
Local Search in Histogram Construction

Felix Halim and Panagiotis Karras and Roland H. C. Yap
School of Computing

National University of Singapore
13 Computing Drive
Singapore 117417

{halim, karras, ryap}@comp.nus.edu.sg

Abstract

The problem of dividing a sequence of values into segments
occurs in database systems, information retrieval, and knowl-
edge management. The challenge is to select a finite number
of boundaries for the segments so as to optimize an objec-
tive error function defined over those segments. Although
this optimization problem can be solved in polynomial time,
the algorithm which achieves the minimum error does not
scale well, hence it is not practical for applications with mas-
sive data sets. There is considerable research with numer-
ous approximation and heuristic algorithms. Still, none of
those approaches has resolved the quality-efficiency tradeoff
in a satisfactory manner. In (Halim, Karras, and Yap 2009),
we obtain near linear time algorithms which achieve both the
desired scalability and near-optimal quality, thus dominating
earlier approaches. In this paper, we show how two ideas
from artificial intelligence, an efficient local search and re-
combination of multiple solutions reminiscent of genetic al-
gorithms, are combined in a novel way to obtain state of the
art histogram construction algorithms.

Introduction
The problem of histogram construction or sequence seg-
mentation has numerous applications in database systems
(Ioannidis 1993; Chakrabarti et al. 2001), decision sup-
port (Acharya et al. 1999; Ioannidis and Poosala 1999),
bio-informatics (Salmenkivi, Kere, and Mannila 2002), and
information retrieval (Chakrabarti et al. 2002). (Ioannidis
2003) summarizes its long history and extensive literature.

The histogram construction problem is to divide a se-
quence of values into a number of piecewise-constant line
segments (buckets), approximating each segment by a sin-
gle representative to achieve low approximation error. The
most common error metric is the Euclidean, or root-mean-
square error. A histogram that minimizes this error turns
out to be the optimal choice when approximating attribute
value frequencies for estimating the query result size (Ioan-
nidis and Poosala 1995) in databases. The optimization
problem to minimize the Euclidean error is solvable with
an O(n2B) dynamic-programming algorithm, V-Optimal
(Bellman 1961; Jagadish et al. 1998). However, it is not
scalable enough to be used in practice; thus, real-world

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

database systems employ simple heuristics instead (Ioanni-
dis and Poosala 1995; Poosala et al. 1996).

Recently, elaborate approximation algorithms have been
devised; these either provide a computational shortcut by
approximating the error function itself (Guha, Koudas, and
Shim 2006) (AHistL-∆), or employ a divide-and-conquer
approach which merges the sub-solutions to give error guar-
antees (Terzi and Tsaparas 2006) (DnS). Ideally, such algo-
rithms should achieve a near-linear time efficiency and near-
optimal quality. However, in practice, they fall short of both
these goals. Their running time approaches, and can even
exceed, that of V-Optimal, with larger errors.

In (Halim, Karras, and Yap 2009), we showed some state
of the art histogram construction algorithms which were not
only efficient and scalable but achieve good solution quality.
We achieved substantial improvement in the middle ground
between the robustness of approximation algorithms and the
simplicity of heuristics. Although the algorithms provide
no approximation guarantees, our solutions combine scal-
ability and quality in a way that other approaches do not;
thus, they are inherently suited for the segmentation of very
large data sets. We experimentally demonstrate that our al-
gorithms vastly outperform guarantee-providing schemes in
running time, while achieving comparable or superior ap-
proximation accuracy.

In this paper, we summarize the results and explain how
ideas from local search and genetic algorithms were instru-
mental in these novel algorithms. By using ideas from arti-
ficial intelligence rather than following the approach in the
database literature, we were able to improve either on the
running time or accuracy compared to existing algorithms.
The approach we used may also lead to new and improved
algorithms for problems where a combination of local search
to get good and diverse solutions is combined with an effi-
cient polynomial time improvement/optimization procedure.

