To get A we can solve an ordinary differential equation
problem using routine processes such as the MATLAB ode23
or Maple with the aid of Eq. 9.

Convergence

Since St(d,D) is a compact smooth manifold, and φ(A) is
already a smooth function on St(d,D), the routine conver-
gence results for the preceding gradient system (Helmke and
Moore 1994) can be applied.

Moreover, it is worth noting that for any initial value
A(0) = A0 ∈ St(d,D), there is a unique trajectory A(t)
starting from A0 for t ≥ 0, and since ΠT (∂φ(A)/∂A) ∈
TASt(d,D), it immediately yields by Eq. 7 that

d(A(t)TA(t))/dt = Ȧ(t)TA(t) + A(t)TȦ(t) ≡ 0, t ≥ 0 ,

implying A(t) ∈ St(d,D) for t ≥ 0. Here we use Ȧ(t) =
dA(t)/dt for short. Additionally, for any Z ∈ R

D×d, it
follows that 〈Z,ΠT (Z)〉 = 〈ΠT (Z),ΠT (Z)〉 ≥ 0 (Chu and
Trendafilov 2001), and hence for any t ≥ 0,

dφ(A(t))

dt
= 〈

∂φ(A)

∂A
,ΠT

(

∂φ(A)

∂A

)

〉

= 〈ΠT

(

∂φ(A)

∂A

)

,ΠT

(

∂φ(A)

∂A

)

〉 ≥ 0 ,

implying the monotonically non-increasing property of the
objective function φ(A(t)) along the trajectory A(t) ∈
St(d,D) for t ≥ 0.

It should be emphasized here that any local maximum (or
local minimum) of the function φ(A) : St(d,D) → R is
a critical point, and the gradient flow A(t) defined by Eq. 9
exists for all t ≥ 0, and converges to a connected component
of the set of critical points of φ(A) as t→∞. Furthermore,
if φ(A) has only isolated critical points, A(t) is guaranteed
to converge to one critical point when t → ∞ (Helmke and
Moore 1994).

As the descent direction is used, the objective function
value is decreasing at each step. It is clear the lower bound
of the objective function is zero. Therefore, the gradient
descent process can stop when the objective function value
does not improve with respect to the iterations.
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Speedup

Solving ordinary differential equations at every iteration is
time-consuming especially when the dimensionality is very
high. Here we provide an approximation for updating A to
improve the efficiency. Consider the new problem

min
A,H

∑

i
(Pi−yi)

2 +
C2

2
‖A−H‖2F +C1

∑

s,t
|Hst| (10)

with constraint ATA = Id. Here we keep A to be orthonor-
mal, and H to be sparse. Now we need to update A, and
then H . To update A, we let

ψ(A) =
∑

i
(Pi − yi)

2 +
C2

2
‖A−H‖2F ,

and use the simple gradient descent formula

Anew = Aold − γgrad(ψ(A)) . (11)

The orthogonality based on the one-step gradient flow can
be preserved. A line search procedure for the step size γ
can be implemented together. To update H , we can use
soft-thresholding. For each (i, j), we solve the minimiza-
tion problem

min
Hij

‖Aij −Hij‖
2

2 + 2
C1

C2

|Hij | .

The optimizer is

Hij =











Aij −
C1

C2

, if Aij >
C1

C2

0, if − C1

C2

≤ Aij ≤
C1

C2

Aij + C1

C2

, if Aij < −
C1

C2

.

(12)

The sparsity is controlled by the parameters C1 and C2, and
the orthonormality loss of H is controlled by C2.

The overall approach is summarized in Algorithm 1. H is
initialized to be a d-cardinality set of orthonormal vectors.
γ is set to 1 at the beginning and at each iteration new γ is
updated by line search. The posterior probability Pij and Pi

can be estimated in many ways, such as naı̈ve Bayes, SVM,
neural networks, logistic regression, etc. Here we denote Pi

as a probability estimation function whose parameters are
represented by v for convenience. At each iteration, we up-
date the parameters v and the posterior probability estima-
tion function Pi. Note that in our approach we use the true
gradient rather than stochastic gradient because the conver-
gence of stochastic gradient approach is usually slower than
the true gradient approach. In MIDR the cost of stochastic
gradient approach will be even higher since we may need to
use a bag of instances instead of a single sample to fit the
parameters and need to deal with the orthogonal constraints.

