
Constraint Programming for Data Mining and Machine Learning

Luc De Raedt and Tias Guns and Siegfried Nijssen
Departement Computerwetenschappen, Katholieke Univeristeit Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract

Machine learning and data mining have become aware
that using constraints when learning patterns and rules
can be very useful. To this end, a large number of
special purpose systems and techniques have been de-
veloped for solving such constraint-based mining and
learning problems. These techniques have, so far, been
developed independently of the general purpose tools
and principles of constraint programming known within
the field of artificial intelligence. This paper shows that
off-the-shelf constraint programming techniques can be
applied to various pattern mining and rule learning
problems (cf. also (De Raedt, Guns, and Nijssen 2008;
Nijssen, Guns, and De Raedt 2009)). This does not only
lead to methodologies that are more general and flexi-
ble, but also provides new insights into the underlying
mining problems that allow us to improve the state-of-
the-art in data mining. Such a combination of constraint
programming and data mining raises a number of inter-
esting new questions and challenges.

Introduction

Constraint satisfaction problems are well-known and have
extensively been studied in artificial intelligence. Today, ef-
fective and general purpose constraint solvers exist in the
area of constraint programming (Rossi, van Beek, and Walsh
2006). The main principles in constraint programming are:

• users specify a problem declaratively by providing con-
straints on variables with domains;

• solvers find solutions by constraint propagation and
search.

Constraint propagation is the process of using a constraint
to reduce the domain of a variable based on the domains
of other variables. Constraint programming systems have
been used in a wide variety of applications and often lead to
effective solutions.

Even though constraints have been used within machine
learning and data mining, the use of principled constraint
programming techniques in these fields is uncommon. One
exception in this regard is the recent work of (De Raedt,
Guns, and Nijssen 2008; Nijssen, Guns, and De Raedt

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2009) on applying constraint programming to the mining
and learning of rules in databases. This paper reviews these
results.

An example of a rule targeted by these techniques is:

if income=high and debt=low then accept loan=yes.

These rules can be used both in a descriptive setting, such
as discovering association rules (Agrawal et al. 1996), and
in a predictive setting, such as rule learning (Fürnkranz and
Flach 2005). In the machine learning community, such rules
are typically learned one at a time using a heuristic method.
In the data mining community, the focus has been on finding
all rules satisfying certain constraints using an exact method.

An essential question in both cases is when a rule is to be
accepted as part of the final solution. Most approaches differ
in their definition of the constraints that a rule should satisfy
to be accepted. Particularly in exact approaches, which may
yield many rules if the given constraints are not restrictive
enough, the use of constraints is essential in order to make
the computation both feasible and useful.

The interest in constraints in data mining led to the de-
velopment of solvers for problems known as closed item-
set mining, maximal frequent itemset mining, discriminative
itemset mining, and so on. These problems are often re-
lated to well-studied problems in other areas. For instance,
closed itemset mining is an instance of formal concept anal-
ysis (Ganter, Stumme, and Wille 2005), an area related to
artificial intelligence; maximal itemset mining is related to
the discovery of borders of version spaces; and discrimina-
tive itemset mining is related to rule-based classification and
subgroup discovery. In all cases, specialized solvers were
developed to find the proposed type of itemset efficiently,
but almost no attention was given to the development of a
general framework in which these solvers could be encom-
passed.

The key contribution of this paper is that we show how
constraint programming can be applied to pattern mining
and rule learning problems, two important applications, that
have, so far, not really been addressed within the con-
straint programming community. This does not only lead
to promising results – in some cases the constraint program-
ming system outperforms the state-of-the-art in data mining
– but also raises a number of new challenges for constraint
programming, and new opportunities for data mining and
machine learning.

1671

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

This paper is organized as follows: we first briefly sum-
marize the principles of constraint programming and in-
troduce the problem of itemset mining; subsequently, we
present the main contribution and provide an outlook on the
future of the combination of constraint programming, ma-
chine learning and data mining.

