
A Bayesian Nonparametric Approach to Modeling Mobility Patterns

Joshua Joseph and Finale Doshi-Velez and Nicholas Roy
Massachusetts Institute of Technology

Cambridge, MA
{jmjoseph, finale, nickroy}@mit.edu

Abstract

Constructing models of mobile agents can be difficult with-
out domain-specific knowledge. Parametric models flexible
enough to capture all mobility patterns that an expert believes
are possible are often large, requiring a great deal of training
data. In contrast, nonparametric models are extremely flexi-
ble and can generalize well with relatively little training data.
We propose modeling the mobility patterns of moving agents
as a mixture of Gaussian processes (GP) with a Dirichlet pro-
cess (DP) prior over mixture weights. The GP provides a
flexible representation for each individual mobility pattern,
while the DP assigns observed trajectories to particular mo-
bility patterns. Both the GPs and the DP adjust the model’s
complexity based on available data, implicitly avoiding is-
sues of over-fitting or under-fitting. We apply our model to
a helicopter-based tracking task, where the mobility patterns
of the tracked agents—cars—are learned from real data col-
lected from taxis in the greater Boston area.

1 Introduction
The success of autonomous agents in realworld domains
hinges on the quality of the agent’s world model. In complex
domains, these models often contain aspects that are diffi-
cult to design; specifically, environments may contain other
agents that may be difficult to model from expert-knowledge
alone. For example, suppose a helicopter (the agent) must
track a specific car in a large region such as a city. The model
of traffic patterns may be hard to specify and even specifying
the model’s complexity may be a challenging task.

We apply a Bayesian nonparametric approach to model
the mobility patterns of the tracked agents. Nonparametric
approaches are well-suited for poorly-understood environ-
ments because they let the data determine the sophistication
of the model. They also provide a principled, robust frame-
work for working with trajectories of varying lengths. The
Bayesian aspect helps the model generalize to unseen data
and make inferences from noisy data. We focus on scenar-
ios where the tracked agents’ motion patterns are initially
unknown. Our goal is to learn these agents’ mobility pat-
terns and apply this knowledge to a planning task.

Specifically, we model the agent’s mobility patterns with
a Gaussian process mixture model. Suppose there are M

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mobility patterns b1, b2, . . . , bM , with prior probabilities
p(b1), p(b2), . . . , p(bM ). Then the probability of the ith ob-
served trajectory ti under the mixture model is

p(ti) =
M∑
j

p(bj)p(ti|θj) (1)

where θj contains the parameters for mobility pattern bj .
Finally, a data-driven approach to mobility modeling side-

steps issues around the agent’s motivations, which may ap-
pear irrational to an outside observer. For example, drivers
rarely take the “optimal” route to a location. Instead, we fo-
cus on the features our own agent needs: good predictions
of where other agents will be (which may depend both on
those agents’ current positions and their past histories). The
core contribution of this work is developing a nonparamet-
ric mobility model and using it for planning with real-world
data.

2 Mobility Model
We represent an agent’s trajectory ti as a set of xy-locations
{(xi

1, y
i
1), . . . , (xi

Ti
, yi

Ti
)}, where Ti is the length of trajec-

tory ti. A mobility pattern is a mapping from trajectories to a
distribution over trajectory derivatives (∆x

∆t ,
∆y
∆t ) indicating

the agent’s future motion.1 Given a position (xt, yt) and a
trajectory derivative (∆xt

∆t ,
∆yt

∆t ), the predicted next position
(xt+1, yt+1) is (xt + ∆xt

∆t ∆t, yt + ∆yt

∆t ∆t). Thus, modeling
trajectory derivatives is equivalent to modeling trajectories.

The mobility model is a mixture model of mobility pat-
terns. We model each mixture component with a pair of
Gaussian processes mapping (x, y) → ∆x

∆t and (x, y) →
∆y
∆t , and a Dirichlet process prior (DP) over mixture weights.
Our model is similar to Rasmussen and Ghahramani (2002)
and Meeds and Osindero (2006); however, unlike these pre-
vious works, our goal is to cluster trajectories of varying
lengths, not just partition single points.

More formally, the posterior probability of mobility pat-
tern bj for a trajectory ti under our DPGP model is propor-
tional to πj · l(bj ; ti). The prior probability of mobility pat-
tern bj is given by its DP mixture weight πj . The likelihood

1The choice of ∆t determines the scales we can expect to pre-
dict the car’s next position well, making the trajectory derivative
more useful than instantaneous velocity.

