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Abstract

The bare minimum lexical resource required to translate be-
tween a pair of languages is a translation dictionary. Unfor-
tunately, dictionaries exist only between a tiny fraction of the
49 million possible language-pairs making machine transla-
tion virtually impossible between most of the languages.
This paper summarizes the last four years of our research mo-
tivated by the vision of panlingual communication. Our re-
search comprises three key steps. First, we compile over 630
freely available dictionaries over the Web and convert this
data into a single representation – the translation graph. Sec-
ond, we build several inference algorithms that infer transla-
tions between word pairs even when no dictionary lists them
as translations. Finally, we run our inference procedure of-
fline to construct PANDICTIONARY– a sense-distinguished,
massively multilingual dictionary that has translations in
more than 1000 languages. Our experiments assess the qual-
ity of this dictionary and find that we have 4 times as many
translations at a high precision of 0.9 compared to the English
Wiktionary, which is the lexical resource closest to PANDIC-
TIONARY.

Introduction
Nearly 7,000 languages are in use today (Gordon 2005) out
of which about 3,000 are endangered or even closer to ex-
tinction (Krauss 2007). With each dead language a whole
cultural history is lost, a peek into an heritage of the by-
gone era is closed forever. Moreover, in the era of global-
ization, where inter-lingual communication is becoming in-
creasingly important, one way the less-popular languages
can survive is by having technology, particularly the ma-
chine translation (MT) systems, enable and facilitate this
communication. Unfortunately, the current state of the art
in MT, e.g., Google Translate, which is able to handle on the
order of only a thousand language pairs (out of 49 million),
leaves a lot to be desired.

Because of its reliance on aligned corpora statistical MT
is far from scaling the technology to this large number of
language pairs. It is a pity, however, that the bare minimum
of the lexical resources, a translation dictionary, is also not
available between a large number of language pairs. This
paper reports on our recent results in constructing PANDIC-
TIONARY– a panlingual dictionary that can be used to trans-
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Figure 1: A fragment of the translation graph for two senses of
the English word ‘spring’. Edges labeled ‘1’ and ‘3’ are for spring
in the sense of a season, and ‘2’ and ‘4’ are for the flexible coil
sense. The graph shows translation entries from an English dictio-
nary merged with ones from a French dictionary.

late words (or phrases) between any pair of languages (Et-
zioni et al. 2007; Mausam et al. 2009).

Of course, lexical translation cannot replace statistical
MT, but it is useful for several applications including trans-
lating search-engine queries, meta-data tags in flickr.com
and del.icio.us, library classifications and recent applica-
tions like cross-lingual image search (Etzioni et al. 2007)
at www.panimages.org. Furthermore, lexical translation is a
valuable component in knowledge-based Machine Transla-
tion (MT) systems, e.g., (Carbonell et al. 2006) and is suffi-
cient for lemmatic communication (Soderland et al. 2009).

This paper summarizes the following contributions:
1. We introduce a novel approach to the task of lexical trans-

lation, which compiles a large number of machine read-
able dictionaries in a single resource called a translation
graph.

2. We employ probabilistic reasoning and inference over
the translation graph to infer translations that are not ex-
pressed in any of the input dictionaries. We design several
inference algorithms and compare their performance.

3. We use our best algorithm to compile PANDIC-
TIONARY—a massive, sense-distinguished multilingual
dictionary. Our empirical evaluations show that de-
pending on the desired precision PANDICTIONARY is
4.5 to 24 times larger than the English Wiktionary
(http://en.wiktionary.org). Moreover, it expresses about
4 times the number of pairwise translations compared to
the union of its input dictionaries (at precision 0.8).
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Figure 2: Snippets of translation graphs illustrating various inference scenarios. The nodes in question mark represent the nodes in focus for
each illustration. For all cases we are trying to infer translations of the flexible coil sense of spring.

The Translation Graph
The translation graph is an undirected graph defined as
〈V, E〉. V and E denote the sets of vertices and edges. A
vertex v represents a word or a phrase in a language. Edge
between two vertices denotes that the two words have at least
one word sense in common. Additionally, an edge is labeled
by an integer denoting an ID for the word sense.

We build the translation graph incrementally on the basis
of entries from multiple, independent dictionaries (both bi-
and multi-lingual) hosted by the Web. Bilingual dictionaries
translate words from one language to another, often without
distinguishing the intended sense. The Wiktionaries (wik-
tionary.org) are multilingual dictionaries created by volun-
teers collaborating over the Web, which provide translations
from a source language into multiple target languages, gen-
erally distinguishing between different word senses.

