
Relative Entropy Policy Search

Jan Peters, Katharina Mülling, Yasemin Altün
Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany

{jrpeters,muelling,altun}@tuebingen.mpg.de

Abstract
Policy search is a successful approach to reinforcement learn-
ing. However, policy improvements often result in the loss of
information. Hence, it has been marred by premature con-
vergence and implausible solutions. As first suggested in the
context of covariant policy gradients (Bagnell and Schneider
2003), many of these problems may be addressed by con-
straining the information loss. In this paper, we continue this
path of reasoning and suggest the Relative Entropy Policy
Search (REPS) method. The resulting method differs signif-
icantly from previous policy gradient approaches and yields
an exact update step. It works well on typical reinforcement
learning benchmark problems.

Introduction
Policy search is a reinforcement learning approach that at-
tempts to learn improved policies based on information ob-
served in past trials or from observations of another agent’s
actions (Bagnell and Schneider 2003). However, policy
search, as most reinforcement learning approaches, is usu-
ally phrased in an optimal control framework where it di-
rectly optimizes the expected return. As there is no notion
of the sampled data or a sampling policy in this problem
statement, there is a disconnect between finding an optimal
policy and staying close to the observed data. In an online
setting, many methods can deal with this problem by staying
close to the previous policy (e.g., policy gradient methods
allow only small incremental policy updates). Hence, ap-
proaches that allow stepping further away from the data are
problematic, particularly, off-policy approaches Directly op-
timizing a policy will automatically result in a loss of data as
an improved policy needs to forget experience to avoid the
mistakes of the past and to aim on the observed successes.
However, choosing an improved policy purely based on its
return favors biased solutions that eliminate states in which
only bad actions have been tried out. This problem is known
as optimization bias (Mannor et al. 2007). Optimization bi-
ases may appear in most on- and off-policy reinforcement
learning methods due to undersampling (e.g., if we cannot
sample all state-actions pairs prescribed by a policy, we will
overfit the taken actions), model errors or even the policy
update step itself.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Policy updates may often result in a loss of essential in-
formation due to the policy improvement step. For exam-
ple, a policy update that eliminates most exploration by tak-
ing the best observed action often yields fast but premature
convergence to a suboptimal policy. This problem was ob-
served by Kakade (2002) in the context of policy gradients.
There, it can be attributed to the fact that the policy param-
eter update δθ was maximizing it collinearity δθT∇θJ to
the policy gradient while only regularized by fixing the Eu-
clidian length of the parameter update δθT δθ = ε to a step-
size ε. Kakade (2002) concluded that the identity metric
of the distance measure was the problem, and that the us-
age of the Fisher information metric F (θ) in a constraint
δθTF (θ)δθ = ε leads to a better, more natural gradient.
Bagnell and Schneider (2003) clarified that the constraint
introduced in (Kakade 2002) can be seen as a Taylor expan-
sion of the loss of information or relative entropy between
the path distributions generated by the original and the up-
dated policy. Bagnell and Schneider’s (2003) clarification
serves as a key insight to this paper.

In this paper, we propose a new method based on this in-
sight, that allows us to estimate new policies given a data
distribution both for off-policy or on-policy reinforcement
learning. We start from the optimal control problem state-
ment subject to the constraint that the loss in information
is bounded by a maximal step size. Note that the meth-
ods proposed in (Bagnell and Schneider 2003; Kakade 2002;
Peters and Schaal 2008) used a small fixed step size instead.
As we do not work in a parametrized policy gradient frame-
work, we can directly compute a policy update based on all
information observed from previous policies or exploratory
sampling distributions. All sufficient statistics can be deter-
mined by optimizing the dual function that yields the equiv-
alent of a value function of a policy for a data set. We show
that the method outperforms the previous policy gradient al-
gorithms (Peters and Schaal 2008) as well as SARSA (Sut-
ton and Barto 1998).