1587

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



l(bj ; ti) of mobility pattern bj under trajectory ti is

l(bj ; ti) =
Ti∏
t

p

(
∆x
∆t t

∣∣∣∣xi
1:t, y

i
1:t, {tk : zk = j}, θGP

x,j

)

·
Ti∏
t

p

(
∆y
∆t t

∣∣∣∣xi
1:t, y

i
1:t, {tk : zk = j}, θGP

y,j

)
(2)

where zk indicates the mobility pattern to which trajectory
tk is assigned, and θGP

x,j and θGP
y,j are the hyperparameters of

the Gaussian process for mobility pattern bj . Equation 2
may be applied to trajectories with differing numbers of
nodes or even trajectories that are only partially complete,
which is particularly important when we wish to compare
model likelihoods across a varied dataset.

2.1 Gaussian Process Mobility Patterns
Points from a trajectory represent a continuous path through
space. The Gaussian process (Rasmussen and Williams
2005) places a distribution over functions, serving as non-
parametric form of interpolation. While GP inference is
somewhat involved, GP models are extremely robust to
unaligned, noisy measurements and are thus well-suited
for modeling the continuous paths underlying our non-
uniformly sampled time-series motion data.

The GP for each trajectory derivative is specified by a
mean function E[∆x

∆t ] = µx(x, y) and E[∆y
∆t ] = µy(x, y).

We set both of these mean functions to initially be zero ev-
erywhere (for all x and y), encoding the prior bias that, with-
out any additional knowledge, we expect the agent to stay in
the same place. Zero-mean GP priors also simplify com-
putations. Finally, because we are mapping (x, y) locations
to velocities, we remove time-dependent aspects from the
model: traffic conditions before the agent reached a certain
location has no effect on the velocity predictions for that
point. Inherent variability of the velocity at a particular lo-
cation (due to varying traffic conditions at that point) are
captured in the covariance function of the Gaussian process.

We denote the covariance function for the trajectory
derivative in the x-direction Kx(x, y, x′, y′), which de-
scribes the correlations between trajectory derivatives at two
different points (x, y) and (x′, y′). Given a set of points
(x1, .., xk, y1, .., yk) the corresponding trajectory deriva-
tives (∆x1

∆t , ..,
∆xk

∆t ) will have a multivariate Gaussian dis-
tribution with mean {µx(x1, y1), .., µx(xk, yk)} and covari-
ance Σ, where the Σij = K(xi, yi, xj , yj). In this work, we
use the standard squared exponential covariance function

Kx(x, y, x′, y′) = σ2
x exp

(
− (x− x′)2

2wx
2
− (y − y′)2

2wy
2

)
+ σ2

nδ(x, y, x
′, y′). (3)

The exponential term above encodes that similar trajectories
should make similar predictions. The length-scale param-
eters wx and wy normalize for the scale of the data. The
σn-term represents within-point variation (e.g., due to noisy
measurements); the ratio of σn and σx weights the relative
effects of noise and influences from nearby points. We use
θGP

x,j to refer to the set of hyperparameters σx, σn, wx, and

wy associated with mobility pattern bj (each mobility pat-
tern has a separate set of hyperparameters).2

For a GP over trajectory derivatives trained with tuples
(xk, yk,

∆xk

∆t ), the predictive distribution over the trajectory
derivative ∆x

∆t

∗
for a new point (x∗, y∗) is given by

µ∆x
∆t

∗ = K(x∗,y∗,X,Y)K(X,Y,X,Y )−1 ∆X
∆t

(4)

σ2
∆x
∆t

∗ = K(x∗,y∗,X,Y)K(X,Y,X,Y)−1K(X,Y,x∗,y∗)

where the expression Kx(X,Y,X, Y ) is shorthand for the
covariance matrix Σ with terms Σij = Kx(xi, yi, xj , yj).
The equations for ∆y

∆t

∗
are equivalent to those above, using

the covariance Ky .

