
Error Aware Monocular Visual Odometry Using Vertical Line Pairs
for Small Robots in Urban Areas ∗

Ji Zhang and Dezhen Song
Dept. of Computer Science and Engineering

Texas A&M University
College Station, TX, 77843

{jizhang, dzsong}@cse.tamu.edu

Abstract

We report a new error-aware monocular visual odometry
method that only uses vertical lines, such as vertical edges
of buildings and poles in urban areas as landmarks. Since
vertical lines are easy to extract, insensitive to lighting con-
ditions/shadows, and sensitive to robot movements on the
ground plane, they are robust features if compared with regu-
lar point features or line features. We derive a recursive visual
odometry method based on the vertical line pairs. We analyze
how errors are propagated and introduced in the continuous
odometry process by deriving the closed form representation
of covariance matrix. We formulate the minimum variance
ego-motion estimation problem and present a method that
outputs weights for different vertical line pairs. The result-
ing visual odometry method is tested in physical experiments
and compared with two existing methods that are based on
point features and line features, respectively. The experiment
results show that our method outperforms its two counterparts
in robustness, accuracy, and speed. The relative errors of our
method are less than 2% in experiments.

Introduction

We are interested in developing a visual odometry method
for small robots in urban areas where tall buildings form a
deep valley which can block GPS signals. Existing visual
odometry methods are computationally challenging and can-
not be used on small mobile robots with limited computation
power. Employing a minimalist’s approach, we only focus
on the robot ego-motion estimation on the ground plane us-
ing vertical lines under a regular pinhole camera due to com-
mon requirements and configurations of small robots.

Building edges and poles are common features in urban
areas (see Fig. 1(a)). These vertical lines are insensitive
to lighting conditions and shadows. They are parallel to
each other along the gravity direction. Extracting parallel
lines using the gravity direction as a reference can be done
quickly and accurately on low power computation platforms.
Moreover, vertical lines are sensitive to robot motion on the
ground plane.

∗This work was supported in part by the National Science Foun-
dation under CAREER grant IIS-0643298 and MRI program under
CNS-0923203.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b)

Figure 1: Monocular visual odometry using multiple vertical
line pairs. (a) An image taken by the robot with vertical lines
highlighted in orange. (b) A top view of the vertical edges
(black dots in the figure) in (a) and potential choices of pairs
(edges between black dots).

Utilizing the robust property of vertical lines, our new vi-
sual odometry method is error aware in landmark selection.
There are often multiple vertical lines (see Fig. 1(b)) and any
pair of them can provide an ego-motion estimation result
with different accuracy. We analyze how errors are propa-
gated and introduced in the continuous odometry process by
deriving the recursive and closed form representation of co-
variance matrix. We formulate the minimum variance ego-
motion estimation problem and present a method that out-
puts weights for different vertical line pairs. The resulting
visual odometry method is tested in physical experiments
and compared with two existing methods that are based on
point features and line features, respectively. Our result out-
performs the two counterparts in robustness, accuracy, and
speed. The relative errors of our method are less than 2% in
experiments.

Related Work

Visual odometry (Nister, Naroditsky, and Bergen 2006;
Maimone, Cheng, and Matthies 2007) utilizes images taken
from on-board camera(s) to estimate the robot ego-motion.
It can be viewed as a supplement when GPS signals are
challenged or not available. Visual odometry is closely
related to simultaneous localization and mapping (SLAM)
(Thrun, Burgard, and Fox 2005) and can be viewed as a
building block for visual SLAM (Davison et al. 2007;

1645

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



Konolige and Agrawal 2008). A better visual odometry
method will certainly increases the performance of SLAM
outputs.

Visual odometry can have different sensor configurations
including omnidirectional cameras and stereo vision sys-
tems. Wongphati et al. propose a fast indoor SLAM method
using vertical lines from an omnidirectional camera (Wong-
phati, Niparnan, and Sudsang 2009). Techniques about ver-
tical line detection and matching are developed for omni-
directional vision systems (Scaramuzza and Seigwart 2009;
Caron and Mouaddib 2009). Nister et al. develop a visual
odometry system to estimate the motion of a stereo head or
a single camera on a ground vehicle (Nister, Naroditsky, and
Bergen 2006). The stereo vision-based visual odometry on
the Mars rover is a well-known example (Maimone, Cheng,
and Matthies 2007). In our system, we use a regular pinhole
camera due to the small form factor and low cost, which are
favorable for small robots.

