
Enhancing ASP by Functions: Decidable Classes and Implementation Techniques∗

Francesco Calimeri and Susanna Cozza and Giovambattista Ianni and Nicola Leone
Department of Mathematics, University of Calabria

I-87036 Rende (CS), Italy
e-mail: {calimeri, cozza, ianni, leone}@mat.unical.it

Abstract

This paper summarizes our line of research about the
introduction of function symbols (functions) in An-
swer Set Programming (ASP) – a powerful language for
knowledge representation and reasoning. The undecid-
ability of reasoning on ASP with functions, implied that
functions were subject to severe restrictions or disal-
lowed at all, drastically limiting ASP applicability. We
overcame most of the technical difficulties preventing
this introduction, and we singled out a highly expres-
sive class of programs with functions (FG-programs),
allowing the (possibly recursive) use of function terms
in the full ASP language with disjunction and negation.
Reasoning on FG-programs is decidable, and they can
express any computable function (causing membership
in this class to be semi-decidable). We singled out also
FD-programs, a subset of FG-programs which are ef-
fectively recognizable, while keeping the computability
of reasoning. We implemented all results into the DLV
system, thus obtaining an ASP system allowing to en-
code any computable function in a rich and fully declar-
ative KRR language, ensuring termination on every FG
program. Finally, we singled out the class of DFRP
programs, where decidability of reasoning is guaranteed
and Prolog-like functions are allowed.

1 Introduction

Disjunctive Logic Programming (DLP) under the answer
set semantics, often referred to as Answer Set Program-
ming (ASP) (Gelfond and Lifschitz 1991; Marek and
Truszczyński 1999), is a powerful formalism for knowledge
representation and reasoning (KRR), which is widely used
in AI especially for its high expressiveness and for its abil-
ity to deal also with incomplete knowledge (Baral 2003).
Several systems supporting ASP are nowadays available,
making ASP actually usable. Experimenting with ASP in
real-world applications, from the one hand, has confirmed
its usefulness; but, on the other hand, has evidenced some
limitations. One of the most noticeable shortcoming is the
lack of an adequate support for complex terms like func-
tions, sets, and lists. Indeed, one cannot directly reason

∗This paper summarizes the results appearing in (Calimeri et al.
2008, Calimeri et al. 2009a, Calimeri et al. 2009b).
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

about recursive data structures and infinite domains, such
as XML/HTML documents, lists, time, etc. This need
has been clearly perceived in the ASP community, and
the latest years witness a big effort for embedding func-
tions in the context of ASP (Syrjänen 2001; Bonatti 2004;
Gebser, Schaub, and Thiele 2007; Lin and Wang 2008;
Baselice, Bonatti, and Criscuolo 2009; Eiter and Simkus
2009; Lierler and Lifschitz 2009). Nevertheless, no ASP
system allows for a reasonably unrestricted usage of func-
tion terms. Functions are either required to be nonrecursive
or subject to severe syntactic limitations. The goal of our re-
search is to overcome the above mentioned limitations. The
main results can be summarized as follows.

◮ We formally define the class of finitely-ground (FG) pro-
grams, allowing the (possibly recursive) use of functions
in the ASP language with disjunction and negation. We
prove that FG programs guarantee decidability for both
brave and cautious reasoning, and computability of an-
swer sets. We show that the language is highly expres-
sive, as any computable function can be encoded by an
FG program (Calimeri et al. 2008).

◮ We prove that membership in the class of FG programs is
semi-decidable: for applications where termination needs
to be “a priori” (statically) determined, we define the sub-
class of finite-domain (FD) programs, where member-
ship is decidable, while the computability of the reasoning
tasks is kept (Calimeri et al. 2008).

◮ We enrich ASP with list and set terms, and implement
the full (extended) language into the DLV system, ob-
taining DLV-Complex, a new system allowing to exploit
the full expressiveness of FG programs, or to require the
finite-domain check, getting the guarantee of termination.
The system is publicly available (Calimeri et al. since
2008) and already in use in many universities and research
centers throughout the world. A rich library of built-in
functions for list and set manipulation complements the
system and further improves its usability (Calimeri et al.
2009a).