2.2 Dirichlet Process Mixture Weights
The Dirichlet process places a distribution over discrete dis-
tributions in which the number of mobility patterns is poten-
tially unbounded, but there are a few patterns we expect to
see most of the time.3 If zi indicates the mobility pattern to
which trajectory ti is assigned, the prior probability that ti
belongs to an existing mobility pattern bj is

p(zi =j|z−i,α)=
nj

N−1+α
, (5)

where z−i refers to the mobility pattern assignments for the
remaining trajectories, α is the concentration parameter of
the Dirichlet process, nj is the number of trajectories as-
signed to mobility pattern bj , and N is the total number of
observed trajectories. The probability that trajectory ti ex-
hibits a new mobility pattern is

p(zi = M + 1|z−i, α) =
α

N − 1 + α
. (6)

where M is the number of observed mobility patterns.
Equation 6 implies that the number of mobility patterns

can grow as more data is obtained. This property is key
when modeling real agents: the more trajectories we ob-
serve, the more patterns we expect to encounter. Figure 1
shows how the number of mobility patterns grows (under
our model) as new trajectories are observed for an actual
dataset of greater Boston taxi routes. We show in section
5 that we can efficiently plan even when the number of ac-
tively observed mobility patterns are changing; moreover,
this flexibility yields significantly improved results in the
performance of the planner.

3 Model Inference
Exact inference over the space of DPs and GPs is intractable;
instead we draw samples from the posterior mobility model.
These samples are then used by our agent for planning.

3.1 Training the Model
Our model contains two sets of parameters—the DP mixture
weights πk, the mobility pattern assignments zi, and the the

2We described the kernel for two dimensions, but it can be eas-
ily generalized to more.

3See Teh (2007) for an overview of Dirichlet processes.

1588



Figure 1: As expected, the number of mobility patterns in the taxi
dataset increases as more trajectories are added.

DP hyperparameter α—the GP hyperparameters θGP
x,j , θ

GP
y,j

and the trajectories assigned to each cluster. Following the
work of Rasmussen and Ghahramani (2002) and Rasmussen
(2000), learning the model involves Gibbs sampling the pa-
rameters (see Algorithm 1).

We first resample each zi in turn, using the exchangeabil-
ity properties of the DP and GP to model trajectory ti as the
most recent trajectory. The probability that the trajectory ti
will be assigned to an instantiated mobility pattern is

p(zi = j|T, α, θGP
x,j , θ

GP
y,j ) ∝ l(bj ; ti)

(
nj

N − 1 + α

)
(7)

where l(bj ; ti) is the likelihood of mobility pattern bj from
equation 2 and nj is the number of trajectories currently as-
signed to mobility pattern bj . The probability that the trajec-
tory ti belongs to a new mobility pattern is given by

p(zi = M+1|ti, α) ∝
∫
l(bj ; ti)dθGP

x,j dθ
GP
y,j

(
α

N − 1 + α

)
,

(8)
and we use Monte Carlo integration (Bishop 2006) to ap-
proximate the integral. The likelihood from equation 7
also must be approximated for popular mobility patterns, as
the computations are cubic in the cluster size nj . Follow-
ing Rasmussen and Williams (2005), we approximate the
likelihood for these larger clusters using the Nmax trajecto-
ries that are closest to the trajectory ti.4

The DP concentration hyperparameter α is resampled
using standard techniques (Rasmussen 2000). The GP
hyperparameters—the length-scale and the variance—are
harder to resample; however, since their posteriors were ex-
tremely peaked, we instead always set them to their max-
imum likelihood values (using gradient ascent). In appli-
cations where the posteriors are less peaked, hybrid Monte
Carlo techniques may be used (Duane et al. 1987).

3.2 Classification and Prediction with New
Trajectories

The mobility model from algorithm 1 can now be used to
make predictions for a trajectory that is still in progress.

4We tested the validity of this approximation by comparing ap-
proximations in which only the nearest points were used to the true
likelihood and found no practical difference when discarding 75%
of trajectories for large clusters.

Algorithm 1 Mobility Model Inference
1: for sweep = 1 to # of sweeps do
2: for each mobility pattern bj do
3: Draw the GP hyperparameters θGP

x,j , θ
GP
x,j

4: end for
5: Draw the DP hyperparameter α
6: for each trajectory ti do
7: Draw zi using equations 7 and 8
8: end for
9: end for

Given a partial trajectory ti, we first apply equations 7 and 8
to compute the relative probability of it belonging to each
mobility pattern bj . Equation 2 is used to compute the like-
lihoods. Just as in the full trajectory case, we are interested
in comparing across different mobility patterns, so the par-
tial trajectory may contain any number of points.