Experiments

Configuration

There is no multi-instance dimensionality reduction method
before, and so we compare our proposed MIDR approach
with several modified single-instance dimensionality reduc-
tion methods. We take LDA and PCA for the representa-
tives of supervised and unsupervised dimensionality reduc-
tion methods, respectively. LDA should be provided with

Algorithm 1: The MIDR algorithm

Input: C1, C2 and α
Output: The final solution of A
initialize A, H , v and γ;
while not converge do

1. update v and Pi

2. compute grad(ψ(A))

3. γ ←linesearch(γ, grad(ψ(A)))

4. update A by setting

Anew = Aold − γgrad(ψ(A))

5. update H based on Eq. 12

end

the labels of all the input data, but in multi-instance learning
we only have the labels of training bags. All the instances
in negative bags are negative and here we assign positive la-
bels to all the instances in positive bags. As for PCA, we
take instances in all the bags as input.

We compare the methods on a synthetic data and five
multi-instance benchmark data sets. For the synthetic data,
as shown in Figure 2(a), all the dimensionality reduction
methods reduce the dimensionality from 2 to 1. This data
set is very simple, but is helpful for understanding the be-
haviors of these methods through visualization. The bench-
mark data sets used here are Musk1, Musk2, elephant, fox
and tiger. These data sets have been used in most multi-
instance learning studies. Musk1 and Musk2 are drug ac-
tivity prediction tasks, where each instance is represented
by an 166-dimensional feature vector. Detailed informa-
tion can be found in (Dietterich, Lathrop, and Lozano-Perez
1997). Elephant, fox and tiger are image classification tasks,
where each instance is described by a 230-dimensional fea-
ture vector. Detailed information can be found in (Andrews,
Tsochantaridis, and Hofmann 2003).

For the benchmark data sets, we compare the methods
via 5-fold cross validation (we repeat 10 times 5-fold cross
validation with random partitions). For MIDR, the param-
eter α controlling the softmax is set to the fixed number
3.5 as suggested by (Ray and Craven 2005), and the pa-
rameters C1 and C2 controlling the regularization is picked
from the pool of {10i|i = −4,−3, · · · , 3, 4} by 5-fold cross
validation on the training data. We use logistic model to
estimate the posterior probability, which has been used in
(Xin and Frank 2004; Ray and Craven 2005). For PCA
and MIDR, we have tried to reduce the dimensionality
to (20%, 30%, 40%, 50%, 60%) of the original dimension.
We use multi-instance logistic regression (Ray and Craven
2005) as the classifier to evaluate the classification perfor-
mance. We also compare with the original multi-instance lo-
gistic regression without dimensionality reduction, denoted
by ORI, solved by an optimization package L-BFGS (No-
cedal and Wright 1999). The evaluation criteria used here is
AUROC (area under ROC curve).
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Table 1: Comparison of AUROC (mean±std). Bold values highlight the best AUROC on each data set.

Comparison Data set

Method Musk1 Musk2 Elephant Fox Tiger

ORI 0.916±0.014 0.927±0.013 0.921±0.009 0.694±0.017 0.946±0.004
LDA 0.791±0.053 0.813±0.023 0.902±0.014 0.587±0.019 0.850±0.011
PCA 0.916±0.018 0.921±0.011 0.922±0.009 0.695±0.018 0.930±0.009

MIDR 0.946±0.019 0.955±0.011 0.943±0.010 0.778±0.017 0.950±0.003

(a) Original data (b) LDA (c) PCA (d) MIDR

Figure 2: The dimensionality reduction results on the synthetic data. (b), (c) and (d) show the location of instances from
different bags on the resulted dimension.

(a) Musk1 (b) Musk2 (c) elephant (d) fox (e) tiger

Figure 3: The performance on the benchmark data sets when reduced to different dimensionalities.

Results

Results on the synthetic data are shown in Figure 2. From
Figure 2(b) it can be seen that LDA is misled by the neg-
ative instances in positive bags. The positive and negative
instances in the positive bag 3 are very close to each other
after dimensionality reduction. In Figure 2(c), the posi-
tive and negative bags are not separated when reduced to
1-dimension since PCA ignores the labels of bags. It can
be seen from Figure 2(d) that MIDR tries to enlarge the dis-
tances between positive and negative instances and thus the
positive and negative bags are easier to separate based on the
key instance assumption. It is clear that the proposed MIDR
method performs better than LDA and PCA.