Background & Notation
We consider the regular reinforcememt learning setting (Sut-
ton and Barto 1998; Sutton et al. 2000) of a stationary
Markov decision process (MDP) with n states s and m ac-
tions a. When an agent is in state s, he draws an action
a ∼ π(a|s) from a stochastic policy π. Subsequently, the

1607

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

agent transfers from state s to s′ with transition probability
p(s′|s, a) = Pass′ , and receives a reward r(s, a) = Ras ∈ R.
As a result from these state transfers, the agent may converge
to a stationary state distribution µπ(s) for which

∀s′ :
∑

s,a
µπ(s)π(a|s)p(s′|s, a) = µπ(s′) (1)

holds under mild conditions, see (Sutton et al. 2000). The
goal of the agent is to find a policy π that maximizes the
expected return

J(π) =
∑

s,a
µπ(s)π(a|s)r(s, a), (2)

subject to the constraints of Eq.(1) and that both µπ and π
are probability distributions. This problem is called the op-
timal control problem; however, it does not include any no-
tion of data as discussed in the previous section. In some
cases, only some features of the full state s are relevant for
the agent. In this case, we only require stationary feature
vectors∑

s,a,s′
µπ(s)π(a|s)p(s′|s, a)φs′ =

∑
s′
µπ(s′)φs′ . (3)

Note that when using Cartesian unit vectors us′ of length
n as features φs′ = us′ , Eq.(3) will become Eq.(1). Using
features instead of states relaxes the stationarity condition
considerably and often allows a significant speed-up while
only resulting in approximate solutions and being highly de-
pendable on the choice of the features. Good features may
be RBF features and tile codes, see (Sutton and Barto 1998).

Relative Entropy Policy Search
We will first motivate our approach and, subsequently, give
several practical implementations that will be applied in the
evaluations.

Motivation
Relative entropy policy search (REPS) aims at finding the
optimal policy that maximizes the expected return based
on all observed series of states, actions and rewards. At
the same time, we intend to bound the loss of informa-
tion measured using relative entropy between the observed
data distribution q(s, a) and the data distribution pπ(s, a) =
µπ(s)π(a|s) generated by the new policy π. Ideally, we
want to make use of every sample (s, a, s′, r) independently,
hence, we express the information loss bound as

D(pπ||q) =
∑
s,a

µπ(s)π(a|s) log
µπ(s)π(a|s)
q(s, a)

≤ ε, (4)

where D(pπ||q) denotes the Kullback-Leibler divergence,
q(s, a) denotes the observed state-action distribution, and ε
is our maximal information loss.

Problem Statement. The goal of relative entropy policy
search is to obtain policies that maximize the expected re-
ward J(π) while the information loss is bounded, i.e.,

max
π,µπ

J(π) =
∑
s,a

µπ(s)π(a|s)Ras , (5)

s.t. ε ≥
∑
s,a

µπ(s)π(a|s) log
µπ(s)π(a|s)
q(s, a)

, (6)

∑
s′

µπ(s′)φs′ =
∑
s,a,s′

µπ(s)π(a|s)Pass′φs′ , (7)

1 =
∑
s,a

µπ(s)π(a|s). (8)

Both µπ and π are probability distributions and the features
φs′ of the MDP are stationary under policy π.

Without the information loss bound constraint in Eq.(6),
there is no notion of sampled data and we obtain the stochas-
tic control problem where differentiation of the Langrangian
also yields the classical Bellman equation φTs θ = Ras − λ+∑
s′ Pass′φTs′θ. In this equation, φTs θ = Vθ(s) is known to-

day as value function while the Langrangian multipliers θ
become parameters and λ the average return. While such
MDPs may be solved by linear programming (Puterman
2005), approaches that employ sampled experience cannot
be derived properly from these equations. The key differ-
ence to past optimal control approaches lies in the addition
of the constraint in Eq. (6).