A different way of classifying visual odometry is what
kind of features/landmarks are used. Point features, such as
Harris corners, scale-invariant feature transformation (SIFT)
points (Lowe 2004), and speed up robust feature (SURF)
points (Bay et al. 2008) are the most popular ones since
they are readily available and well developed in computer
vision literature. However, point features usually contain
large amounts of noise and must be combined with filtering
methods such as RANdom SAmple Consensus (RANSAC)
(Fischler and Bolles 1981; Hartley and Zisserman 2004) to
find the correct correspondence across frames, which usu-
ally results in high computation cost. On the other hand, hu-
mans rarely view a scene as a set of isolated points while
often using line features for spatial reasoning. Lines are
easy to extract (Gioi et al. 2008), inherently robust, and
insensitive to lighting conditions or shadows. Therefore,
many visual SLAM applications employ line features and
achieve very accurate results (Lemaire and Lacroix 2007;
Smith, Reid, and Davison 2006; Choi, Lee, and Oh 2008).

Vertical lines are inherently parallel to each other, which
can dramatically reduce the feature extraction difficulty
(Zhou and Li 2007). They are sensitive to the robot motion
on the ground. These properties make vertical lines robust
features for visual odometry. The number of vertical lines is
usually substantially less than the number of feature points
or general lines in the scene, which leads to the reduction
of computation costs and makes it favorable for low power
platforms. In our previous work (Zhang and Song 2009), we
have shown a single pair of vertical lines can provide a min-
imal solution for estimating the robot ego-motion. Although
using a single vertical line pair is computationally efficient,
it cannot provide the most accurate ego-motion estimation.
Hence we adopt multiple vertical line pairs.

Problem Definition

We want to estimate the robot motion on the horizontal
plane. The robot periodically takes frames to estimate its
ego-motion. To focus on the most relevant issues, we begin
with assumptions. We share the same notation convention in
our previous work (Zhang and Song 2009).

Assumptions

1. We assume that the robot motion of the initial step is
known as a reference. This is the requirement for the
monocular vision system. Otherwise the ego-motion esti-
mation is only up to similarity.

2. We assume that the vertical lines, such as poles and build-
ing vertical edges, are stationary.

3. We assume that the camera follows the pinhole camera
model with square pixels, a zero skew factor and the lens
distortion is removed by calibration. The intrinsic param-
eters of the camera are known from pre-calibration.

4. For simplicity, we assume the camera image planes are
perpendicular to the horizontal plane, and parallel to each
other. If not, we can use homography matrixes (Hartley
and Zisserman 2004) to rotate the image planes to sat-
isfy the condition since camera orientations can be ob-
tained from vanishing points (Gallagher 2005) and/or po-
tentiometers.

Notations and Coordinate Systems

In this paper, all coordinate systems are right hand systems
(RHS). For the camera coordinate system (CCS), we define
z-axis as the camera optical axis, and y-axis to point upward
toward the sky. The camera optical axis is always parallel
to the x − z plane which is perfectly horizontal. The cor-
responding image coordinate system (ICS) is defined on the
image plane parallel to the x − y plane of CCS with its u-
axis and v-axis parallel to x-axis and y-axis, respectively.
The camera principal axis intersects ICS at its origin on the
image plane. To maintain an RHS, the x-axis of CCS and its
corresponding u-axis in ICS must point left (see Fig. 2).

Since the image planes are perpendicular to the hori-
zontal plane, and parallel to each other, the CCSs are iso-
oriented during the computation, the robot ego-motion on
the horizontal plane in different CCSs is equivalent to the
displacement of the vertical lines in a fixed CCS in the op-
posite direction. The x − y − z coordinate in Fig. 2 illus-
trates the superimposed CCSs for three consecutive frames
k − 1, k and k + 1, respectively. At time k, k ∈ N

+, let
(x(i,k−1), z(i,k−1)), (x(i,k), z(i,k)), and (x(i,k+1), z(i,k+1))

be the (x, z) coordinates of the intersections between the
corresponding vertical line i and the x − z plane for frames
k − 1, k, and k + 1, respectively. Let (dx

k , dz
k) be the ver-

Figure 2: Superimposed CCSs x− y − z and ICSs u− v for
the vertical line i over frames k − 1, k and k + 1.