Constraint Programming

Constraint programming (Rossi, van Beek, and Walsh 2006)
is a declarative programming paradigm: instead of specify-
ing how to solve a problem, the user only has to specify
the problem itself. The constraint programming system is
then responsible for solving it. Constraint programming sys-
tems solve constraint satisfaction problems (CSP). A CSP
P = (V , D, C) is specified by

• a finite set of variables V ;

• an initial domain D, which maps every variable v ∈ V to
a finite set of values D(v);

• a finite set of constraints C.

The aim is to find an assignment of the variables which sat-
isfies all constraints.

Constraint programming systems are typically based on
exhaustive depth-first search. The main concept used to
speed-up the search is constraint propagation. Constraint
propagation reduces the domains of individual variables
such that the domain of all variables remains locally con-
sistent. In general, in a locally consistent domain, a variable
x does not have value d in its domain if it can be determined
that there is no solution D′ for which D′(x) = {d}. In this
way, the propagation prevents the search from visiting a part
of the search tree that does not contain a solution.

Every constraint is implemented by a propagator. Such a
propagator takes as input a domain and outputs a stronger,
locally consistent domain. For example, if D(X) =
D(Y) = {0, 1, 2} and X < Y , then we can derive that
X 6= 2 and Y 6= 0, soD(X) = {0, 1}, D(Y) = {1, 2}. The
repeated application of propagators can lead to increasingly
stronger domains. Propagation continues until a fixed point
is reached in which the domain does not change any more.
At this point, the search assigns a variable one of its val-
ues. Whenever the domain of one of the variables becomes
empty, the search backtracks to explore alternatives.

Constraint programming systems differ in the constraints
that they support. Most systems support arithmetic con-
straints, such as X1 +X2 +X3 ≥ 2, and reified arithmetic
constraints such as Y = 1 ↔ X1 +X2 +X3 ≥ 2. This sets
them apart from satisfiability (SAT) solvers and Integer Lin-
ear Programming (ILP) systems, in which it is hard to for-
mulate reified arithmetic constraints. As we will see, such
constraints are very important in machine learning and data
mining, motivating the choice for constraint programming.

Frequent Itemset Mining

Let I = {1, . . . ,m} be a set of items, and T = {1, . . . , n}
a set of transactions. Then an itemset database D is a binary
matrix of size n ×m; an example database is given in Fig-
ure 1. Furthermore, ϕ : 2I → 2T is a function that maps an

Tid Itemset

T1 {C}
T2 {A,B}
T3 {A,E}
T4 {B,C}
T5 {C,D,E}
T6 {A,B,C}
T7 {A,B,E}
T8 {A,B,C,E}

Tid A B C D E

1 0 0 1 0 0
2 1 1 0 0 0
3 1 0 0 0 1
4 0 1 1 0 0
5 0 0 1 1 1
6 1 1 1 0 0
7 1 1 0 0 1
8 1 1 1 0 1

Class

+
+
+
+
-
-
-
-

Figure 1: A small example of an itemset database, in multi-
set notation and in binary matrix notation. In discriminative
itemset mining, every transaction has a class label; in other
itemset mining settings no class label is used.

itemset I to the set T of transactions from T in which all its
items occur, that is,

ϕ(I) = {t ∈ T |∀i ∈ I : Dti = 1}

In our example database, we have for I = {A,B} that
T = ϕ({A,B}) = {2, 6, 7, 8}. Dually, ψ : 2T → 2I

is a function that maps a transaction set T to the set of all
items from I shared by all transactions in T , that is,

ψ(T) = {i ∈ I|∀t ∈ T : Dti = 1}

In our example database in Figure 1, for T = {6, 7, 8} we
have that ψ({6, 7, 8}) = {A,B}.

In the remainder of this section, we introduce several
well-known itemset mining problems. We will show that
they can be formulated as a constrained search for pairs
(I, T), where I is an itemset and T a transaction set.

Frequent Itemsets Our first example are the traditional
frequent itemsets (Agrawal et al. 1996). The search for these
itemsets can be seen as a search for pairs (I, T), such that

T = ϕ(I) (1)

|T | ≥ θ (2)

where θ is a frequency threshold. The first constraint speci-
fies that T must equal the set of transactions in which I oc-
curs; the next constraint is the minimum frequency require-
ment: the absolute number of transactions in which I occurs
must be at least θ. In our example database, if we impose
a threshold of θ = 2, the set of frequent itemsets includes
{A,B} and {A,B,E}; it does not include {A,B,C,E}.