V-Optimal Histogram Construction
Given an n-length data vector D = 〈d0, d1, . . . , dn−1〉,
the problem is to find a piecewise constant representation
D̂ of D using at most B segments that minimizes the Eu-

clidean error, L2

(
D̂,D

)
=
(

1
n

∑
i |d̂i − di|2

) 1
2 , where d̂i

denotes the approximate estimated value for di. In prac-
tice, it suffices to minimize the sum of squared errors (SSE),

1680

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

∑
i |d̂i − di|2. We remark that while there is work to

generalize the problem to wider classes of error metrics,
L2 remains an important error metric for several applica-
tions (Ioannidis and Poosala 1995; Himberg et al. 2001;
Chakrabarti et al. 2002) which remains our focus.

The approximate representation of D is called a his-
togram, a segmentation (Terzi and Tsaparas 2006), a parti-
tioning, or a piecewise-constant approximation (Chakrabarti
et al. 2002). The histogram, H, divides D into B � n dis-
joint intervals (buckets, segments) [bi, ei], where bi and ei
are the indices of the data items that define the ith bucket’s
boundaries, 1 ≤ i ≤ B. A single representative value vi
approximate all values dj in a bucket, j ∈ [bi, ei]. The
value vi that minimizes an error metric in a bucket is defined
as a function of the data therein (Terzi and Tsaparas 2006;
Karras, Sacharidis, and Mamoulis 2007; Guha, Shim, and
Woo 2004); for the L2 metric, the optimal value of vi is
the mean of values in [bi, ei] (Jagadish et al. 1998). A
segmentation algorithm aims to define boundary positions
e1, . . . , eB−1 that achieve a low overall error.

An O
(
n2B

)
algorithm that constructs an L2-optimal seg-

mentation along the lines of (Bellman 1961) was presented
by (Jagadish et al. 1998) and improved by (Guha 2008).
It recursively derives the optimal (i.e., SSE-minimal) b-
segmentation of 〈d0, d1, . . . , di〉 from the optimal (b − 1)-
segmentations of its prefixes, expressing its SSE as:

E(i, b) = min
b≤j<i

{E(j, b− 1) + E(j + 1, i)} (1)

E(j + 1, i) is the minimal SSE for the segment
〈dj+1, . . . , di〉, computed in O(1) using pre-computed
sum quantities (Jagadish et al. 1998). However, the
quadratic complexity of V-Optimal renders it inapplicable
in most real-world applications, thus various approximation
schemes have been proposed.

Approximation Algorithms
(Terzi and Tsaparas 2006) suggested a sub-quadratic factor-
3 approximation algorithm as an alternative to V-Optimal.
Their divide and segment (DnS) algorithm arbitrarily parti-
tions the problem sequence into smaller subsequences, seg-
ments each of those optimally (employing a V-Optimal sub-
process), and then combines (i.e., locally merges) the de-
rived segments into B final buckets, treating them as the in-
dividual elements in another application of V-Optimal. As-
suming that the original sequence is partitioned into χ =(
n
B

)2/3
equal-length segments in the first step, then DnS has

a worst-case complexity of O(n4/3B5/3).
(Guha, Koudas, and Shim 2006) suggest AHistL-∆, an

O(n+B3(log n+ε−2) log n)-time algorithm that computes
an (1+ε)-approximate B-bucket histogram. As E(j, b− 1)
in Equation 1 is a non-decreasing function of j, E(j, b) can
be approximated by a staircase histogram, where the value
at the right-hand end of a segment is at most (1+δ) times
the value at the left-hand end, with δ = ε

2B .

Existing Greedy Heuristics
Out of several simple greedy heuristics for histogram con-
struction (such as the end-biased (Ioannidis and Poosala

1995), equi-width (Kooi 1980), and equi-depth (Piatetsky-
Shapiro and Connell 1984; Muralikrishna and DeWitt 1988)
heuristics), two stand out: The former, MaxDiff, advocated
as “probably the histogram of choice” by (Poosala et al.
1996), selects theB−1 points of highest difference between
two consecutive values as boundary points in O(n logB)
time. The latter, MHIST, repeatedly selects and splits the
bucket with the highest SSE, making B splits (Poosala and
Ioannidis 1997; Jagadish et al. 1998) in O(B(n + logB)
time. (Jagadish et al. 1998) observe that MaxDiff performs
better on spiked data and MHIST on smooth data.