Results on the benchmark data sets are summarized in Ta-
ble 1. Here we only show the results of PCA and MIDR
when reduced to 30% dimensions (the other results are
shown in Figure 3). 30% is almost the best result for PCA
on most of the data sets but not for MIDR. The best result
is highlighted in bold face. It is clear that MIDR performs
better than all the other methods. LDA performs the worst
in almost all cases since the ground-truth labels of the in-
stances in positive bags are unknown while LDA was fooled
by negative instances in positive bags. For elephant, the per-
formance of LDA is not bad. This is not strange; as Andrews
et al. (2003) disclosed, supervised learning methods can per-
form well on elephant by assigning the label of a bag to its
instances. It can also be seen that the performance of PCA

is quite close to the ORI performance. This verifies what we
have pointed out before, that is, PCA preserves as much data
variance as possible but ignores the label information, thus
it is less helpful for multi-instance classification.

We also record the average time costs under different pa-
rameter settings of these methods, as shown in Table 2. It
can be seen that for most cases, the time cost of MIDR is
larger than that of LDA but smaller than that of PCA. LDA
seems more efficient partly because that it reduces to one di-
mension, and the time cost of training multi-instance logistic
regression with one-dimensional feature vectors is signifi-
cantly smaller than using more features.

Figure 3 compares the methods under different dimen-
sionalities to be reduced. MILR always works better than
other methods on all dimensions. The performance curve in-
creases smoothly on Musk1 and Musk2, yet the curves do not
increase smoothly on the image categorization tasks. This
may be caused by the well-known large gap between the
low-level image features and high-level image semantics.

Sparsity and Orthonormality

We empirically study how the orthonormality and sparsity
of the linear projection matrix A are affected by different
settings ofC1 andC2. Due to the limit of space, in Figures 4
and 5 we only show the results on Musk data sets.

We use ‖HTH − Id‖F to measure the loss of orthonor-
mality, as shown in Figure 4. It verifies what we have ex-
pected, i.e., as C2 increases A is getting closer to an or-
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Table 2: Comparison of time costs (mean±std) (in seconds). The time costs include both the dimensionality reduction and
classification costs.

Comparison Data set

Method Musk1 Musk2 Elephant Fox Tiger

LDA 32.519±3.335 218.678±12.602 115.271±10.859 112.091±9.965 117.276±10.632
PCA 65.808±5.672 479.371±15.285 223.642±12.561 225.261±13.865 252.229±14.525

MIDR 40.561±4.518 375.952±13.579 194.119±12.945 205.098±11.119 203.515±13.579

(a) Musk1 (b) Musk2

Figure 4: Loss of orthonormality with C1 and C2.

thonormal matrix. When C2 is small, the loss of orthonor-
mality is insensitive to the settings of C1. When C2 is large,
a larger C1 may result in less orthonormality. We can also
see that with a fixedC1, the loss of orthonormality decreases
exponentially as C2 increases. We measure the loss of spar-
sity by

∑

i,j |Hij |, as shown in Figure 5. It can be seen that

whenC2 is small, the loss of sparsity is large and insensitive
to the settings of C1.

From Figures 4 and 5 we can see that when C2 is larger
than 10−2, the losses of orthonormality and sparsity are
small. There is a trade-off between the orthonormality and
sparsity of A, controlled by the setting of C1.

Conclusion

In this paper, we study the problem of multi-instance di-
mensionality reduction. We formulate the objective as an
optimization problem with orthonormality and sparsity con-
straints, and propose a gradient descent method in the tan-
gent space to solve this optimization problem. A speed-up
method is provided to improve the efficiency. Experimental
results show that our method produces encouraging results.

Currently we focus on the standard multi-instance learn-
ing assumption, i.e., a key (positive) instance makes a bag
positive. There are alternative multi-instance learning as-
sumptions that have been found useful in practice (Foulds
and Frank 2009). Studying multi-instance dimensionality
reduction in those scenarios is an interesting future issue.
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