1646



tical lines i’s displacement from frame k − 1 to k, we have
dx

k = x(i,k) − x(i,k−1), dz
k = z(i,k) − z(i,k−1).

The u − v coordinate in Fig. 2 shows the corresponding
superimposed ICSs for frames k − 1, k and k + 1. Let
u(i,k−1), u(i,k), and u(i,k+1) be the u-coordinates of the
intersections between vertical line i and u-axis for frames
k − 1, k, and k + 1, respectively. Let du

(i,k) be vertical line

i’s displacement in ICS from frame k − 1 to k, we have
du
(i,k) = u(i,k) − u(i,k−1). With the above notations and

coordinate systems defined, we can describe our task.

Previous Results on a Single Vertical Line Pair

In (Zhang and Song 2009), we use a pair of vertical
lines (i, j) to estimate the robot ego-motion. Define f
as the focal length of the camera. Given the motion of
the previous step: dk = [dx

k, dz
k]T , we can calculate

the motion of the current step: dk+1 = [dx
k+1, d

z
k+1]

T

using the positions of the vertical line pair in three
images, ui = [u(i,k−1), u(i,k), u(i,k+1)]

T and uj =

[u(j,k−1), u(j,k), u(j,k+1)]
T , as follows,

dk+1 = F(dk,ui,uj) = M−1
k+1Mkdk, (1)

Mk =
[

f(u(i,k+1) − u(i,k)) −u(i,k−1)(u(i,k+1) − u(i,k))
f(u(j,k+1) − u(j,k)) −u(j,k−1)(u(j,k+1) − u(j,k))

]

,

Mk+1 =
[

f(u(i,k) − u(i,k−1)) −u(i,k+1)(u(i,k) − u(i,k−1))
f(u(j,k) − u(j,k−1)) −u(j,k+1)(u(j,k) − u(j,k−1))

]

.

In the above recursive calculation, we do not know the
true values of dk, ui and uj . Instead, we know their

measured values d̂k, ûi and ûj with corresponding errors

e
d

k = d̂k − dk, eu

i = ûi − ui and e
u

j = ûj − uj . As a con-
vention in the paper, error value ea of a variable a is defined
as ea = â − a. Hence, (1) becomes

dk+1 + e
d

k+1 = F(dk + e
d

k ,ui + e
u

i ,uj + e
u

j ). (2)

When errors are small, this error propagation process can
be approximated by the linearization of function F(·) with
respect to dk, ui and uj , respectively. Therefore, we have

e
d

k+1 = P(i,j)e
d

k + Q(i,j)e
u

i + Q(j,i)e
u

j , (3)

where P(i,j) = ∂F/∂e
d

k , Q(i,j) = ∂F/∂e
u

i and Q(j,i) =

∂F/∂e
u

j are Jacobian matrices based on vertical line pair

(i, j). Note that Q(i,j) and Q(j,i) are for vertical line i and

j respectively. The expressions of P(i,j) and Q(i,j) are pre-

sented in (4) and (5) on the next page.

Problem Description

Eqs. (1) and (3) provide the recursive computation of the
robot ego-motion and its error propagation for a single verti-
cal line pair. However, there are often multiple vertical lines.
For n vertical lines, there are n(n− 1)/2 pairs. Each pair is
capable of providing a solution for the robot ego-motion es-
timation. We are interested in providing an estimation strat-
egy with the minimum estimation error variance.

To achieve this, we first define the ego-motion estimation
as a weighted sum of the solutions from each pair. Plug-
ging (1) in, the recursive ego-motion estimation for multiple
vertical line pairs is

dk+1 =

n−1
∑

i=1

n
∑

j=i+1

w(i,j)F(dk,ui,uj), (6)

where w(i,j) is the weight of vertical line pair (i, j). Define

I = {1, 2, ..., n} as the index set of all vertical lines. w(i,j)’s
are standardized,

n−1
∑

i=1

n
∑

j=i+1

w(i,j) = 1, (7)

w(i,j) = w(j,i) ≥ 0, i ∈ I, j ∈ I, and i 6= j. (8)