Fast and Effective Histogram Construction
An ideal segmentation algorithm should provide a satisfac-
tory tradeoff between efficiency and accuracy, thus provid-
ing a significant advantage with respect to both the optimal
but not scalable V-Optimal and to fast but inaccurate heuris-
tics. Approximation schemes with time super-linear in n
and/or B may not achieve this goal. We propose alternative
schemes based on local search. Although our local search
and existing heuristics are both greedy algorithms, there are
important differences. Our local search algorithms employ
iterative improvement and stochasticity. In contrast, both
MaxDiff and MHIST derive a solution in one shot and never
modify a complete B-segmentation they have arrived at.

A Basic Local Search Algorithm: GDY

We first describe a basic local search algorithm called GDY
which can already be quite effective compared with greedy
heuristics. It starts with an ad hoc solution (a segmentation)
S0 and makes local moves which greedily modify bound-
ary positions so as to reduce the total L2 error. Each local
move has two components. First a segment boundary whose
removal incurs the minimum error increase is chosen. As
this decreases the number of segments by one, a new seg-
ment boundary is added back by splitting the segment which
gives the maximum error decrease. Note that expanding or
shrinking a segment by moving its boundary is a special case
of this local move when the same segment is chosen for re-
moval and splitting. A local minimum on the total histogram
error is reached when no further local moves are possible.
Figure 1 gives the GDY algorithm.

To ensure efficient local moves, we keep a min-heap H+

of running boundary positions with their associated poten-
tial error increase, and a max-heap H− of all running seg-
ments with the potential error decrease. The time complex-
ity of GDY is O

(
M
(
n
B + logB

))
, where M is the number

of local moves.

Improving with Local Search Sampling: GDY DP

Experiments show that the basic local search GDY algo-
rithm already performs quite well and efficient. We now use
GDY as a building block for two algorithms (GDY DP and
GDY BDP) which achieve much lower total error without
sacrificing the performance.

We observe that one run of GDY often finds at least 50%
of the optimal boundary positions. Typically, a local search

1681

Algorithm GDY(B)
Input: space bound B, n-data vector D = [d0, . . . , dn−1]
Output: histogram H of B segments
1. S0 = initial (random) B − 1 segment boundaries on D;
2. i = 0; Populate H+ and H− with Si;
3. while (H+ is not empty)
4. i = i + 1; Si = Si−1;
5. G = extract boundary with minimum ∆+Ei from H+;
6. Remove G from Si and update H+ and H−;
7. P = extract segment with maximum ∆−Ej from H−;
8. if ∆+Ei −∆−Ej ≥ 0
9. Undo steps 6 and 7; // G is discarded from H+

10. else Split segment P , add new boundary to Si;
11. Update costs in H+ and H−;
12. return Si;

Figure 1: GDY algorithm

strategy employs restart to increase the percentage of op-
timal partitions. Instead, we use a more effective strategy
which relies on the fact that V-Optimal gives the optimum
solution but is quadratic in n.

We first deal with the case for local search segmentation
when B ≤

√
n, the GDY DP algorithm. Our approach

is inspired by the recombination/crossover operator and fit-
ness selection from genetic algorithms (GA). Since a single
run of GDY already gives a good segmentation (we found it
experimentally to be superior to MaxDiff and MHIST), we
make I local search runs, merging all partitions from the so-
lution in each run into a single candidate sample set. We
expect that a large percentage of the partitions in the can-
didate sample set are also in an optimal solution. Since the
sample set has at most IB partitions, it is stillO(B), as such
selecting the best B out of the set using dynamic program-
ming costs O(B3) which gives a total runtime of O(nB) as
B ≤

√
n. Figure 2 gives the GDY DP algorithm.