◮ For users familiar with top-down computation, we sin-
gle out the class of disjunctive finitely recursive positive
programs (DFRP), where the allowed functions are the
top-down decreasing ones, à la Prolog, and head-unsafe
variables are permitted. We prove that ground querying

1666

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

is decidable on DFRP programs. We design a suitable
magic set transformation which turns ground querying on
a DFRP program into answer sets computation on an FG-
program (Calimeri et al. 2009b), making also DFRP pro-
grams usable in practice.

Function symbols allow us to aggregate atomic data and ma-
nipulate complex data structures. For instance, in the area
of self-healing Web Services, our DLV-Complex system is
already exploited for the computation of minimum cardinal-
ity diagnoses (Friedrich and Ivanchenko 2008), functional
terms are there employed to replace existential quantifica-
tion. The introduction of functions offers a significant gain
in terms of knowledge-modeling power and program clar-
ity. In some cases, the better problem encoding obtained
through functions, can bring also a significant computational
gain (see, for instance, the encoding for Tower of Hanoi re-
ported in DLV-Complex web site against the classical ASP
encoding).

2 DLP with Functions

DLP programs are finite set of disjunctive rules of the form
r : α1 ∨ · · · ∨

αk :- β1, . . . , βn, not βn+1, . . . , not βm.
where m≥ 0, k≥ 0, and α1, . . . , αk, β1, . . . , βm are atoms.
If k = 1 and m = 0 then r is referred to as a fact. An
atom is of the form p(t1, . . . , tk), where p is a predicate
symbol of arity k ≥ 0 and each ti is a term. A term is
either a simple term (constant or variable) or a functional
term, which is of the form f(t1, . . . , tn), for f a function
symbol, and t1, . . . , tn terms. α1 ∨ · · · ∨ αk is the head of
the rule; while β1, . . . , βn, not βn+1, . . . , not βm is the
body. The sets {α1, . . . , αk} and {β1, . . . , βn} are denoted
by H(r) and B+(r), respectively. We assume (except in
Section 6) that each rule r is safe: each variable of r appears
also in B+(r). Given a program P , a predicate defined
only by facts is an EDB predicate, the remaining predicates
are IDB predicates. The set of all facts in P is denoted by
Facts(P); the set of instances of all EDB predicates in P
is denoted by EDB(P). The set of all head atoms in P is
denoted by Heads(P) =

⋃
r∈P H(r).

Given a program P , the Herbrand universe of P , denoted
by UP , consists of all (ground) terms that can be built com-
bining constants and functors appearing in P . The Herbrand
base of P , denoted by BP , is the set of all ground atoms ob-
tainable from the atoms of P by replacing variables with
elements from UP . A substitution for a rule r ∈ P is a map-
ping from the set of variables of r to the set UP of ground
terms. A ground instance of a rule r is obtained applying a
substitution to r. The instantiation (grounding) grnd(P) of
P is defined as the set of all ground instances of its rules.
Given a ground program P , an interpretation I for P is a
subset of BP . A positive literal l = a (resp., a negative lit-
eral l = not a) is true w.r.t. I if a ∈ I (resp., a /∈ I); it is
false otherwise. Given a ground rule r, we say that r is sat-
isfied w.r.t. I if some atom appearing in H(r) is true w.r.t.
I or some literal appearing in B(r) is false w.r.t. I . Given
a ground program P , we say that I is a model of P , iff all
rules in grnd(P) are satisfied w.r.t. I . A model M is min-

imal if there is no model N for P such that N ⊂ M . The
Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1991) of P ,
w.r.t. an interpretation I , is the positive ground program P I

obtained from grnd(P) by: (i) deleting all rules having a
negative literal false w.r.t. I; (ii) deleting all negative liter-
als from the remaining rules. I ⊆ BP is an answer set for
a program P iff I is a minimal model for P I . The set of all
answer sets for P is denoted by AS(P).

3 Finitely-Ground Programs

Informally, a program P is FG if its instantiation has a fi-
nite subset S, which has the same answer sets as P and is
computable.

Given a program P , a component of P is a maxi-
mal subset of mutually recursive predicates of P , where
only positive dependencies are considered (e.g. in rule
a(X) :- b(X), not c(X), a depends on b, but not on c). We
denote by comp(p) the component of predicate p. A com-
ponent ordering γ = 〈C1, . . . , Cn〉 for P is a total order-
ing of the components of P strictly respecting the posi-
tive and the stratified dependencies among predicates of dif-
ferent components. For instance, in presence of the rule
a(X) :- b(X), not c(X), if a, b and c belong to different com-
ponents, then comp(b) precedes comp(a), while comp(c)
might not precede comp(a) only if there is a mutually neg-
ative dependency between a and c. The module P(Ci) of a
component Ci is the set of all rules defining some predicate
p ∈ Ci excepting those defining also some other predicate
belonging to a lower component (i.e., certain Cj with j < i
in γ).