We want to choose a set of w(i,j) to minimize the ego-

motion estimation error variance. Define Σd

k and Σd

k+1 as

the covariance matrices for estimation errors e
d

k and e
d

k+1,
respectively. Define Σu

i as the covariance matrix for mea-

surement error e
u

i . At time k, Σd

k is known from the pre-

vious step. Σd

k+1 is influenced by the estimation error of

the previous step, Σd

k , and the newly introduced error of the

current step, Σu
i . To measure how Σd

k+1 changes, we use its

trace σ2
k+1 = Tr(Σd

k+1) as a metric to measure the variance

of e
d

k+1. Hence our problem is defined as,

Definition 1 Given dk, ui, Σ
u
i , i ∈ I , and Σd

k , derive Σd

k+1,
and compute

{w(i,j), ∀i, j ∈ I, i 6= j} = arg min
w(i,j)

σ2
k+1, (9)

subject to the constraints in (7) and (8).

With w(i,j)’s obtained, the robot ego-motion estimation
can be obtained using (6).

Minimum Variance Ego-motion Estimation

In this section, we first derive the expression of σ2
k+1, then

we convert the minimization of σ2
k+1 to a quadratic convex

optimization problem. We name this method the minimum
variance ego-motion estimation (MVEE) method.

Derive the Estimation Error Variance

We begin the modeling with deriving Σd

k+1. Recall that

Σd

k+1 is the variance matrix of e
d

k+1. We know that e
d

k+1
has two parts,

e
d

k+1 = e
p
k+1 + e

m
k+1, (10)

where e
p
k+1 is the estimation error propagated from the pre-

vious step e
d

k , and e
m
k+1 is introduced from the measurement

errors of the current step e
u

i , i ∈ I . From (3) and (6), we

1647



P(i,j) =
1

u(j,k+1) − u(i,k+1)





du
(i,k+1)

du
(i,k)

u(j,k+1) −
du
(j,k+1)

du
(j,k)

u(i,k+1) −
du
(i,k+1)

du
(i,k)

f u(j,k+1)u(i,k−1) +
du
(j,k+1)

du
(j,k)

f u(i,k+1)u(j,k−1)

du
(i,k+1)

du
(i,k)

f −
du
(j,k+1)

du
(j,k)

f −
du
(i,k+1)

du
(i,k)

u(i,k−1) +
du
(j,k+1)

du
(j,k)

u(j,k−1)



 ,

(4)

Q(i,j) =
1

u(j,k+1) − u(i,k+1)





du
(i,k+1)

du
(i,k)

u(j,k+1)z(i,k−1) −(1 +
du
(i,k+1)

du
(i,k)

)u(j,k+1)z(i,k) u(j,k+1)z(i,k+1)

du
(i,k+1)

du
(i,k)

fz(i,k−1) −(1 +
du
(i,k+1)

du
(i,k)

)fz(i,k) fz(i,k+1)



 . (5)

have the expressions of e
p
k+1 and e

m
k+1 as,

e
p
k+1 =

n−1
∑

i=1

n
∑

j=i+1

w(i,j)P(i,j)e
d

k = Re
d

k ,

R =

n−1
∑

i=1

n
∑

j=i+1

w(i,j)P(i,j), (11)

e
m
k+1 =

n−1
∑

i=1

n
∑

j=i+1

w(i,j)(Q(i,j)e
u

i + Q(j,i)e
u

j ) =

n
∑

i=1

Sie
u

i ,

Si =

n
∑

j=1,j 6=i

w(i,j)Q(i,j). (12)

In the above equations, R and Si are just the Jacobian matri-
ces corresponding to e

d

k and e
u

i , respectively. With the error
relationship, we can derive the covariance matrices.

Similar to (10), the covariance matrix Σd

k+1 of the estima-

tion error e
d

k+1 also has two parts because errors propagated
from the previous step are independent of the measurement
errors in the current step. Hence,

Σd

k+1 = Σp
k+1 + Σm

k+1, (13)

where Σp
k+1 and Σm

k+1 are corresponding to e
p
k+1 and e

m
k+1,

respectively.

Recall that the covariance matrix Σd

k of e
d

k in (11) is
known from the previous step. Define eu

(i,k) as the measure-

ment error of line position u(i,k). Assume that they are inde-
pendently identically distributed (i.i.d.) Gaussian with zero
mean and a variance of σ2

u. The covariance matrix Σu
i of e

u

i
in (12) is a diagonal matrix, Σu

i = diag(σ2
u, σ2

u, σ2
u).