Algorithm GDY DP(B, I)
Input: bound B, number of runs I , n-data vector D
Output: histogram partitioning H of B segments
1. S = empty set of sample boundaries
2. loop (I times)
3. P = GDY(B); // run GDY with random initialization
4. S = S ∪ P;
5. return V-Optimal(S, B);

Figure 2: GDY DP algorithm

A Batch-Processing Variant
We now consider the case when B >

√
n. Now, we can

no longer use V-Optimal to recombine the samples to get a
guaranteed improvement on the local search segmentation,
while also maintaining a linear time complexity in n. This
is because the time complexity of the V-Optimal step in
GDY DP becomes too large. We introduce the GDY BDP
algorithm, a batch-processing version of GDY DP to handle
this case.

WhenB >
√
n, to maintain scalability, we cannot have as

many samples as in GDY DP. The idea is to use V-Optimal

to improve a subspace inside a solution. Here, a subspace
consists of a contiguous number of segments within a so-
lution. Thus, we employ the sampling idea in GDY DP to
improve a subpart of a solution. As in GDY DP, subspaces
of local search solutions from several runs will often be part
of an optimal solution.

We start with an auxiliary solution A from one run of
GDY. Samples are then collected with multiple runs of GDY
into a set of segments S . Starting from one end of solutions
collected in S,

√
n consecutive segments s̄ are picked from

S forming a batch. In auxiliary solution A, we select the
smallest subspace ā enclosing s̄. Now V-Optimal can be
employed to find a better segmentation of size |ā| from s̄∪ ā
which revises the corresponding subspace in A.

An important point is that unlike DnS, our sampling pro-
cess is non-uniform and results in more samples at subspaces
where more segments may be needed, thus reducing error.
The next batch of O(

√
n) samples is processed similarly,

and so on. Due to lack of space, we refer the reader to the
GDY BDP algorithm in (Halim, Karras, and Yap 2009). The
result is that GDY BDP takes O(nB) time, scaling well in
both the input size n and the number of segmentsB, and pro-
duces similar quality to that of GDY DP. While GDY DP
is reminiscent of a GA with a single recombination step,
GDY BDP performs multiple, incremental recombinations
on subspaces of auxiliary solution A.

Experimental Evaluation
We conducted an extensive experimental comparison of ap-
proximation, heuristic and our algorithms on real-world time
series data sets.1 Our experiments show that our local search
algorithms are both scalable and fast, and also of high qual-
ity, often almost the same as V-Optimal. Here, we highlight
the scalability versus quality tradeoffs. Figure 3 plots run-
time with respect to n, on logarithmic axes, with B= n

32 , on
a synthetic data set. Neither AHistL-∆, nor V-Optimal, nor
DnS scale well while GDY BDP presents a runtime growth
trend comparable to that of simple heuristics.

Figure 3: Runtime vs. n, B = n
32 : Synthetic

1Details are in http://felix-halim.net/histogram.

1682

A fast algorithm is useless unless it gives good quality.
Figure 3 shows that our local search algorithms are more
scalable than the non-heuristic algorithms with the heuristics
ones being faster. Turning to quality gives a completely dif-
ferent picture. Figure 4 shows error versus time (log scale)
on a Dow Jones time series data set.

Figure 4: Tradeoff Delineation, B = 512: DJIA

Variants of AHistL-∆ for different ε get their own dot.
Lower values of ε allow for higher accuracy at the price
of extra runtime. Likewise, several variants of GDY DP
and GDY BDP are presented, based on the number I of
iterations of GDY used for collecting samples. The graph
confirms that AHistL-∆ performs poorly at resolving the
quality-efficiency tradeoff. An attempt to gain quality
by lowering ε renders the runtime higher than that of V-
Optimal; an effort to improve time-efficiency by increasing
ε is not effective, while losing quality. DnS does not fare
much better. In contrast, GDY DP and GDY BDP give the
best resolution of the tradeoff, as they dominate the other al-
gorithms either in time or quality or both. Our algorithms
allow tuning the sample size and algorithm choice to trade
off runtime cost against quality.