Anti-Monotonic and Monotonic Constraints In pattern
mining it is well-known that the frequency constraint |T | ≥
θ is anti-monotonic with respect to the subset relation of
itemsets: every subset of an itemset that satisfies the con-
straint, also satisfies it. For instance, for patterns (I, T) and
(I ′, T ′) satisfying the coverage and support constraints,

I ′ ⊆ I ⇒ |T ′| ≥ |T | ≥ θ.

Other examples of anti-monotonic constraints are maximum
itemset size and maximum total itemset cost (Bucila et al.
2003; Bonchi and Lucchese 2007). Assume that every item

1672

has a cost ci (for a size constraint, ci = 1). Then a maximum
cost constraint with c(I) =

∑
i∈I

ci, is satisfied if

c(I) ≤ γ. (3)

Given that I ′ ⊆ I → c(I ′) ≤ c(I) ≤ γ we can see
that this constraint is anti-monotonic too. Dual to this
anti-monotonic constraints are monotonic constraints such
as maximum frequency, minimum size and minimum cost.
They can be expressed by replacing in the above constraints
the ≥ by ≤, and vice versa.

Closed Itemsets Closed Itemsets are a popular condensed
representation for the set of all frequent itemsets and their
frequencies (Pasquier et al. 1999). Itemsets are called closed
when they satisfy

I = ψ(T) (4)

in addition to constraint (1); alternatively this can be formu-
lated as I = ψ(ϕ(I)). Closed itemsets are closely related
to the topic of formal concept analysis. Another type of
condensed representation is that of maximal itemsets, which
corresponds to the border of a version space as known from
version space theory in machine learning.

Discriminative Itemset Mining

In discriminative or correlated itemset mining (Morishita
and Sese 2000) we assume that the transactions or examples
belong to two classes T + and T −. Furthermore, a func-
tion f(p, n) is assumed given which, for a given number of
positive (p) and negative (n) examples covered, computes a
score that measures how well the itemset discriminates the
two classes. Often, the information gain measure or a corre-
lation measure such as χ2 is used (Cheng et al. 2008).

For example, assume that the first four transactions in Fig-
ure 1 are positive, and the last four are negative examples:
T + = {T1, T2, T3, T4} and T − = {T5, T6, T7, T8}. Then
the itemset {A,B}, which covers 1 positive example (T2)
and 3 negative examples (T6, T7, T8), receives the follow-
ing score when χ2 is used as scoring function: f(1, 3) = 2.
Likewise, for itemset {B,E}: f(0, 2) = 2.666.

The discriminative itemset mining task is to find all item-
sets for which

T = ϕ(I) (5)

f(|T ∩ T +|, |T ∩ T −|) ≥ θ (6)

An alternative setting is to find the top-k itemsets which
score the highest according to the given measure. This set-
ting is strongly related to that of rule discovery in machine
learning (Fürnkranz and Flach 2005). For instance, a rule
learning algorithm such as FOIL (Quinlan 1990) also per-
forms an iterative search for a rule which maximizes a cer-
tain measure; the main difference is that in FOIL this search
is performed heuristically while in itemset mining this is
done exhaustively.

Itemset Mining as Constraint Programming

In (De Raedt, Guns, and Nijssen 2008) we showed that we
can formulate the problem of frequent itemset mining in CP

Algorithm 1 Essence’ model of frequent itemset mining

1: given NrT, NrI : int

2: given TDB : matrix indexed by [int(1..NrT),int(1..NrI)] of int(0..1)

3: given Freq : int

4: find Items : matrix indexed by [int(1..NrI)] of bool

5: find Trans : matrix indexed by [int(1..NrT)] of bool

6: such that

7: forall t: int(1..NrT).

8: Trans[t] <=> ((sum i: int(1..NrI). (1-TDB[t,i])* Items[i]) <= 0),

9: forall i: int(1..NrI).