We assign each dictionary entry a unique sense ID. A
sense-distinguished, multilingual entry is converted to a
clique and all edges are assigned the same ID. As edges are
added on the basis of entries from a new dictionary, some
of the new word sense IDs are redundant because they are
equivalent to word senses already in the graph from another
dictionary. This leads to the following semantics for sense
IDs: if two edges have the same ID then they represent the
same sense, however, if two edges have different IDs, they
may or may not represent the same sense.

Currently, our translation graph is compiled from more
than 630 dictionaries, contains over 10,000,000 vertices and
around 60,000,000 edges. It is truly panlingual – contains
translations in over 1000 languages.

Figure 1 shows a fragment of a translation graph, which
was constructed from two sets of translations for the word
‘spring’ from an English Wiktionary, and two correspond-
ing entries from a French Wiktionary for ‘printemps’ (spring
season) and ‘ressort’ (spring coil)1. Translations of the sea-
son ‘spring’ have edges labeled with sense ID=1, the coil
sense has ID=2, translations of ‘printemps’ have ID=3, and
so forth. Note that there are multiple IDs (1 and 3) that rep-
resent the season sense of ‘spring’ – we refer to this phe-
nomenon as sense ID inflation.

Sense ID inflation poses a challenge for inference in trans-
lation graphs. If we wish to find all words that translate sense
s∗, represented by a given ID, we need to look for evidence
suggesting that another ID also represents s∗. We develop
three algorithms for this task, which we describe next.

1Only a few edges are shown. For example, an edge between
‘udaherri’ and ‘primavera’ (ID 1) is present, but not shown.

Probabilistic Inference
Our inference task is defined as follows: given a sense ID,
say id∗, that represents a sense, say s∗, compute the transla-
tions (in different languages) of s∗. We describe three algo-
rithms for inference over the translation graph.

In essence, inference over a translation graph amounts to
transitive sense matching: if word A translates to word B,
which translates in turn to word C, what is the probability
that C is a translation of A? If B is polysemous then C
may not share a sense with A. For example, in Figure 2(a) if
A is the French word ‘ressort’ (means both jurisdiction and
the flexible-coil sense of spring) and B is the English word
‘spring’, then Slovenian word ‘vzmet’ may or may not be
a correct translation of ‘ressort’ depending on whether the
edge (B, C) denotes the flexible-coil sense of spring, the
season sense, or another sense. However, if the three nodes
form a triangle (Figure 2(b)) then our belief in the translation
increases. This insight helps in our first inference algorithm.

TRANSGRAPH: In this method (Etzioni et al. 2007)
we compute sense ID equivalence scores of the form
score(idi ≡ idj). The evidence to compute this equiva-
lence comes from two sources: (1) if the vertex sets in two
multilingual sense IDs have a high overlap the IDs are equiv-
alent with a score proportional to the fraction of overlap, and
(2) if two independent bilingual entries form a triangle with
an edge labeled with id then two bilingual sense IDs are
equivalent to id with a high score. Based on these sense ID
equivalence scores each individual vertex can be scored –
we follow a path from id∗ to that vertex and multiply the
sense ID equivalence scores at each hop. Ranking by this
translation score gives us a way to trade precision for recall.

Theory of Translation Circuits: Continuing with the ex-
ample of Figure 2 we question what is special about a tri-
angle. In particular, can we make a similar inference in the
snippet (c)? The answer is yes, under certain conditions de-
tailed in (Mausam et al. 2009).
Definition 1 We define a translation circuit from v∗1 with sense
s∗ as a cycle that starts and ends at v∗1 with no repeated vertices
(other than v∗1 at end points). Moreover, the path includes an edge
between v∗1 and another vertex v∗2 that also has sense s∗ (examples
are snippets (b) and (c)).

Theorem 1 Let Ck be a translation circuit of length k (k <<
|S|) with origin v∗ and sense s∗. Let P be the set of vertices along
this circuit, let |S| denote the number of possible word senses for
all words in all languages, and let the maximum number of senses
per word be bounded by N (N << |S|). Then under some as-
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sumptions ∀v ∈ P lim|S|→∞ Pr(v ∈ s∗) = 1

uSENSEUNIFORMPATHS: This theorem suggests the fol-
lowing basic algorithm: “for each vertex v check whether v
lies on a translation circuit with sense s∗ – if yes, mark it as
a translation”. In our algorithm we check for the presence
of a translation circuit using a random walk scheme. Notice
that this algorithm correctly infers ‘Feder’ to be translation
of spring coil, and ‘ploma’ to be not (Figure 2(d)).