Definition 1 Given a rule r and a set S of ground atoms, an
S-restricted instance of r is a ground instance r′ of r such
that B+(r′) ⊆ S. The set of all S-restricted instances of a
program P is denoted as InstP (S).

Note that, for any S ⊆ BP , InstP (S) ⊆ grnd(P). In-
tuitively, this helps selecting, among all ground instances,
those somehow supported by a given set S.

Example 2 Consider the following program P :

t(f(1)). t(f(f(1))). p(1).
p(f(X)) :- p(X), t(f(X))).

The set InstP (S) of all S-restricted instances of P ,
w.r.t. S = Facts(P) is: t(f(1)). t(f(f(1))). p(1).
p(f(1)) :- p(1), t(f(1)).

The presence of negation allows to identify some further
rules which do not matter for the computation of answer sets,
and to simplify the bodies of some others. This can be prop-
erly done by exploiting a modular evaluation of the program
that relies on a component ordering.

Definition 3 Given a program P , a component ordering
〈C1, . . . , Cn〉, a set Si of ground rules for Ci, and a set of
ground rules R for the components preceding Ci, the sim-
plification Simpl(Si, R) of Si w.r.t. R is obtained from Si

by:

1. deleting each rule whose body contains some negative
body literal not a s.t. a ∈ Facts(R), or whose head
contains some atom a ∈ Facts(R);

1667

2. eliminating from the remaining rules each literal l s.t., ei-
ther l = a is a positive body literal and a ∈ Facts(R), or
l = not a is a negative body literal, comp(a) = Cj with
j < i, and a /∈ Heads(R).

Assuming that R contains all instances of the modules
preceding Ci, Simpl(Si, R) deletes from Si all rules whose
body is certainly false or whose head is certainly already
true w.r.t. R, and simplifies the remaining rules by removing
from the bodies all literals that are true w.r.t. R.

Example 4 Consider the following program P :

t(1). s(1). s(2). q(X) :- t(X). p(X) :- s(X), not q(X).

It is easy to see that 〈C1 = {q}, C2 = {p}〉 is the
only component ordering for P . If we consider R =
EDB(P) = { t(1)., s(1)., s(2). } and S1 ={q(1) :- t(1).},
then Simpl(S1, R) ={q(1).} (i.e., t(1) is eliminated from
body). Considering then R ={t(1)., s(1)., s(2)., q(1).} and
S2 ={ p(1) :- s(1), not q(1)., p(2) :- s(2), not q(2). }, after
the simplification we have Simpl(S2, R) ={p(2).}. Indeed,
s(2) is eliminated as it belongs to Facts(R) and not q(2)
is eliminated because comp(q(2)) = C1 precedes C2 in
the component ordering and the atom q(2) /∈ Heads(R);
in addition, rule p(1) :- s(1), not q(1). is deleted, since
q(1) ∈ Facts(R).

We are now ready to define an operator Φ that acts on
a module of a program P in order to: (i) select only the
ground rules whose positive body is contained in a set of
ground atoms consisting of the heads of a given set of rules;
(ii) perform further simplifications among these rules by
means of Simpl operator.

Definition 5 Given a program P , a component ordering
〈C1, . . . , Cn〉, a component Ci, the module M = P (Ci),
a set X of ground rules of M , and a set R of ground rules
belonging only to EDB(P) or to modules of components Cj

with j < i, let ΦM,R(X) be the transformation defined as
follows: ΦM,R(X) = Simpl(InstM(Heads(R∪X)), R).

Example 6 Let P be the program

a(1). q(g(3)). s(X) ∨ t(f(X)) :- a(X), not q(X).
p(X, Y) :- q(g(X)), t(f(Y)). q(X) :- s(X), p(Y,X).

Considering the component C1 = {s}, the module

M = P (C1), and the sets X = ∅ and R = {a(1)}, we
have:
ΦM,R(X) = Simpl(InstM (Heads(R ∪ X)), R) =

= Simpl(InstM({a(1)}), {a(1).}) =
= Simpl({s(1) ∨

t(f(1)) :-a(1), not q(1).}, {a(1).}) =
= {s(1) ∨ t(f(1)) :- not q(1).}.