As discussed in the introduction, natural policy gradient
may be derived from a similar problem statement. However,
the natural policy gradient requires that ε is small, it can
only be properly derived for the path space formulation and
it can only be derived from a local, second order Taylor ap-
proximation of the problem. Stepping away further from the
sampling distribution q will violate these assumptions and,
hence, natural policy gradients are inevitably on-policy1.

The ε can be chosen freely where larger values lead to
bigger steps while excessively large values can destroy the
policy. Its size depends on the problem as well as on the
amount of available samples.

Relative Entropy Policy Search Method
As shown in the appendix, we can obtain a reinforcement
learning algorithm straightforwardly.
Proposed Solution. The optimal policy for Problem is
given by

π(a|s) =
q(s, a) exp

(
1
η δθ(s, a)

)
∑
b q(s, b) exp

(
1
η δθ(s, b)

) , (9)

where δθ(s, a) = Ras +
∑
s′ Pass′Vθ(s′)−Vθ(s) denotes the

Bellman error. Here, the value function Vs(θ) = θTφs is
determined by minimizing

g(θ, η) = η log
(∑

s,a
q(s, a)exp

(
ε+

1
η
δθ(s, a)

))
, (10)

with respect to θ and η.
The value function Vθ(s) = φTs θ appears naturally in the

derivation of this formulation (see Appendix). The new error
1Note that there exist sample re-use strategies for larger step

away from q using importance sampling, see (Sutton and Barto
1998; Peshkin and Shelton 2002; Hachiya, Akiyama, Sugiyama
and Peters 2008), or off-policy approaches such as Q-Learning
(which is known to have problems in approximate, feature-based
learning).

1608

Relative Entropy Policy Search

input: features φ(s), maximal information loss ε.

for each policy update

Sampling: Obtain samples (si, ai, s′i, ri), e.g.,
by observing another policy or being on-policy.

Counting: Count samples to obtain the
sampling distribution q(s, a) = 1

N

∑N
i=1 Iisa.

Critic: Evaluate policy for η and θ.

Define Bellman Error Function:
δθ(s, a) = Ras +

∑
s′ Pass′φTs′θ − φTs θ

Compute Dual Function:
g(θ, η) = η log

(∑
s,a q(s, a)eε+

1
η δθ(s,a)

)
Compute the Dual Function’s Derivative :

∂θg = η s,a q(s,a)e
ε+ 1

η
δθ(s,a)(s′ P

a
ss′φs′−φs)

s,a q(s,a)e
ε+ 1

η
δθ(s,a)

∂ηg = log
(∑

s,a q(s, a)eε+
1
η δθ(s,a)

)
− s,a q(s,a)e

ε+ 1
η
δθ(s,a) 1

η2 δθ(s,a)

s,a q(s,a)e
ε+ 1

η
δθ(s,a)

Optimize: (θ∗, η∗) = fmin BFGS(g, ∂g, [θ0, η0])
Determine Value Function: Vθ∗(s) = φTs θ

∗

Actor: Compute new policy π(a|s).

π(a|s) =
q(s,a) exp(1

η∗ δθ∗ (s,a))
b q(s,b) exp(1

η∗ δθ∗ (s,b)) ,

Output: Policy π(a|s).

Table 1: Algorithmic description of Relative Entropy Pol-
icy Search. This algorithm reflects the proposed solution
clearly. Note that Iisa is an indicator function such that
Iisa = 1 if s = si and a = ai while Iisa = 0 otherwise.
In Table 2, we show a possible application of this method in
policy iteration.

function for the critic in Eq.(10) differs substantially from
traditional temporal difference errors, residual gradient er-
rors and monte-carlo rollout fittings (Sutton and Barto 1998;
Sutton et al. 2000). The presented solution is derived for ar-
bitrary stationary features and is therefore sound with func-
tion approximation. The derived policy is similar to the
Gibbs policy used in policy gradient approaches (Sutton et
al. 2000) and in SARSA (Sutton and Barto 1998).