10: Items[i] <=> ((sum t: int(1..NrT). TDB[t,i]* Trans[t]) >= Freq.

by introducing a boolean variable Ii for each i ∈ I and a
boolean variable Tt for each t ∈ T . The frequent itemset
constraints (1) and (2) are then formulated as:

∀t ∈ T : Tt = 1 ↔
∑

i∈I

Ii(1 −Dti) = 0 (7)

∀i ∈ I : Ii = 1 →
∑

t∈T

TtDti ≥ θ. (8)

Here Dti = 1 if (t, i) ∈ D and Dti = 0 if (t, i) 6∈ D.
It is straightforward to formulate these constraints in a CP
system, as is demonstrated for frequent itemset mining us-
ing the Essence’ language (Algorithm 1). In a constraint
programming system such as Gecode (Schulte and Stuckey
2008), the solver uses the readily available propagators to
search for all itemsets satisfying these constraints. Interest-
ingly, the resulting search strategy is similar to that of known
itemset mining systems (De Raedt, Guns, and Nijssen 2008).

We implemented our model in the state-of-the-art con-
straint programming system Gecode (Schulte and Stuckey
2008). Figure 2 shows an experimental comparison of the
resulting mining system, FIM CP, to other mining systems.
The first task is standard frequent itemset mining. This sim-
ple task has been studied for many years, amounting to a
competition focused on efficient frequent itemset mining im-
plementations (Goethals and Zaki 2004). The mining sys-
tems LCM, Eclat and Mafia were obtained from the com-
petition website. They are still considered to be among
the fastest implementations available. PATTERNIST is a
constraint-based itemset mining system (Bonchi and Luc-
chese 2007). Given the highly optimized nature of these
competitor systems, our constraint programming implemen-
tation in an out-of-the-box solver does not achieve faster
runtimes. However, we can observe that the runtime of our
method behaves in the same way as the other miners, indi-
cating that the difference could be attributed to implementa-
tion issues.

The second setting for which we show results here is item-
set mining with a monotonic minimum size constraint. The
gray line in Figure 2 indicates the time needed to mine the
patterns without a minimum size constraint. The experiment
demonstrates that for tightly constrained problems, for in-
stance, with a high minimum size constraint, our CP formu-
lation is able to outperform the specialized PATTERNIST
mining system. In general we have observed that the use

1673

Figure 2: Comparison of mining systems for 2 different
tasks. mx indicates a minimum size constraint of x.

of a constraint programming system is beneficial in settings
with multiple and tight constraints. These are the cases in
which constraint propagation is able to significantly reduce
the size of the search tree.

Discriminative itemset mining The frequent itemset min-
ing model can be adapted for the problem of discriminative
itemset mining. Reusing constraint (7), we showed in (Ni-
jssen, Guns, and De Raedt 2009) that for functions such as
information gain and χ2, we can model the correlation con-
straint (6) as:

∀i ∈ I : Ii = 1 → f(
∑

t∈T +

TtDti,
∑

t∈T −

TtDti) ≥ θ. (9)

For this constraint, a propagator is needed that can calcu-
late an upper bound on the correlation scores that can still
be reached given current domains of items and transactions.
We showed in (Nijssen, Guns, and De Raedt 2009) how to
do this effectively, based on ROC analysis known in the ma-
chine learning community.

Table 1 illustrates how the discriminative itemset mining
approach, when implemented in Gecode, compares to exist-
ing algorithms in the data mining community. In this exper-
iment we are searching for the best scoring itemset. These
experiments show convincingly that the constraint program-
ming approach can outperform existing data mining systems
on this task. The prime reason for this is that the constraint
programming principle of maintaining local consistencies
allowed us to device a more effective propagation rule than
was employed in known itemset mining algorithms. Com-
bined with the reified formulation, this leads to a large in-
crease in efficiency.

These experiments show convincingly that the constraint
programming approach can outperform existing data mining
systems on some tasks. A further and perhaps even more
important advantage is that CP systems are general pur-
pose systems supporting many different types of constraints.
Therefore, it is straightforward to incorporate many other
well-known constraints, such as cost constraints, closedness
or discriminative measures as defined above, as well as their
combinations in the constraint programming system. This
is unlike the typically itemset mining system which require
substantial and non-trivial modifications in order to accom-
modate new constraints or their combination. The CP ap-

proach thus leads to a much more flexible and extensible sys-
tem than state-of-the-art solutions in the data mining com-
munity, which in turn indicates that the relationship between
machine learning, data mining and constraint programming
deserves further study.