Using the covariance matrices with (11) and (12), we have

Σp
k+1 = RΣd

k RT and Σm
k+1 = σ2

u

n
∑

i=1

SiS
T
i . (14)

Therefore, Σp
k+1 and its trace σ2

k+1 can be obtained,

Σd

k+1 = Σp
k+1 + Σm

k+1 = RΣd

kRT + σ2
u

n
∑

i=1

SiS
T
i , (15)

σ2
k+1 = Tr(RΣd

kRT ) + σ2
u

n
∑

i=1

Tr(SiS
T
i ). (16)

Formulate in a Convex Optimization Problem

With the closed-form of σ2
k+1 derived, we can formulate the

problem defined in (9) into a convex optimization problem.
Let us define vector w = [w1, ..., wn(n−1)/2]

T with its a-th
entry obtained as follows,

wa = w(i,j), where

{

i = 1, ..., n − 1, j = i + 1, ..., n,
a = (i − 1)(n − i/2) + j − i.

(17)
Vector w is our decision vector for the optimization problem
in (9), which can be rewritten as,

min
w

σ2
k+1 = wT Aw, subject to: − w ≤ 0, cT w = 1, (18)

where c = 1n(n−1)/2×1 is a vector with all elements being

1 and A is an n(n − 1)/2 × n(n − 1)/2 matrix from (16).
Now we detail how to obtain each entry for A, which ac-

tually represents the correlations between the vertical line
pairs. A also consists of two parts A = Ap + Am, where Ap

is the error propagation from the previous step, and Am is
the newly introduced in the current step. Define Ap

a,b as the

(a, b)-th entry of matrix Ap. Similarly, Am
a,b is the (a, b)-th

entry of matrix Am. Ap and Am are obtained as follows,
{

Ap
a,a = Tr(P(i,j)Σ

d

k PT
(i,j)), i = r, j = l,

Ap
a,b = Ap

b,a = Tr(P(i,j)Σ
d

k PT
(r,l)), otherwise,

(19)































Am
a,a = σ2

u(Tr(Q(i,j)Q
T
(i,j)) + Tr(Q(j,i)Q

T
(j,i)),

i = r, j = l,
Am

a,b = Am
b,a = σ2

uTr(Q(i,j)Q
T
(r,l)), i = r, j 6= l,

Am
a,b = Am

b,a = σ2
uTr(Q(j,i)Q

T
(l,r)), i 6= r, j = l,

Am
a,b = Am

b,a = σ2
uTr(Q(j,i)Q

T
(r,l)), j = r, j 6= l,

Am
a,b = Am

b,a = 0, otherwise,
(20)

where










i = 1, ..., n− 1, j = i + 1, ..., n,
r = i, ..., n − 1, l = j, ..., n,
a = (i − 1)(n − i/2) + j − i,
b = (r − 1)(n − r/2) + l − r.

Matrix A is positive definite, which can be easily proved
by comparing (16) with (18). Since the feasible set of the
optimization problem in (18) is also convex, the problem is
a quadratic convex optimization problem, which is a well
studied problem in operations research. Here we use the
well known interior-point method (Boyd and Vandenberghe
2006) to solve it. With the optimized weights defined in (9)
obtained, we can estimate the robot ego-motion according to
(6). Hence we complete our MVEE method.

1648



(a) (b) (c) (d)

Figure 3: (a) The camera and the robot used in physical experiments. (b) Experiment site 1 from the robot view with vertical
edges highlighted in green. (c,d) Experiment sites 2 and 3 with robot trajectories highlighted in black.

Experiments
We compare MVEE with two popular ego-motion estima-
tion methods in physical experiments:

• Nister (Nister, Naroditsky, and Bergen 2006): This
method is selected because it is a representative point
feature-based method. The method employs Harris corner
points as landmarks. This method supports both monocu-
lar and stereo configurations. We use its monocular con-
figuration in the experiments.

• L&L (Lemaire and Lacroix 2007): This method is se-
lected because it is a representative line feature-based
method. The method is a monocular vision based SLAM
method using general line segments as landmarks. We
turn off the loop closing for visual odometry comparison
purpose.