Discussion
Our study has led to some remarkable findings. First, de-
spite their elegance, approximation schemes with robust er-
ror guarantees do not achieve an attractive resolution of the
tradeoff between efficiency and quality. Among the pro-
posed schemes, DnS achieves a slightly better tradeoff than
AHistL-∆. Worse still, both can be superseded in time ef-
ficiency by V-Optimal, whom they are meant to approxi-
mate, due to their super-linear dependence on B (detailed in
(Halim, Karras, and Yap 2009)). Secondly, by employing
a local search that exploits the optimal dynamic program-
ming segmentation and sampling, we address the tradeoff
much more satisfactorily. Our best performing algorithm,
GDY BDP, consistently achieves near-optimal quality in
near-linear time.

In developing a good local search algorithm, one needs to
be creative in designing heuristics to guide the local moves.
Such local search tuning is known to be tedious and very

time consuming and often requires an involved experimen-
tation and evaluation process. Furthermore, the approaches
taken are customized to a particular instance of the prob-
lem, which makes it hard to generalize to other unrelated
domains.

We present an alternative improvement strategy for prob-
lems where there is an efficient (and in our case, optimal)
algorithm for a sub-problem. In this case, local search is
used to collect a diversified set of solutions. One has to de-
vise the local search to give sufficiently good quality sam-
ples(which GDY achieves). The efficient improvement al-
gorithm can improve part of the solution using the collected
samples from local search. Thus, we show that local search
can be effective not just on intractable problems but also in
polynomially solvable problems that present a premium in
terms of efficiency. Such problems arise frequently in the
fields of data mining and data engineering. We show that the
“unreasonable effectiveness of local search” also succeeds
here. Furthermore, any improvements/tuning/new heuristics
in the local search would likely automatically translate to
improvements in the overall algorithm as it could be em-
ployed to get better samples or run more efficiently.

Our solution employs a novel local search which main-
tains a population of solutions and uses a recombination of
those solutions. It also exploits careful use of an optimal
polynomial time optimization procedure. We think that the
strategy used here may also be applicable to other problems
with pseudo-polynomial optimization algorithms. Such a
strategy may allow for effective scalable algorithms that ex-
ploit a synergy between local search and an optimal, but
more expensive, pseudo-polynomial time algorithm.

To understand the difference between our approach and
more typical local search approaches, we compare GDY DP
against a pure stochastic local search version, GDY LS,
which runs GDY runs for I iterations starting with a ran-
dom initial partition. The difference between the two is that
GDY LS selects the best solution found within some iter-
ation, while GDY DP combines solutions which are reop-
timized using V-Optimal. Our experiments use the same
random seed, hence the ith iteration in both GDY LS and
GDY DP produce exactly the same ith solution.

Figure 5: GDY LS vs. GDY DP, B = 512: DJIA

1683

Figure 5 shows the performance of GDY LS compared
to GDY DP. The pure local search, GDY LS, takes far
more iterations (hence, computation time) when compared
with GDY DP which reaches the same quality as the opti-
mal algorithm, VOpt2, in 32 iterations. We can see also that
changing GDY LS to a cleverer local search (perhaps utiliz-
ing some problem specific domain optimizations) can lower
the number of iterations required, giving smaller times or
lower error or both. The optimal algorithm thus serves as a
catalyst for building variants of local search.

Figure 6: Comparing solution structure with quality and
time, B = 512: DJIA

Visualization of the Search
In the foregoing study, we have assessed the degree to which
a given histogram H approximates the optimal one Ho in
terms of the Euclidean error metric. Another way of as-
sessing the convergence towards the optimal histogram is to
count the amount of bucket boundary positions that H and
Ho do not have in common, or its distance toHo. Assuming
there is only one histogram that achieves the optimal error,
as it happens for most large real-world data sets, the optimal
solution is achieved when the distance is 0. The advantage
of this distance metric is that it conveys an intuitive repre-
sentation of how far a given histogram is from the optimal

one, in a way that an error value does not.

In this Section, we present our evaluation of the algo-
rithms we study in terms of this distance metric. Let a his-
togram H be expressed as the set of B boundary positions.
Then distance between two histograms H1 and H2 is de-
fined as d = |H1 \ H2| = |H2 \ H1| = B − |H1 ∩ H2|. A
distance value d indicates that H1 has d boundaries that do
not match any boundary inH2, and vice versa.