In order to turn proposed solution into algorithms, we
need to efficiently determine the solution (θ∗, η∗) of the dual
function g. Eq. (10) can be rewritten as

min
θ,η̃

g(θ, η̃) = η̃−1 log
∑
s,a

exp (log q(s, a) + ε+ η̃δθ(s, a)) ,

which is known to be convex (Boyd and Vandenberghe
2004) as δθ(s, a) is linear in θ. Given that g is convex and
smoothly differentiable, we can determine the optimal solu-
tion g(θ∗, η∗) efficiently with any standard optimizer such as

Broyden–Fletcher–Goldfarb–Shannon (BFGS) method (de-
noted in this paper by fmin BFGS(g,∂g,[θ0, η0]) with
∂g = [∂θg, ∂ηg]). The resulting method is given in Table
1.

Sample-based Policy Iteration with REPS
If the REPS algorithm is used in a policy iteration scenario,
one can re-use parts of the sampling distribution q(s, a). As
we know that q(s, a) = µπl(s)πl(a|s) where πl denotes the
last policy in a policy iteration scenario, we can also write
our new policy as

πl+1(a|s) =
πl(a|s) exp

(
1
η δθ(s, a)

)
∑
b πl(a|s) exp

(
1
η δθ(s, b)

) .
As a result, we can also evaluate our policy at states where
no actions have been taken. Setting πl to good locations
allows encoding prior knowledge on the policy. This up-
date has the intuitive interpretation that an increase in log-
probability of an action is determined by the Bellman error
minus a baseline similar to its mean, i.e., log πl+1(a|s) =
log πl(a|s) + 1

η δθ(s, a)− b(s).
Obviously, the algorithm as presented in the previous sec-

tion would be handicapped by maintaining a high accuracy
model of the Markov decision problem (Ras ,Pass′). Model
estimation would require covering prohibitively many states
and actions, and it is hard to obtain an error-free model from
data (Deisenroth 2009; Sutton and Barto 1998). Furthere-
more, in most interesting control problems, we do not intend
to visit all states and take all actions — hence, the number
of samples N may often be smaller than the number of all
state-action pairs mn. Thus, in order to become model-free,
we need to rephrase the algorithm in terms of sample aver-
ages instead of the system model.

The next step is hence to replace the summations over
states s, s′, and actions a by summations over samples
(si, ai, s′i, ri). It turns out that this step can be accom-
plished straightforwardly as all components of REPS can
be expressed using sample-based replacements such as∑
s,a q(s, a)f(s, a) = 1

N

∑N
i=1 f(si, ai). As the Bellman

error δθ(si, ai) only needs to be maintained for the executed
actions, we can also approximate it using sample averages.

Using these two insights, we can design a generalized pol-
icy iteration algorithm that is based on samples while using
the main insights of Relative Entropy Policy Search. The re-
sulting method is shown in Table 2. Note that Table 2 does
not include sample re-use in REPS policy iteration. How-
ever, this step may be included straightfowardly as we can
mix data from previous iterations with the current one by us-
ing all data in the critic and the sum of all previous policies
in the actor update. While such remixing will require more
policy update steps, it may improve robustness and allow
updates after fewer sampled actions.

Experiments
In the following section, we test our Sample-based Policy It-
eration with Relative Entropy Policy Search approach using

1609

(a) Two State Problem (b) Single Chain Problem (c) Double Chain Problem
(Bagnell and Schneider 2003) (Furmston & Barbar 2010) (Furmston & Barbar 2010)

Figure 1: Three different methods are compared on three toy examples. The vanilla policy gradients are significantly outper-
formed due to their slow convergence as already discussed by Bagnell and Schneider (2003) for the Two State Problem. Policy
iteration based on Relative Entropy Policy Search (REPS) exhibited the best performance.

first several example problems from the literature and, sub-
sequently, on the Mountain Car standard evaluation. Sub-
sequently, we show first steps towards a robot application
currently under development.