For each pattern bj , we first compute the expected trajec-
tory derivatives (∆x

∆t ,
∆y
∆t )j conditioned on GP parameters

(θGP
x,j , θ

GP
y,j ) (equation 4). The expected trajectory deriva-

tive is a weighted average over all the conditional derivatives∑
j πj(∆x

∆t ,
∆y
∆t )j .5

4 Helicopter-based Tracking Task
Recall that our primary objective was to build a mobility
model for use in a planning context. We now illustrate
how the mobility model of section 2 can be applied in a
helicopter-based tracking task. Our (simulated) agent is an
unmanned helicopter tasked with tracking a particular car.
The helicopter is rewarded for every time-step in which it
can “observe” the car. While it knows the effects of its own
actions—hovering over various parts of the city—and the
car’s current location, it must predict the car’s future posi-
tion to accomplish its task successfully. The helicopter re-
ceives periodic position reports of the car position from a
sparse network of ground sensors, allowing us to model the
problem as fully observable with uncertain action outcomes.
While a real “chase” scenario would have many more com-
plexities, this simplified tracking task allows us to show em-
pirically that our model, initially trained on likelihood-based
criteria, also performs well on a planning problem.6

We model the scenario as a Markov decision process
(MDP), a common tool for autonomous decision making.
An MDP is defined by a set of states S, a set of actions
A, a transition function T , and a reward function R. Here
the state s is the joint position of the helicopter and the car
(xh, yh, xc, yc). Given an action a and helicopter position
(xh, yh), the helicopter’s next position (x′h, y

′
h) is determin-

5In practice, we found that the mobility pattern likelihoods were
highly peaked. In this situation, it was sufficient to only consider
the maximum likelihood mobility pattern when predicting the fu-
ture locations in partial trajectories.

6Likelihood-based methods try to explain the data well, while
the goal of the planning problem is to maximize rewards. A model
that best-explains the data is not guaranteed to be the best model
for planning.

1589



istic and known. In contrast, the car’s transitions are stochas-
tic and initially unknown: we can only place a distribution
over the car’s next position (x′c, y

′
c). Given an MDP, we can

find the optimal policy, using standard forward search tech-
niques (Puterman 1994).

To model the helicopter and its rewards, we place a 20×20
grid over a city (an area of approximately 10 square miles)
and represent the helicopter’s state by its grid cell. This rep-
resentation is reasonable since the helicopter can monitor
large parts of the city from one location. At each time step,
the helicopter can stay in place (cost 0), move one cell (cost
-1), or move two cells (cost -2). It receives a bonus of +10 if
it is in the same cell as the car it is meant to be tracking.

The mobility model determines the movement of the car.
Under the DPGP model, the car’s position at time t+1 given
its position at time t is estimated using the method described
in section 3.2. Given a predicted next-location for the car,
the helicopter can try to move to the appropriate grid cell
that covers the car’s location.

We compare our DPGP mobility model to a Markov
model that uses a discretized version of the city, where we
overlay a second grid over the city and use our trajectory
data to compute car transition probabilities between grid
cells. Given a car’s current position and velocity, we can
first map it to a grid cell and then predict its next grid cell
with the model. Using a tighter grid for the car’s motion than
the helicopter’s grid allows us to model the car’s motion at
a finer level of granularity. We call this model the “Markov
model” because predictions about the car’s next position de-
pend only on the car’s current position and velocity, not its
past history. In contrast, the DPGP model considers the car’s
entire trajectory so far when deciding to which mobility pat-
tern in belongs.

5 Experiments
We tested various driver models with the helicopter-based
tracking task described in section 4. We simulated the col-
lection of observations of the car by introducing new trajec-
tories one by one, one movement at a time. Given a par-
tial sequence of from a trajectory, the helicopter predicted
and moved to future locations of the moving car, subject
to the constraints of its own dynamics. Once each track-
ing task was completed, that car’s trajectory was incorpo-
rated as training data into the mobility model. This pro-
cess was repeated for 500 trajectories taken from a dataset
of time-stamped GPS coordinates of greater-Boston area
taxis.7 Thus, we could monitor the data-efficiency of our
models as well as their overall performance. A few trajecto-
ries (red points) are plotted in figure 2 on a map of Boston8.
The green points highlight a single trajectory. The trajec-
tories lie on a road network, but we make no assumptions
about the positions of the cars. Figure 3 shows an example
of two trajectories that share a segment of road but branch in

7CarTel project, cartel.csail.mit.edu. The data was down-
sampled to a rate of 1 reading per minute and pre-processed into
trajectories based on if the car had stayed in the same place for a
long enough time to indicate the end of a trajectory.