Both methods estimate 3D robot movements. Since our
method is 2D, we only compare the odometry results on
the x − z ground plane. We define a relative error metric
ε for the comparison purpose. Let dx

k and dz
k be the true

displacements of the robot in x- and z-directions at step k,
respectively, which are measured by a tape measure in the
experiments. The corresponding outputs of visual odometry

are defined as d̂x
k and d̂z

k, and ε is defined as

ε =

√

(
∑

k d̂x
k −

∑

k dx
k)2 + (

∑

k d̂z
k −

∑

k dz
k)2

∑

k

√

(dx
k)2 + (dz

k)2
. (21)

This metric describes the ratio of the ego-motion estimation
error in comparison to the overall distance traveled.

We use a Sony DSC-F828 camera mounted on a robot in
the experiments (Fig. 3(a)). The camera has a 50◦ horizontal
field of view and a resolution of 640×480 pixels. The robot
is custom made in our lab, which measures 50×47×50 cm3

in size. The visual odometry algorithms run on a Compaq
V3000 laptop PC with an 1.6GHz dual core CPU and 1.0G
RAM. We implement Nister, L&L, and MVEE on the laptop
PC using MatLab 2006a.

We run tests at three experiment sites (Fig. 3(b-d)) for all
three methods. At each site, the robot moves along a planed
trajectory for a certain number of steps. The robot takes one
image at the end of each step. The robot displacement of the
first step is given as a reference. The details about each site
are described below:

• Site 1: The robot moves 31 steps along a zigzagging poly
line with a step length of 1 m for odd steps and a step
length of 0.5 m for even steps (Fig. 3(b) and Fig. 4(a)).

(a) (b)

Figure 4: Physical experiment results. (a) A comparison of
robot trajectories from the three methods with the ground
truth (dashed black poly line). (b) A comparison of ε̄ values
for the three methods at each experiment site.

• Site 2: The robot moves toward the depth direction for 51
steps with a step length of 1 m (Fig. 3(c)).

• Site 3: The robot has two trajectories as indicated by the
black solid and dashed lines, respectively. Each trajec-
tory has 31 steps along the depth direction followed by 20
steps along the lateral direction with a step length of 1 m
(Fig. 3(d)).

We run the robot for 10 trials at each site (for site 3, each
trajectory takes 5 trials) which leads to a total of 30 trails.

During the experiments, we employ Gioi et al.’s method
to extract the line segments from the images (Gioi et al.
2008). The vertical lines are found using an inclination angle
threshold (Zhou and Li 2007) and vanishing points. Then,
we employ the vanishing point method (Gallagher 2005) for
vertical and horizontal lines to construct homographies that
project images into the iso-oriented ICSs with their u − v
planes parallel to the vertical lines, which allows us to align
the ICSs at frames k − 1, k, and k + 1 for step k + 1. The
correspondence between lines in adjacent frames is found by
directly matching pixels of vertical stripes at the neighboring
region of the vertical lines. Finally, MVEE is applied.

The experiment results of the three methods are shown in
Fig. 4. Fig. 4(a) presents a representative sample trial of es-
timated trajectory comparison at site 1. Fig. 4(b) compares
the mean values of ε for the three methods at each site. It
is clear that MVEE outperforms its two counterparts in esti-
mation accuracy.

1649



Table 1: Feature quality and computation speed comparison.

Methods
Feature Speed

Total Inliers Ratio Time Factor

Nister 3425 245 7% 15.2s 6.6x

L&L 122 41 34% 3.4s 1.5x

MVEE 59 25 42% 2.3s 1.0x

Table 1 compares feature quality and computation speed
for the three methods in each step. Each row in Table 1 is the
average of the 30 trials. It is obvious that the two line fea-
ture based methods, MVEE and L&L, outperform the point
feature based Nister method, which conforms to our expec-
tation. MVEE is slightly faster than L&L due to its smaller
input sets since vertical lines are a subset of general lines.
Note that all implementations are in MatLab and the speed
should be much faster if converted to C++ but the factors
should remain the same.

For feature quality, it is clear that Nister method em-
ploys much more features than MVEE and L&L, while its
inliers/total-features ratio is the lowest. On the contrary,
MVEE has the least number of features with the highest in-
lier ratio. This indicates that MVEE is more robust than the
other two methods. Overall, MVEE outperforms the other
two methods in robustness, accuracy, and speed.