Example ProblemsWe compare our approach both to ‘vanilla’ policy gradient
methods and natural policy gradients (Bagnell and Schnei-
der 2003; Peters and Schaal 2008) using several toy prob-
lems. As such, we have chosen (i) the Two-State Problem
(Bagnell and Schneider 2003), (ii) the Single Chain Prob-
lem (Furmston and Barber 2010), and (iii) the Double Chain
Problem (Furmston and Barber 2010). In all of these prob-
lems, the optimal policy can be observed straightforwardly
by a human observer but they pose a major challenge for
‘vanilla’ policy gradient approaches.

Two State Problem. The two state problem has two states
and two actions. If it takes the action that has the same num-
ber as its current state, it will remain in this state. If it takes
the action that has the others state’s number, it will trans-
fer to that one. State transfers are punished while staying
in ones’ state will give an immidiate reward that equals the
number of the state. This problem is a derivate of the one
in (Bagnell and Schneider 2003). The optimal policy can be
observed straightforwardly: always take action 2. See Fig. 1
(a) for more information.

Single Chain Problem. The Single Chain Problem can be
seen as an extension of the Two State Problem. Here, the
actor may return to state 1 at any point in time by taking
action 2 and receiving a reward of 2. However, if he keeps
using action 1 all the time, he will not receive any rewards
until he reaches state 5 where he obtains the reward of 10
and may remain in state 5. The version presented here was

inspired by Furmston & Barbar (2010). See Fig. 1 (b) for
more information.

Double Chain Problem. The Double Chain Problem con-
catinates two single chain problems into one big one were
state 1 is shared. As before, returning to state 1 will yield
a reward 2 and requires taking action 2. If in state 1, action
2 will lead to state 6 and also yield a reward of 2. An ac-
tion 1 yields a reward 5 in state 9 and a reward 10 in state
5. In all other states, action 1 will yield 0 reward. Note
that this problem differs from (Furmston and Barber 2010)
significantly. We have made it purposefully harder for any
incremental method in order to highligh the advantage of the
presented approach. See Fig. 1 (c) for more information.

We used unit features for all methods. For the two policy
gradient approaches a Gibbs policy was employed (Sutton et
al. 2000; Bagnell and Schneider 2003). On all three prob-
lems, we let our policy run until the state distribution has
converged to the stationary distribution. For small problems
like the presented ones, this usually takes less than 200 steps.
Subsequently, we update the policy and resample. We take
highly optimized vanilla policy gradients with minimum-
variance baselines (Peters and Schaal 2008) and the Natu-
ral Actor-Critic with unit basis functions as additional func-
tion approximation (Peters and Schaal 2008). Instead of
a small fixed learning rate, we use an additional momen-
tum term in order to improve the performance. We tuned
all meta-parameters of the gradient methods to maximum
performance. We start with the same random initial poli-
cies for all algorithms and average over 150 learning runs.
Nevertheless, similar as in (Bagnell and Schneider 2003;
Peters and Schaal 2008), we directly observe that natu-
ral gradient outperforms the vanilla policy gradient. Fur-

1610

Policy Iteration with REPS

input: features φ(s), maximal information loss ε,
initial policy π0(a|s).

for each policy update k

Sampling: Obtain N samples (si, ai, s′i, ri) using
current policy πk(a|s) in an on-policy setting.

Critic: Evaluate policy for η and θ.

for every sample i = 0 to N do:

nδ(si, ai) = nδ(si, ai) + (ri + φTs′i
θ − φTsiθ)

nΛ(si, ai) = nΛ(si, ai) + (φs′i − φsi)
d(si, ai) = d(si, ai) + 1

Bellman Error Function: δθ(s, a) = nδ(s,a)
d(s,a)

Feature Difference: Λ(s, a) = nΛ(s,a)
d(s,a)

Compute Dual Function:
g(θ, η) = η log

(
1
N

∑N
i=1 e

ε+ 1
η δθ(si,ai)

)
Compute the Dual Function’s Derivative :

∂θg = η
N
i=1 e

ε+ 1
η
δθ(si,ai)Λ(si,ai)

N
i=1 e

ε+ 1
η
δθ(si,ai)

∂ηg = log
(∑N

i=1 e
ε+ 1

η δθ(si,ai)
)

−
N
i=1 e

ε+ 1
η
δθ(si,ai) 1

η2 δθ(si,ai)

N
i=1 e

ε+ 1
η
δθ(si,ai)

Optimize: (θ∗, η∗) = fmin BFGS(g, ∂g, [θ0, η0])
Determine Value Function: Vθ∗(s) = φTs θ

∗

Actor: Compute new policy πk+1(a|s).