The operator Φ has the following important property.

Proposition 7 ΦM,R always admits a least fixpoint
Φ∞

M,R(∅).

By properly composing consecutive applications of Φ∞

to a component ordering, we can obtain an instantiation
which drops many useless rules w.r.t. answer sets compu-
tation.

Definition 8 Given a program P and a component order-
ing γ = 〈C1, . . . , Cn〉 for P , the intelligent instantia-
tion P γ of P for γ is the last element Sn of the sequence
S0 = EDB(P), Si = Si−1∪Φ∞

Mi,Si−1
(∅), where Mi is the

program module P (Ci).

Example 9 Let P be the program of Example 6 where the
extension of EDB predicate a is {a(1)}; considering the
component ordering γ = 〈C1 = {s}, C2 = {t}, C3 =
{p, q}〉 we have:

• S0 = {a(1).};

• S1 = S0 ∪ Φ∞

M1,S0
(∅) = {a(1)., s(1)∨t(f(1)) :- not q(1).};

• S2 = S1 ∪ Φ∞

M2,S1
(∅) = {a(1)., s(1)∨t(f(1)) :- not q(1).};

• S3 = S2 ∪ Φ∞

M3,S2
(∅) = {a(1)., s(1) ∨ t(f(1)) :- not q(1).,

q(g(3))., p(3, 1) :- q(g(3)), t(f(1))., q(1) :- s(1), p(3, 1).}.

Thus, the resulting intelligent instantiation P γ of P for γ is:

a(1). q(g(3)). s(1) ∨ t(f(1)) :-not q(1).
p(3, 1) :- q(g(3)), t(f(1)). q(1) :- s(1), p(3, 1).

Definition 10 A program P is finitely-ground (FG) if P γ is
finite, for every component ordering γ for P .

Example 11 The intelligent instantiation of the program:

q(f(f(1))). p(1). p(f(X)) :- p(X), not q(f(X)).

will actually include only a finite number of rules, thanks to
the dropping of all the (infinite, in this case) useless rules
w.r.t. answer set computation. Thus, the unique answer set
is easily computable: {q(f(f(1))), p(1), p(f(1)).}

We proved that AS(P) = AS(P γ) for any component
ordering γ of P , and then demonstrated what follows.

Theorem 12 Given an FG program P , then: i) P has
finitely many finite answer sets; ii) AS(P) is computable;
iii) cautious and brave reasoning over P are computable for
both ground and non-ground queries.

Also, FG programs are very expressive:

Theorem 13 FG programs can encode any computable
function. Given a program P , recognizing whether P is an
FG program is R.E.-complete.

4 Finite-Domain Programs

As reported in the previous Section, membership in FG
class is not decidable. For this reason, in (Calimeri et al.
2008) a subclass of such programs, called finite-domain
(FD) programs, has been singled out, which ensures the de-
cidability of recognizing membership in the class. A pro-
gram P belongs to this class if all arguments of the pred-
icates appearing in P are included into the set of finite-
domain (FD) arguments. Such set is defined by means of
some syntactical restrictions over variables and (sub)terms
when recursion is involved; intuitively, such restrictions en-
sure that an argument can range only on a finite set of differ-
ent ground values. Importantly, we have the following:

Theorem 14 FD programs can be recognized in polyno-
mial time; every FD program is an FG program.

In the next section, the program of Example 15 is FD;
while the programs in Examples 16 and 17 are FG but are
not FD.

1668

5 An ASP System with Complex Terms

The results reported above allow to actually introduce an ef-
fective support for function symbols into current ASP sys-
tems. Indeed, the presented language has been implemented
on top of the state-of-the-art ASP system DLV (Leone et
al. 2006). The resulting system, publicly available (Cal-
imeri et al. since 2008), called DLV-Complex, features an
even richer language, that, besides functions, explicitly of-
fers native syntactic support for complex terms such as lists
and sets. A large library of built-in functions and predicates
is provided, having a predefined intended semantics. The
system features an optional syntactical check for the mem-
bership to the FD class, that guarantees an “a priori” ter-
mination for users/applications requiring it. We report next
some examples aiming at showing the KRR capabilities of
the language supported by DLV-Complex; many other ex-
amples with sets and lists, and function symbols in general,
can be found in (Baral 2003; Calimeri et al. since 2008).