We additionally employ the observation that greater the
number of translation circuits through a vertex greater our
belief in the inference about it. To operationalize this we
employ graph sampling – we sample different graph topolo-
gies by sampling each edge with a probability and check for
the presence of translation circuit in each topology. If a ver-
tex has circuits in many different sampled graphs it has more
evidence and we assign a higher score for its inference.
SENSEUNIFORMPATHS: uSENSEUNIFORMPATHS
achieves much more recall than TRANSGRAPH, but makes
a specific kind of mistake. Figure 2(e) exemplifies this situ-
ation – our previous algorithm will incorrectly label ‘penna’
to be a translation of spring coil. Though it is not a transla-
tion, the circuit completes because two vertices ‘Feder’ and
‘fjäder’ have two senses in common – the spring coil sense
and feather of a bird. ‘Penna’ means feather, but not coil.
Shared polysemy in the circuits is the cause of many incor-
rect inferences.
Definition 2 An ambiguity set A is a set of vertices that
all share the same two senses. I.e., ∃s1, s2, with s1 6=
s2 s.t. ∀v ∈ A, v ∈ s1 ∧ v ∈ s2.

In our example ‘Feder’ and ‘fjäder’ form an ambiguity
set. To increase the precision of our algorithm we prune
the circuits that contain two nodes in the same ambiguity
set and also have one or more intervening nodes that are not
in the ambiguity set. There is a strong likelihood that the
intervening nodes will represent a translation error.

The key step that remains is “how to compute an ambi-
guity set”? Ambiguity sets can be detected from the graph
topology automatically. Each clique in the graph represents
a set of vertices that share a common word sense. When
two cliques intersect in two or more vertices, the intersect-
ing vertices share the word sense of both cliques. This may
either mean that both cliques represent the same word sense,
or that the intersecting vertices form an ambiguity set. A
large overlap between two cliques makes the former case
more likely; a small overlap makes it more likely that we
have found an ambiguity set.
Experiments: Which of the three algorithms (TG, uSP
and SP) is superior for translation inference? To carry out
this comparison, we randomly sampled 1,000 senses from
English Wiktionary and ran the three algorithms over them.
We assess the precision and coverage of these inference al-
gorithms by comparing the inferred translations with a gold
standard. We create the gold standard on a subset of seven
languages for which we had in-house experts.

Our results are shown in Figure 3. At this high precision,
SP more than doubles the number of baseline translations,
finding 5 times as many inferred translations (in black) as
TG. The number of inferred translations (in black) for SP is

Figure 3: The SENSEUNIFORMPATHS algorithm (SP) more than
doubles the number of translations at precision 0.95, compared to
a baseline of translations that can be found without inference.

1.2 times that of uSP and 3.5 times that of TG, at precision
0.9. SP is consistently better than others, since it performs
better for polysemous words, due to its pruning based on
ambiguity sets. We conclude that SP is the best inference
algorithm and employ it for further research.

PanDictionary: A Novel Multilingual Resource
To be most useful for our vision of panlingual translation we
wish to construct a sense-distinguished lexical translation
resource, in which each entry is a distinct word sense and
associated with each word sense is a list of translations in
multiple languages. This will enable lexical translation for
a large number of languages at once just by looking up the
desired sense. We compile PANDICTIONARY, a first version
of such a dictionary, by employing SENSEUNIFORMPATHS
over the translation graph.

We first run SENSEUNIFORMPATHS to expand the ap-
proximately 50,000 senses in the English Wiktionary. We
further expand any senses from the other Wiktionaries that
are not yet covered by PANDICTIONARY, and add these
to PANDICTIONARY. This results in the creation of the
world’s largest multilingual, sense-distinguished translation
resource, PANDICTIONARY. It contains a little over 80,000
senses. Its construction takes about three weeks on a 3.4
GHz processor with a 2 GB memory.

We evaluate PANDICTIONARY’s quality and coverage
across two dimensions. (1) We compare the coverage of
PANDICTIONARY with the largest existing multilingual dic-
tionary, the English Wiktionary? (2) We evaluate the benefit
of inference over the mere aggregation of 631 dictionaries.

The English Wiktionary is the largest Wiktionary with
a total of 403,413 translations.2 It is also more reliable
than some other Wiktionaries in making word sense distinc-
tions. In the first study we use only the subset of PANDIC-
TIONARY that was computed starting from the English Wik-
tionary senses. Thus, this experiment under-reports PAN-
DICTIONARY’s coverage.