πk+1(a|s) =
πk(a|s) exp(1

η∗ δθ∗ (s,a))
b πk(a|s) exp(1

η∗ δθ∗ (s,b)) ,

Output: Optimal policy π∗(a|s).

Table 2: Algorithmic description of Policy Iteration based
on Relative Entropy Policy Search. This version of the al-
gorithm extends the one in Table 1 for practical application.
Note that N is not a fixed number but may change after ev-
ery iteration.

thermore, we also observe that our REPS policy iteration
yields a significantly higher performance. A comparison
with PoWER (Kober and Peters 2009) was not necessary
as the episodic form of REPS appears to be equivalent to the
applicable version of PoWER. The performance of all three
methods for all three problems is shown in Fig. 1 (a-c).

Mountain-Car Problem
The mountain car problem (Sutton and Barto 1998) is a well-
known problem in reinforcement learning.

We adapt the code from (Hernandez 2010) and employ the
same tile-coding features for both SARSA and REPS. We
implement our algorithm in the same settings and are able to
show that REPS policy iteration also outperforms SARSA.
While SARSA is superficially quite similar to the presented

Figure 2: Performance on the mountain-car problem.

Figure 3: Simulated setup for learning robot table tennis.

method, it differs significantly in two parts, i.e., the critic of
SARSA converges slower, and the additional multiplication
by the previous policy results in a faster pruning of taken
bad actions in the REPS approach. As a result, REPS is
significantly faster than SARSA as can be observed in Fig. 2.

Primitive Selection in Robot Table Tennis
Table tennis is a hard benchmark problem for robot learn-
ing that includes most difficulties of complex skill. The
setup is shown in Fig. 3. A key problem in a skill learn-
ing system with multiple motor primitives (e.g., many dif-
ferent forehands, backhands, smashes, etc.) is the selection
of task-appropriate primitives triggered by an external stim-
ulus. Here, we have generated a large set of motor primitives
that are triggered by a gating network that selects and gener-
alizes among them similar to a mixture of experts. REPS im-
proves the gating network by reinforcement learning where
any successful hit results as a reward of +1 and for failures
no reward is given. REPS appears to be sensitive to good
initial sampling policies. The results vary considerably with
initial policy performance. When the system starts with an
initial policy that has a success rate of∼24%, it may quickly
converge prematurely yielding a success rate of ∼39%. If
provided a better initialization, it can reach success rates of
up to ∼59%.

Discussion & Conclusion
In this paper, we have introduced a new reinforcement learn-
ing method called Relative Entropy Policy Search. It is de-
rived from a principle as previous covariant policy gradient
methods (Bagnell and Schneider 2003), i.e., attaining max-
imal expected reward while bounding the amount of infor-
mation loss. Unlike parametric gradient method, it allows an
exact policy update and may use data generated while fol-
lowing an unknown policy to generate a new, better policy.
It resembles the well-known reinforcement learning method

1611

SARSA to an extent; however, it can be shown to outper-
form it as the critic operates on a different, more sound cost
function than traditional temporal difference learning, and
as its weighted “soft-max” policy update will promote suc-
cessful actions faster than the standard soft-max. We have
shown that the method performs efficiently when used in a
policy iteration setup. REPS is sound with function approx-
imation and can be kernelized straightforwardly which of-
fers interesting possibilities for new algorithms. The relation
to PoWER (Kober and Peters 2009) and Reward-Weighted
Regression is not yet fully understood as these methods
minimize D(pπ(τ)||r(τ)q(τ)) which is superficially similar
to maximizing Ep{r(τ)} subject to D(pπ(τ)||q(τ)). Both
methods end up with very similar update equations for the
episodic case. Application of REPS for reinforcement learn-
ing of motor primitive selection for robot table tennis has
been successful in simulation.