Example 15 A program consisting of some facts modeling
strings by means of list terms, plus a rule, as reported below:

word([a, d, a]). word([g, i, b, b, i]). word([a, n, n, a]).
palindromic(X) :- word(X), #reverse(X) = X.

has a unique answer set, including the initial facts and
some instances of predicate palindromic modeling all palin-
dromic strings. Please note the usage of the built-in function
#reverse.

Example 16 In a given graph, a path with no repeated nodes
is called a simple path. If a path is denoted by a list of nodes,
the head of the list corresponding to the head node, the fol-
lowing program derives all simple paths for a directed graph
starting from a given edge relation (please note the use “à la
Prolog” ([Head|Tail]) for lists):

path([X, Y]) :- edge(X,Y).
path([X|[Y |W]]) :- edge(X,Y), path([Y |W]),

not #member(X, [Y |W]).

Example 17 If facts like: sons(someone, {son1, ..., sonn})
model the association between a parent and her sons, one can
obtain the names of all descendants of someone as follows:

ancestor(A,Ss) :- sons(A, Ss).
ancestor(A,#union(Ds, Ss)) :-

ancestor(A,Ds), #member(S,Ds), sons(S, Ss).

The first rule says that all sons of A are descendants of A.
The second rule says that if Ds are descendants of A, S
belongs to Ds, and Ss contains the sons of S, then the union
of Ds and Ss is also a set of descendants for A.

6 DFRP Programs and Top-Down Querying

One of the first and relevant proposals for extending ASP
with functions, is the class of finitary programs (Bonatti
2004). Such class imposes restrictions both on recursion and
on the number of potential sources of inconsistency. In par-
ticular, recursion is restricted by requiring each ground atom
to depend on finitely many ground atoms; if a program ful-
fills this requirement, is said to be finitely recursive.

Finitary programs are uncomparable and somehow com-
plementary w.r.t. FG programs: indeed, the former class is

conceived to allow decidable querying, having a top-down
evaluation strategy in mind, while the latter supports the
computability of answer-sets (by means of a bottom-up eval-
uation strategy). One of the main advantages of FG pro-
grams is that they can be “directly” evaluated by current
ASP systems, which are based on a bottom-up computa-
tional model. However, there are also some interesting pro-
grams which are suitable for top-down query evaluation; but
they do not fall in the class of FG programs.

In (Calimeri et al. 2009b) we focused on querying dis-
junctive finitely-recursive positive (DFRP) programs. These
latter were not known to be decidable at the time of the work.
We defined an appropriate magic-set rewriting technique,
which turns a DFRP program P together with a query Q
into a FG program.

Theorem 18 Given a ground query Q on a DFRP program
P , let M(P, Q) be the magic-set rewriting of P for Q. Then:
(i) for both brave and cautious reasoning, M(P, Q) |= Q iff
P |= Q; (ii) M(P, Q) is FG and hence computable; (iii)
M(P, Q) is at most linearly bigger than P .

Thus, reasoning on DFRP programs is decidable, and the
theorem supplies an effective implementation strategy: (i)
Rewrite the query by our magic-set technique, (ii) Evalu-
ate the rewritten program with a solver supporting FG pro-
grams like DLV-Complex. It is worth noting that it is now
possible to evaluate, by means of bottom-up systems, pro-
grams featuring “unsafe” variables in the head of rules, like
non-ground facts, which are usual in Prolog but could not be
handled by ASP solvers to date.

7 Related Work

Functional terms are widely used in logic formalisms stem-
ming from first order logic. Introduction and treatment of
functional terms (or similar constructs) have been studied
indeed in several fields, such as Logic Programming and
Deductive Databases. In the ASP community, the treat-
ment of functional terms has recently received quite some
attention (Syrjänen 2001; Bonatti 2004; Gebser, Schaub, and
Thiele 2007; Lin and Wang 2008; Baselice, Bonatti, and
Criscuolo 2009; Eiter and Simkus 2009; Lierler and Lifs-
chitz 2009).

As a main complementary line of research we mention
finitary programs and variants thereof as discussed in Sec-
tion 6 Ground queries are decidable for both finitary and FG
programs; however, for finitary programs, to obtain decid-
ability one needs to additionally know (“a priori”) what is
the set of atoms involved in odd-cycles. We next discuss
other proposals for introducing functional terms in ASP.