(Halim and Yap 2007; Halim, Yap, and Lau 2006) pro-
posed a novel visualization, Fitness Landscape Search Tra-
jectory (FLST), for visualizing the behavior of local search.
We have adopted this technique to visualize the progress of
GDY DP as it collects samples from GDY runs.

Figure 6 presents a two-dimensional visualization of
the FLST for the experiment over the DJIA data set with
B = 512 depicted in Figure 4. The Figure shows how so-
lutions from different algorithms compare in terms of the
distance to Ho, as well as pair-wise distance among them.
The visualization is intended to give an approximation of
the distance between solutions. Any pair of solutions with
small d between them are close to each other in the figure,
while pairs with a larger d value between them are further
apart. The indicated value of d is the distance of that solu-
tion compared to Ho (Vopt2) which is shown in the middle.
The percentage difference from the optimal Euclidean error
for each algorithm is also shown. The visualization depicts:
two GDY DP runs, for I = 2 and I = 8; eight different
GDY runs; AHistL-∆ with ε = 0.16; and DnS. The runtime
of each algorithm is presented in the lower graph, which is
aligned with the upper diagram and uses a logarithmic scale
in its time axis.

It is noteworthy that each of the 8 GDY runs achieves dis-
tance of around 58-74 with respect toHo, out of a maximum
possible value of 512. This is a fairly good result, compa-
rable to that of DnS. By exploiting only two different GDY
runs, GDY DP with I = 2 manages to decrease the distance
to 32, which is similar to the distance achieved by AHistL-
∆. The visualization also shows that the solutions from dif-
ferent GDY runs constitute a diverse set distributed around
Ho.

As we have discussed, the diversity does not arise out of
solutions being randomly different. Indeed all GDY solu-
tions, while different from each other, are valid solutions and
relatively close to the optimal. Their diversity arises because
different GDY runs result in different subsets of boundaries
in common with the optimal solution. The union of these
subsets is likely to contain all boundaries used in the opti-
mal solution. In effect, when GDY DP uses the full set of
sample boundaries provided by those GDY runs, it can come
even closer to the optimal. As a result, when GDY DP runs
with I = 8, it comes much closer to Ho, the d value is one
third of that for I = 2. Earlier, we saw in Figure 4 that
GDY DP outperforms DnS and AHistL −∆ in error. Here,
we see that the underlying reason is that it shares more of
the solution with Ho. Eventually, when I = 32, GDY DP
achieves the exact optimal solution.

1684

Conclusion
In (Halim, Karras, and Yap 2009) we apply local search
techniques to a classical problem of data engineering,
namely histogram construction or sequence segmentation.
Our approach addresses a critical gap in existing research.
To the best of our knowledge, it is the first work to de-
velop segmentation algorithms that are both fast and scalable
(i.e., near-linear) in terms of time efficiency, and effective in
terms of the quality they achieve. It is surprising that, for
such a well studied problem, local search can make a signif-
icant impact against the previous state of the art. The key
to our approach is the use of novel local search with some
ideas borrowed from GAs, along with a careful use of a more
expensive (albeit polynomial time) optimization algorithm.

We have conducted the first, to our knowledge, exper-
imental comparison of proposed heuristics and approxi-
mation schemes for sequence segmentation. This study
shows that our mixed approach achieves near-optimal qual-
ity in near-linear runtime, outperforming popular heuristics
in quality and recently suggested approximation schemes in
time efficiency as well as quality. In conclusion, our solu-
tions provide a highly recommendable choice for all areas
where segmentation or histogram construction finds appli-
cation.