Further Research
The results summarized above consider two types of min-
ing problems, namely frequent and discriminative itemset
mining. Frequent itemset mining is the prototypical pattern
mining problem; discriminative itemset mining is closely re-
lated to rule learning and subgroup discovery. These results
show that constraint programming is promising as a method
for solving these mining and learning problems.

Continuing this research, we are currently studying the
application of our approach to problems arising in bioinfor-
matics. For instance, itemset mining has commonly been
applied to the analysis of microarray data; constraint pro-
gramming may offer a more general and more flexible ap-
proach to analyze such data.

Whereas the above work is still restricted to the discovery
of patterns in binary data, the use of constraint programming
in other pattern mining related problems is also a promising
direction of future research. A problem closely related to
pattern mining is that of pattern set mining (De Raedt and
Zimmermann 2007), where one does not only impose con-
straints on individual patterns, but also on the overall set of
patterns constituting a solution. Constraints that can be im-
posed include, for instance, the requirement that patterns do
not overlap too much, or that they cover the complete set
of transactions together. Another related problem is that of
finding patterns in continuous data. This requirement is in
particular relevant to deal with problems in bioinformatics.
Likewise, there are many approaches to mining structured
data, such as sequences, trees and graphs. It is an interest-
ing open question as to whether it is possible to represent
such problems using constraint programming too. One of
the challenges here is that such structured data can no longer
be represented using a fixed number of features or items.

Next to pattern mining, other areas of machine learning
and data mining may also profit from a closer study of con-
straint programming techniques. One such area is statistical
machine learning, where problems are typically formulated
using mathematical programming. Recently some results
in the use of other types of solvers have already been ob-
tained for certain probabilistic models (Chang et al. 2008;
Cussens 2008). In these approaches, however, Integer Lin-
ear Programming (ILP) or satisfiability (SAT) solvers were
used. CP solvers address a more general class of problems
than ILP and SAT solvers, but this generality sometimes
comes at a computational cost. Current developments in CP
which aim at combining ILP and SAT with CP may also help
in addressing these machine learning problems. In this it is
important that the CP system deals effectively not only with
satisfaction, but also with optimization problems.

Other topics of interest are constraint-based clustering and
constraint-based classifier induction. In constraint-based
clustering the challenge is to cluster examples when ad-
ditional knowledge is available about them, for instance,

1674

Dataset CP (Cheng et al.
2008)

(Morishita and
Sese 2000)

anneal 0.22 22.46 24.09
australian-credit 0.30 3.40 0.30
breast-wisconsin 0.28 96.75 0.28
diabetes 2.45 − 128.04
heart-cleveland 0.19 9.49 2.15
hypothyroid 0.71 − 10.91
ionosphere 1.44 − >

kr-vs-kp 0.92 125.60 46.20

Dataset CP (Cheng et al.
2008)

(Morishita and
Sese 2000)

letter 52.66 − >

mushroom 14.11 0.09 13.48
primary-tumor 0.03 0.26 0.13
segment 1.45 − >

soybean 0.05 0.05 0.07
splice-1 30.41 1.86 31.11
vehicle 0.85 − >

yeast 5.67 − 781.63

Table 1: Run times, in seconds, of 3 top-1 discriminative itemset miners, on an Intel Core 2 Duo E6600 and 4GB of RAM;
>: experiments timed out after 900s. −: experiments failing due to memory overflow. Results for (Cheng et al. 2008) were
obtained using the original author’s implementation; we re-implemented the algorithm of Morishita and Sese (2000).

prohibiting certain examples from being clustered together
(so-called cannot-link constraints). Similarly, in constraint-
based classifier induction, one may wish to find a deci-
sion tree that satisfies size and cost-constraints. A first
study applying CP on this problem was recently performed
(Bessiere, Hebrard, and O’Sullivan 2009). In data min-
ing, the relationship between itemset mining and constraint-
based decision tree learning was studied (Nijssen and
Fromont 2007). It is an open question whether this relation
can also be exploited in a constraint programming setting.