8maps.google.com

different directions based on their starting position.

Figure 2: A small set of the raw GPS data points (red) and a single
trajectory (green) used to learn our model.

Figure 3: A example of two trajectories that share a road seg-
ment. The Markov model cannot distinguish the two trajectories
once they cross, but the DP model classifies them as two different
paths.

As new trajectories arrived, the Markov driver model was
updated by changing the counts on how often transitions
were observed among adjacent grid cells (we also added a
uniform Dirichlet prior). The x and y-positions were dis-
cretized on a 20 × 20, 40 × 40, or a 60 × 60 grid (the he-
licopter’s discretization never changed). Velocity was ei-
ther discretized into four states (north, south, east, west)
or eight (north, northeast, east, southeast, etc.). The mod-
els with finer discretizations were more expressive but con-
tained more unknown parameters.

After each trajectory was completed, our DPGP driver
model was updated using algorithm 1. Each update was
initialized with the most recently sampled model. Since a
full update required significant computation, new trajecto-
ries were initially binned with their most likely mobility pat-
tern (which could have been a new pattern). Every 10 new
trajectories, a complete set of 5 Gibbs sweeps were run to
update the model parameters and trajectory assignments (we
found that samples generally stopped changing after the first
2 sweeps). The noise parameter σn in equation 3 was fit

1590



(a) 100 paths (b) 300 paths (c) 500 paths

Figure 4: Predictions given a partial path for the DPGP and two Markov models for various amounts of training data.

from the current trajectory set. While the DPGP model re-
quired more computation than the Markov model (about 10
times slower), it could still incorporate a new set of samples
in minutes, an update rate fast enough for a real scenario
where the model may be updated several times a day. The
planning time was nearly instantaneous for both the DPGP
and the Markov driver models.

We first carried out a series of experiments to evaluate the
quality of our models. Example predictions of the DPGP
and Markov models are seen in figure 4. The solid circles
show a partial trajectory; the open circles show the true con-
tinuation of the trajectory. The paths show the continua-
tions predicted by the DPGP model and two Markov models.
With only 100 training trajectories, none of the models pre-
dict the full path, but the DPGP is close while the other mod-
els are completely lost. As more training data is added, the
DPGP and the finer-grained Markov model match the true
trajectory, while the simpler Markov model is not flexible
enough to fit the data.

Figure 5 compares the predictive test likelihood of the
DPGP model to the Markov models using 50 withheld paths.
The likelihoods for the DPGP model, which has a continu-
ous density, were evaluated by integrating over an equiv-
alent grid as in the Markov models. The DPGP model’s
consistently-higher likelihoods indicate it models the trajec-
tories better than the Markov models.

Figure 5: Model likelihood for 50 withheld test paths for the DPGP
and Markov models.

As the goal of our model is to predict the motion of mobile
agents within a planner, we compared the performance of
planners using the DPGP and Markov dynamics models, as
well as a naive pursuit approach that simply assumed the ve-

hicle’s position at time t+1 would be the same as its location
at time t. We also compared the DPGP model to a simple k-
nearest neighbor technique that, given an (x, y) point, sim-
ply searched the training set of trajectories for nearby (x, y)
points and interpolated the trajectory derivatives ∆x

∆t and ∆y
∆t

from the trajectory derivatives of nearby training points.9 Fi-
nally, we compared the DPGP model against a GP model
that was fit to only the current trajectory and ignored all past
training data. This single GP model ensured that the previ-
ous trajectories were important for making predictions about
the current trajectory, that is, the current trajectory could not
be well-predicted based on its own velocities.

Figure 6 shows the cumulative difference of total reward
between all the approaches and naive pursuit method. The
k-nearest neighbor and simple GP rarely out-perform pur-
suit. The Markov models initially do worse than pursuit be-
cause they have many parameters (making them vulnerable
to over-fitting) and often make incorrect predictions when
the agent observes a trajectory in a sparse region of their
state space. In contrast, the DPGP starts out similar to pur-
suit, since the zero-mean prior on trajectory derivatives nat-
urally encodes the bias that, in the absence of other data,
the car will likely stay still. Moreover, the GP quickly gen-
eralizes from a few trajectories and thus attains the high-
est sloped cumulative rewards of the other methods. The
Markov models eventually also exhibit similar performance,
as measured by the slope of the cumulative reward, but they
never make up for the rewards that they lost during training.