ω-restricted Programs (Syrjänen 2001), the earliest at-
tempt of introducing function symbols under answer set se-
mantics, have been implemented into the SMODELS system.
The notion of ω-restricted program relies on the concept of
ω-stratification; this essentially enforces that each variable
appearing in a rule body also appears in a predicate belong-
ing to a strictly lower stratum, for ω the uppermost layer
containing all the unstratified portion of the program. This
strong restriction allows to determine a finite domain which

1669

a program can be grounded on. ω-restricted programs are
strictly contained in FD (and FG) programs.

In order to retain the decidability of standard reason-
ing tasks, rules in FDNC programs, and extensions thereof
(Simkus and Eiter 2007; Eiter and Simkus 2009), must have
a structure chosen among predefined syntactic shapes. This
ensures that programs have a forest-shaped model prop-
erty. Answer sets of FDNC programs are in general infinite,
but have a finite representation which can be exploited for
knowledge compilation and fast query answering. The class
of FDNC programs is less expressive than both finitary and
FG programs, and results to be incomparable from a syntac-
tic viewpoint to both of them.

The idea of FG programs is also related to termina-
tion studies of SLD-resolution for Prolog programs (refer
to (Schreye and Decorte 1994) as a starting point). Such
works are based on the study of non-increasing trends in
the size of complex terms, using several notions of mea-
sure (norm) for the size of terms. Such results are, however,
not directly applicable to our context, given the operational
nature of SLD resolution and its top-down flavor, which is
complementary to our bottom-up approach.

8 Conclusions

This paper summarized our line of research on the introduc-
tion of functions in ASP. On the theoretical side, we have
proven a number of decidability results for relevant program
classes. On the practical side, we have designed effective
implementation methods, and provided a powerful system,
named DLV-Complex, implementing our results and sup-
porting a rich ASP language with functions, lists, and sets.
The system is already used in many universities and research
institutes successfully.

9 Acknowledgments

Partially supported by the Regione Calabria and the EU un-
der POR Calabria FESR 2007-2013 within the PIA project
of DLVSYSTEM s.r.l.

References

Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. CUP.

Baselice, S.; Bonatti, P. A.; and Criscuolo, G. 2009. On
Finitely Recursive Programs. TPLP 9(2):213–238.

Bonatti, P. A. 2004. Reasoning with infinite stable models.
AI 156(1):75–111.

Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2008.
Computable Functions in ASP: Theory and Implementation.
In ICLP 2008, 407–424.

Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2009a. An
ASP System with Functions, Lists, and Sets. In LPNMR’09,
483–489.

Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2009b.
Magic Sets for the Bottom-Up Evaluation of Finitely Recur-
sive Programs. In LPNMR’09, 71–86.

Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. since
2008. DLV-Complex homepage. http://www.mat.unical.it/

dlv-complex.

Eiter, T., and Simkus, M. 2009. Bidirectional Answer Set
Programs with Function Symbols. In IJCAI-09, 765–771.

Friedrich, G., and Ivanchenko, V. 2008. Diagnosis
from first principles for workflow executions. Techni-
cal report. http://proserver3-iwas.uni-klu.ac.at/download\

_area/Technical-Reports/technical_report_2008_02.pdf.

Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo : A
new grounder for answer set programming. In LPNMR’07,
266–271.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation
in Logic Programs and Disjunctive Databases. NGC 9:365–
385.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV System for
Knowledge Representation and Reasoning. ACM TOCL
7(3):499–562.

Lierler, Y., and Lifschitz, V. 2009. One More Decidable
Class of Finitely Ground Programs. In ICLP’09, 489–493.

Lin, F., and Wang, Y. 2008. Answer Set Programming with
Functions. In KR 2008, 454–465.

Marek, V. W., and Truszczyński, M. 1999. Stable Mod-
els and an Alternative Logic Programming Paradigm. In
The Logic Programming Paradigm – A 25-Year Perspective.
375–398.

Schreye, D. D., and Decorte, S. 1994. Termination of Logic
Programs: The Never-Ending Story. JLP 19/20:199–260.

Simkus, M., and Eiter, T. 2007. FDNC: Decidable Non-
monotonic Disjunctive Logic Programs with Function Sym-
bols. In LPAR 2007, 514–530.

Syrjänen, T. 2001. Omega-restricted logic programs. In
LPNMR 2001, 267–279.

1670