Whereas the previous cases study how machine learning
and data mining could profit from constraint programming,
the opposite direction is also a topic of interest: how can
constraint programming systems be extended using tech-
niques from machine learning and data mining? In our ex-
periments we found that certain propagators are evaluated in
a rather inefficient way. The use of matrix representations
common in data mining may alleviate some of these prob-
lems. In conclusion, we believe that further integration of
machine learning, data mining and constraint programming
may contribute to the advancement of all these areas.

Acknowledgments

This work was supported by a Postdoc and a project grant
from the Research Foundation—Flanders, project “Princi-
ples of Patternset Mining”, as well as a grant from the Insti-
tute for the Promotion and Innovation through Science and
Technology in Flanders (IWT-Vlaanderen).

References

Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.; and
Verkamo, A. I. 1996. Fast discovery of association rules. In
Advances in Knowledge Discovery and Data Mining, 307–
328. AAAI Press.

Bessiere, C.; Hebrard, E.; and O’Sullivan, B. 2009. Min-
imising decision tree size as combinatorial optimisation. In
Gent, I. P., ed., CP, volume 5732 of Lecture Notes in Com-
puter Science, 173–187. Springer.

Bonchi, F., and Lucchese, C. 2007. Extending the state-of-
the-art of constraint-based pattern discovery. Data Knowl.
Eng. 60(2):377–399.

Bucila, C.; Gehrke, J.; Kifer, D.; and White, W. M. 2003.

Dualminer: A dual-pruning algorithm for itemsets with con-
straints. Data Min. Knowl. Discov. 7(3):241–272.

Chang, M.-W.; Ratinov, L.-A.; Rizzolo, N.; and Roth, D.
2008. Learning and inference with constraints. In Fox, D.,
and Gomes, C. P., eds., AAAI, 1513–1518. AAAI Press.

Cheng, H.; Yan, X.; Han, J.; and Yu, P. 2008. Direct discrim-
inative pattern mining for effective classification. In ICDE,
169–178.

Cussens, J. 2008. Bayesian network learning by compiling
to weighted max-sat. In McAllester, D. A., and Myllymäki,
P., eds., UAI, 105–112. AUAI Press.

De Raedt, L., and Zimmermann, A. 2007. Constraint-based
pattern set mining. In SDM. SIAM.

De Raedt, L.; Guns, T.; and Nijssen, S. 2008. Constraint
programming for itemset mining. In KDD, 204–212.

Fürnkranz, J., and Flach, P. A. 2005. ROC ’n’ rule learn-
ing – towards a better understanding of covering algorithms.
Machine Learning 58(1):39–77.

Ganter, B.; Stumme, G.; and Wille, R. 2005. Formal Con-
cept Analysis: Foundations and Applications, volume 3626
of Lecture Notes in Artificial Intelligence.

Goethals, B., and Zaki, M. J. 2004. Advances in frequent
itemset mining implementations: report on FIMI’03. In
SIGKDD Explorations Newsletter, volume 6, 109–117.

Morishita, S., and Sese, J. 2000. Traversing itemset lattice
with statistical metric pruning. In PODS, 226–236.

Nijssen, S., and Fromont, E. 2007. Mining optimal decision
trees from itemset lattices. In KDD, 530–539.

Nijssen, S.; Guns, T.; and De Raedt, L. 2009. Correlated
itemset mining in ROC space: A constraint programming
approach. In KDD, 647–656.

Pasquier, N.; Bastide, Y.; Taouil, R.; and Lakhal, L. 1999.
Discovering frequent closed itemsets for association rules.
In ICDT, 398–416.

Quinlan, J. R. 1990. Learning logical definitions from rela-
tions. Machine Learning 5:239–266.

Rossi, F.; van Beek, P.; and Walsh, T. 2006. Handbook of
Constraint Programming (Foundations of Artificial Intelli-
gence). Elsevier Science Inc.

Schulte, C., and Stuckey, P. 2008. Efficient constraint prop-
agation engines. ACM Trans. Program. Lang. Syst. 31(1).

1675