References
Acharya, S.; Gibbons, P. B.; Poosala, V.; and Ramaswamy,
S. 1999. Join synopses for approximate query answering. In
ACM SIGMOD International Conference on Management of
Data, 275–286. New York, NY, USA: ACM Press.
Bellman, R. 1961. On the approximation of curves by line
segments using dynamic programming. Communications of
the ACM 4(6):284.
Chakrabarti, K.; Garofalakis, M.; Rastogi, R.; and Shim, K.
2001. Approximate query processing using wavelets. VLDB
Journal 10(2-3):199–223.
Chakrabarti, K.; Keogh, E.; Mehrotra, S.; and Pazzani, M.
2002. Locally adaptive dimensionality reduction for in-
dexing large time series databases. ACM Transactions on
Database Systems 27(2):188–228.
Guha, S.; Koudas, N.; and Shim, K. 2006. Approximation
and streaming algorithms for histogram construction prob-
lems. ACM Transactions on Database Systems 31(1):396–
438.
Guha, S.; Shim, K.; and Woo, J. 2004. REHIST: Relative
error histogram construction algorithms. In International
Conference on Very Large Data Bases, 300–311.
Guha, S. 2008. On the space-time of optimal, approximate
and streaming algorithms for synopsis construction prob-
lems. VLDB Journal 17(6):1509–1535.
Halim, S., and Yap, R. H. C. 2007. Designing and tuning sls
through animation and graphics: an extended walk-through.
In Engineering Stochastic Local Search Algorithms, 16–30.
Halim, F.; Karras, P.; and Yap, R. H. C. 2009. Fast and effec-
tive histogram construction. In International Conference on
Information and Knowledge Management, 1167–1176. New
York, NY, USA: ACM Press.

Halim, S.; Yap, R. H. C.; and Lau, H. C. 2006. Viz: A visual
analysis suite for explaining local search behavior. In ACM
Symposium on User Interface Software and Technology, 57–
66. ACM Press.
Himberg, J.; Korpiaho, K.; Mannila, H.; Tikanmäki, J.; and
Toivonen, H. 2001. Time series segmentation for context
recognition in mobile devices. In IEEE International Con-
ference on Data Mining, 203–210. Washington, DC, USA:
IEEE Computer Society.
Ioannidis, Y. E., and Poosala, V. 1995. Balancing histogram
optimality and practicality for query result size estimation.
In ACM SIGMOD International Conference on Management
of Data, 233–244.
Ioannidis, Y. E., and Poosala, V. 1999. Histogram-based
approximation of set-valued query-answers. In International
Conference on Very Large Data Bases, 174–185.
Ioannidis, Y. E. 1993. Universality of serial histograms. In
International Conference on Very Large Data Bases.
Ioannidis, Y. E. 2003. The history of histograms (abridged).
In International Conference on Very Large Data Bases, 19–
30.
Jagadish, H. V.; Koudas, N.; Muthukrishnan, S.; Poosala,
V.; Sevcik, K. C.; and Suel, T. 1998. Optimal histograms
with quality guarantees. In International Conference on Very
Large Data Bases, 275–286.
Karras, P.; Sacharidis, D.; and Mamoulis, N. 2007. Exploit-
ing duality in summarization with deterministic guarantees.
In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 380–389. New York, NY, USA:
ACM Press.
Kooi, R. 1980. The Optimization of Queries in Relational
Databases. Ph.D. Dissertation.
Muralikrishna, M., and DeWitt, D. J. 1988. Equi-
depth histograms for estimating selectivity factors for multi-
dimensional queries. In ACM SIGMOD International Con-
ference on Management of Data, 28–36. New York, NY,
USA: ACM Press.
Piatetsky-Shapiro, G., and Connell, C. 1984. Accurate es-
timation of the number of tuples satisfying a condition. In
ACM SIGMOD International Conference on Management of
Data, 256–276. New York, NY, USA: ACM Press.
Poosala, V., and Ioannidis, Y. E. 1997. Selectivity estimation
without the attribute value independence assumption. In In-
ternational Conference on Very Large Data Bases, 486–495.
Poosala, V.; Ioannidis, Y. E.; Haas, P. J.; and Shekita, E. J.
1996. Improved histograms for selectivity estimation of
range predicates. In ACM SIGMOD International Confer-
ence on Management of Data, 294–305.
Salmenkivi, M.; Kere, J.; and Mannila, H. 2002. Genome
segmentation using piecewise constant intensity models and
reversible jump MCMC. In European Conference on Com-
putational Biology, 211–218.
Terzi, E., and Tsaparas, P. 2006. Efficient algorithms for
sequence segmentation. In SIAM International Conference
on Data Mining.

1685