Finally, we compared the DPGP to a set of finite mixture
models that also used Gaussian processes to model mobil-
ity patterns (that is, the finite mixture model first described
in equation 1). Each model was trained on a batch of 200
trajectories using 5 different initializations. The helicopter’s
tracking performance was then tested on a different set of
15 trajectories. None of the models were updated during
the testing phase. The results in figure 7 show that while
the finite GP-based models perform well overall, our DPGP
model has nearly the best performance without having to

9For reasonably dense data, Gaussian process and nearest
neighbor approximations are very close; thus, the k-nearest neigh-
bor technique also served as a close approximation of a solution
trained on a single GP for the entire dataset.

1591



Figure 6: Cumulative difference in reward from the pursuit ap-
proach for the DPGP model, various Markov models (MM), k-
nearest neighbors (KNN), and a GP fit to the current trajectory (GP)
(higher values are better).

Figure 7: Performance vs. model size for a variety of finite models
(green) and the DPGP (blue). The error bars represent the standard
error of the mean from five runs. The DPGP point is drawn at the
number of mobility patterns discovered in the training data.

perform a search over the finite model space. This last point
is important, not only because a search over finite models
would require more computation but also because the search
requires us to choose a regularization criterion to avoid over-
fitting. Standard criteria, such as the Bayesian information
criterion (Raftery 1986) cannot be applied in this context be-
cause the GP contains an unbounded number of parameters;
thus we must choose from various cross-validation or boot-
strap procedures. The DPGP provides a principled, simple-
to-use regularization criterion within its model.

Searching in the space of finite models is especially com-
putationally expensive when the data arrives online and the
number of clusters are expected to grow with time. (The DP
can update the number of clusters incrementally.) To gain
insight into the extra computation cost of this search pro-
cess we implemented EM where every 10 paths we search
over models sizes that are within five clusters of the current
model. Figure 8 is the plot of run time as the number of
training paths increase for our DPGP model and this adap-

Figure 8: Run time vs. number of paths for adaptive EM and our
DPGP model.

tive EM technique. The running time grows exponentially
faster for EM with model search compared to the DPGP.

6 Related Work
Much of the past work in modeling mobile agents has fo-
cused on two problems: expert systems (which require
specialized data) and modeling a single agent (requiring
data generated by the single agent). Letchner, Krumm,
and Horvitz (2006) built a model that predicted trajectories
based on the optimal path between two locations (given fac-
tors such as the time of day) and the amount of “wasted
time” a driver was willing to accept. Dia (2002) used a sur-
vey to classify drivers into different profiles to enable better
prediction. Both of these works note that it is difficult to
specify a model for human mobility patterns based on logi-
cal reasoning. For example, Letchner, Krumm, and Horvitz
(2006) note only 34.5% of drivers choose the fastest route
between two locations. Whether these statistics are a result
of driver ignorance or another factor (e.g., avoiding a stress-
ful route) is highly debatable and difficult to incorporate into
expert models of human mobility patterns. Without access
to similar data for the greater Boston area or having similar
time-stamped GPS data for their models, we were unable to
compare them to our approach; however, it would be inter-
esting to see if incorporating expert features related to hu-
man psychology into the priors of our model could improve
predictions.

Another body of literature has trained Markov models
(generally using data from only one person) in which each
road segment is a state and transition probabilities encode
the probabilities of moving from one segment to another.
For example, Patterson et al. (2003) treated the true driver
state as hidden by GPS sensor noise and a hidden driver
mode. Ashbrook and Starner (2003) model the end posi-
tion and transition probabilities explicitly, but doing so pre-
vents the method from updating the probabilities based on a
partially observed trajectory. Using a hierarchy of Markov
models, Liao et al. (2007) were able to make both local and
destination predictions but still had difficulty in regions of

1592



sparse training data. In contrast, Ko and Fox (2009) demon-
strated that Gaussian processes improved the model of a
vehicle’s dynamics, but for the control of a single vehicle,
rather than a predictive model of many mobile agents. Tak-
ing a machine learning approach, Ziebart et al. (2008) used
inverse reinforcement learning with good results but would
be inapplicable to our data containing paths from many dif-
ferent drivers heading to many different destinations (mean-
ing different reward functions).