To evaluate a huge resource such as PANDICTIONARY
we recruited native speakers of 14 languages – Arabic, Bul-
garian, Danish, Dutch, German, Hebrew, Hindi, Indonesian,
Japanese, Korean, Spanish, Turkish, Urdu, and Vietnamese.
We randomly sampled 200 translations per language, which
resulted in about 2,500 tags. Figure 4 shows the no. of trans-
lations in PANDICTIONARY in senses from the English Wik-

2Our translation graph uses the version of English Wiktionary
extracted in January 2008.
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Figure 4: Precision vs. coverage curve for PANDICTIONARY. It
quadruples the size of the English Wiktionary at precision 0.90, is
more than 8 times larger at precision 0.85 and is almost 24 times
the size at precision 0.7.

tionary. At precision 0.90, PANDICTIONARY has 1.8 million
translations, 4.5 times as many as the English Wiktionary.

We also compare the coverage of PANDICTIONARY with
that of the English Wiktionary in terms of languages cov-
ered. Table 1 reports, for each resource, the number of lan-
guages that have a minimum number of distinct words in
the resource. PANDICTIONARY has 1.4 times as many lan-
guages with at least 1,000 translations at precision 0.90 and
more than twice at precision 0.7. These observations reaf-
firm our faith in the panlingual nature of the resource.

Next, we investigate whether this increase in coverage is
due to the inference algorithm or the mere aggregation of
hundreds of translation dictionaries. Since most bilingual
dictionaries are not sense-distinguished, we ignore the word
senses and count the number of distinct (word1, word2)
translation pairs. To create a gold standard for translations
we use collaborative tagging scheme, with two native speak-
ers of different languages, who are both bilingual in English.
For each suggested translation they narrate in English the
various senses of words in their respective languages. They
tag a translation correct if they found a common sense, one
that is shared by both the words.

Figure 5 compares the number of word-word translation
pairs in the English Wiktionary (EW), in all 631 source dic-
tionaries (631 D), and in PANDICTIONARY at precisions
0.90, 0.85, and 0.80. PANDICTIONARY increases the num-
ber of word-word translations by 73% over the source dic-
tionary translations at precision 0.90 and increases it by 2.7
times at precision 0.85. PANDICTIONARY also adds value
by identifying the word sense of the translation, which is not
given in most of the source dictionaries.

Overall, our experiments demonstrate that PANDIC-
TIONARY, which is our compiled dictionary, has much larger
coverage than English Wiktionary, the largest multilingual
dictionary known to us before this project. We also observe
that our algorithms infer a large number of translations that
are not in any of the input dictionaries quadrupling the num-
ber of pairwise translations asserted (at precision 0.8).

# languages with distinct words
≥ 1000 ≥ 100 ≥ 1

English Wiktionary 49 107 505
PanDictionary (0.90) 67 146 608
PanDictionary (0.85) 75 175 794
PanDictionary (0.70) 107 607 1066

Table 1: PANDICTIONARY covers substantially more languages
than the English Wiktionary.

Figure 5: The number of distinct word-word translation pairs from
PANDICTIONARY is several times higher than translation pairs in
the English Wiktionary (EW) or in all 631 source dictionaries com-
bined (631 D). A majority of PANDICTIONARY translations are in-
ferred by combining entries from multiple dictionaries.

Related Work and Conclusions
Related Work: Because we are considering a relatively
new problem (automatically building a panlingual transla-
tion resource) there is little work that is directly related to
our own. Most previous work on compiling dictionaries
automatically has focused on a relatively small set of lan-
guages (e.g., (Helmreich, Guthrie, & Wilks 1993)). Previous
algorithms for translation inference (Gollins & Sanderson
2001) are unable to achieve high precision or use additional
sources of data like parallel corpora (Dyvik 2004).
Conclusions: We have described a novel approach to lexi-
cal translation that combines freely available dictionaries in
a common resource, and runs probabilistic inference to infer
new translations not mentioned in the source data. This leads
to the construction of PANDICTIONARY, the largest mul-
tilingual sense-distinguished dictionary covering over 1000
languages. Our evaluation contrasts our high coverage with
English Wiktionary, the closest multilingual dictionary in
terms of size and scope. We plan to make PANDICTIONARY
available to the research community, and also to the Wik-
tionary community to bolster their efforts.
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