Conclusion and Future Work

We reported our development of a monocular visual odome-
try method that utilizes vertical lines in urban areas. We de-
rived how to estimate the robot ego-motion using multiple
vertical line pairs. To improve the accuracy, we analyzed
how errors are propagated and introduced in the continu-
ous odometry process by deriving the recursive and closed
form representation of the error covariance matrix. We min-
imize the ego-motion estimation error variance by solving a
convex optimization problem. The resulting visual odome-
try method is tested in physical experiments and compared
with two existing methods, where the results show that our
method is better in robustness, accuracy, and speed.

In the future, we will extend our method to 3D visual
odometry by exploring different combinations of geometric
features such as horizontal lines, vertical planes, and points
with geometric meanings (e.g. intersections between lines
and planes). We will also look into methods using texture
features in combination with geometric features.

Acknowledgement

We thank Dr. J. Yi for his insightful inputs and discussions.
Thanks Y. Xu, C. Kim, A. Aghamohammadi, S. Hu, and
W. Li for their contributions to NetBot Laboratory in Texas
A&M University.

References

Bay, H.; Ess, A.; Tuytelaars, T.; and Gool, L. 2008. Surf: Speeded
up robust features. Computer Vision and Image Understanding
(CVIU) 110(3):346–359.

Boyd, S., and Vandenberghe, L. 2006. Convex Optimization. Cam-
bridge University Press.

Caron, G., and Mouaddib, E. 2009. Vertical line matching for
omnidirectional stereovision images. In IEEE International Con-
ference on Robotics and Automation (ICRA).

Choi, Y.; Lee, T.; and Oh, S. 2008. A line feature based SLAM
with low grad range sensors using geometric constrains and active
exploration for mobile robot. Autonomous Robot 24:13–27.

Davison, A.; Reid, L.; Molton, N.; and Stasse, O. 2007.
MonoSLAM: Real-time single camera SLAM. IEEE Transactions
on Pattern Analysis and Machine Intelligence 29(6):1052–1067.

Fischler, M. A., and Bolles, R. C. 1981. Random sample con-
sensus: a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the ACM
24(6):381–395.

Gallagher, A. 2005. Using vanishing points to correct camera
rotation in images. In The 2nd Canadian Conference on Computer
and Robot Vision.

Gioi, R.; Jakubowicz, J.; Morel, J.; and Randall, G. 2008. Lsd: A
line segment detector. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Hartley, R., and Zisserman, A. 2004. Multiple View Geometry in
Computer Vision, 2nd Edition. Cambridge University Press.

Konolige, K., and Agrawal, M. 2008. FrameSLAM: From bon-
dle adjustment to real-time visual mapping. IEEE Transactions on
Robotics 24(5):1066–1077.

Lemaire, T., and Lacroix, S. 2007. Monocular-vision based SLAM
using line segments. In IEEE International Conference on Robotics
and Automation (ICRA).

Lowe, D. 2004. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision 60(4):91–
110.

Maimone, M.; Cheng, Y.; and Matthies, L. 2007. Two years of
visual odometry on the mars exploration rovers. Journal of Field
Robotics 24(2):169–186.

Nister, D.; Naroditsky, O.; and Bergen, J. 2006. Visual odom-
etry for ground vechicle applications. Journal of Field Robotics
23(1):3–20.

Scaramuzza, D., and Seigwart, R. 2009. A robust descriptor
for tracking vertical lines in omnidirectional images and its use in
mobile robotics. The International Journal of Robotics Research
28(2):149–171.

Smith, P.; Reid, I.; and Davison, A. 2006. Real-time monocu-
lar SLAM with straight lines. In The 17th British Machine Vision
Conference.

Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic Robotics.
The MIT Press, Cambridge, Massachusetts.

Wongphati, M.; Niparnan, N.; and Sudsang, A. 2009. Bearing
only FastSLAM using vertical line information from an omnidi-
rectional camera. In IEEE International Conference on Robotics
and Biomimetics.

Zhang, J., and Song, D. 2009. On the error analysis of vertical line
pair-based monocular visual odometry in urban area. In Interna-
tional Conference on Intelligent Robots and Systems (IROS).

Zhou, J., and Li, B. 2007. Exploiting vertical lines in vision-
based navigation for mobile robot platforms. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
I–465–I–468.

1650