The Markov model approaches lose critical information
by only considering the most recent observation or location
instead of the entire trajectory. In the taxi scenario, where
it is common to have a shared road between two different
pairs of popular destinations, knowing the past history of the
car can significantly improve the prediction of how the car
might exit the shared road. This scenario is demonstrated
in figure 3 where the red path (heading east) and green path
(heading north) share the same road segment for a significant
amount of time but only knowing the cars were on that road
segments provides far less predictive power than knowing
its past history. These paths are overlaid on the remainder of
the data set to provide some intuition of the road network.

Finally, a somewhat different but related approach was
taken in Fox, Sudderth, and Willsky (2008). Using our
terminology, the authors define a mobility pattern using a
linear-Gaussian state space model. Like our approach, the
number of mobility patterns was modeled using a Dirichlet
process prior. Unlike our approach, agents could switch be-
tween mobility patterns using an underlying hidden Markov
model. In our specific dataset and application, the agents
usually know their start and end destinations from the very
beginning; not allowing mobility pattern changes helped
predict a car’s path on roadways that were common to many
mobility patterns. However, our framework could certainly
be extended to allow agents to change mobility patterns. Fu-
ture work could also incorporate additional information—
such as inputs of the road network—to further constrain the
trajectories.

7 Conclusions

Accurate agent modeling in large domains often breaks
down from over-fitting or under-fitting the training data.
We used a Bayesian nonparametric approach to mobility-
pattern modeling to circumvent these issues. This approach
allowed us to build flexible models that could generalize
sensibly when given only a little data and add structure as
more data was added. We demonstrated our mobility model
on a helicopter-based tracking task trained and tested on a
real dataset of car trajectories. Our encouraging results sug-
gest that this approach will be useful in a variety of agent-
modeling situations. Moreover, since the underlying struc-
ture of the our model is based on a Gaussian process frame-
work, our approach could easily be applied to beyond road
networks to generic metric spaces. The mobility models
could also be used for tracking multiple agents.

References
Ashbrook, D., and Starner, T. 2003. Using GPS to Learn
Significant Locations and Predict Movement Across Multi-
ple Users. Personal Ubiquitous Computing 7(5):275–286.
Bishop, C. M. 2006. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer.
Dia, H. 2002. An Agent-Based Approach to Modeling
Driver Route Choice Behaviour Under the Influence of Real-
Time Information. The American Statistician 10.
Duane, S.; Kennedy, A. D.; Pendleton, B. J.; and Roweth,
D. 1987. Hybrid Monte Carlo. Physics Letters B 195(2).
Fox, E.; Sudderth, E.; and Willsky, A. S. 2007. Hierarchical
Dirichlet Processes for Tracking Maneuvering Targets. In
Proc. Inter. Conf. Information Fusion.
Ko, J., and Fox, D. 2009. Gp-bayesfilters: Bayesian filtering
using gaussian process prediction and observation models.
Autonomous Robots 27(1):75–90.
Letchner, J.; Krumm, J.; and Horvitz, E. 2006. Trip Router
with Individualized Preferences (TRIP): Incorporating Per-
sonalization into Route Planning. In AAAI.
Liao, L.; Patterson, D. J.; Fox, D.; and Kautz, H. 2007.
Learning and Inferring Transportation Routines. Artif. Intell.
171(5-6):311–331.
Meeds, E., and Osindero, S. 2006. An alternative infinite
mixture of Gaussian process experts. In NIPS 18.
Patterson, D.; Liao, L.; Fox, D.; and Kautz, H. 2003. In-
ferring High-Level Behavior From Low-Level Sensors. In
Proc. UBICOMP.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley.
Raftery, A. 1986. Choosing models for cross-classifications.
Americal Sociological Review 51.
Rasmussen, C. E., and Ghahramani, Z. 2002. Infinite mix-
tures of Gaussian process experts. In NIPS 14.
Rasmussen, C. E., and Williams, C. K. I. 2005. Gaus-
sian Processes for Machine Learning (Adaptive Computa-
tion and Machine Learning).
Rasmussen, C. E. 2000. The Infinite Gaussian Mixture
Model. In NIPS 12.
Teh, Y. W. 2007. Dirichlet Processes. Submitted to Ency-
clopedia of Machine Learning.
Ziebart, B. D.; Maas, A.; Bagnell, J.; and Dey, A. K. 2008.
Maximum Entropy Inverse Reinforcement Learning. In
AAAI.

1593