References
Atkeson, C. G. 1993. Using local trajectory optimizers to
speed up global optimization in dynamic programming. In
NIPS, 663–670.
Bagnell, J., and Schneider, J. 2003. Covariant policy search.
In International Joint Conference on Artificial Intelligence.
Boyd, S., and Vandenberghe, L. 2004. Convex Optimization.
Cambridge University Press.
de Farias, D. P., and Roy, B. V. 2003. The linear program-
ming approach to approximate dynamic programming. Op-
erations Research 51(6):850–856.
Deisenroth, M. 2009. Efficient Reinforcement Learning us-
ing Gaussian Processes. Ph.D. thesis, Karlsruhe Institute of
Technology, Karlsruhe, Germany.
Furmston, T., and Barber, D. 2010. Variational methods for
reinforcement learning. In AISTATS.
Hachiya, H.; Akiyama, T.; Sugiyama, M.; Peters, J.; 2008.
Adaptive importance sampling with automatic model selec-
tion in value function approximation. In AAAI, 1351–1356.
Hernandez, J. 2010. http://www.dia.fi.upm.es/ ja-
martin/download.htm.
Kakade, S. A. 2002. Natural policy gradient. In Advances
in Neural Information Processing Systems 14.
Kober, J.; Peters, J. 2009. Policy Search for Motor Primi-
tives in Robotics. In Advances in Neural Information Pro-
cessing Systems 22.
Mannor, S.; Simester, D.; Sun, P.; and Tsitsiklis, J. N. 2007.
Biases and variance in value function estimates. Manage-
ment Science 53(2):308–322.
Peshkin, L., and Shelton, C. R. 2002. Learning from scarce
experience. In ICML, 498–505.
Peters, J., and Schaal, S. 2008. Natural actor critic. Neuro-
computing 71(7-9):1180–1190.
Puterman, M. L. 2005. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY:
John Wiley and Sons.
Sutton, R., and Barto, A. 1998. Reinforcement Learning.
MIT Press.

Sutton, R.; McAllester, D.; Singh, S.; and Mansour, Y.
2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in Neural Infor-
mation Processing Systems 12.

Derivation of REPS
We denote psa = µπ(s)π(a|s) and µπ(s) =

∑
a psa for

brevity of the derivations, and give the Lagrangian for the
program in Eqs.(5-8) by

L=

(∑
s,a

psaRas

)
+η

(
ε−

∑
s,a

psa log
psa
qsa

)

+
∑
s′

θT

(∑
s,a

psaPass′φs′−
∑
a′

ps′a′φs′

)
+λ

(
1−
∑
s,a

psa

)
,

=
∑
s,a

psa

(
Ras−η log

psa
qsa
−λ−θTs φs+

∑
s′

Pass′θTs′φs′
)

+ ηε+ λ, (11)

where η, θ and λ denote the Lagrangian multipliers.We sub-
stitute Vs = θTφs. We differentiate

∂psaL = Ras − η log
psa
qsa

+ η − λ+
∑
s′P

a
ss′Vs′ − Vs = 0,

and obtain psa = qsae
1
η (Ras+ s′ P

a
ss′Vs′−Vs)e1−λη .Given

that we require
∑
s,a psa = 1, it is necessary that

e1−λη =
(∑

s,a
qsae

1
η (Ras+ s′ P

a
ss′Vs′−Vs)

)−1

, (12)

(hence, λ depends on θ), and we can compute

psa =
qsa exp

(
1
η (Ras +

∑
s′ Pass′Vs′ − Vs)

)
∑
s,a qsa exp

(
1
η (Ras +

∑
s′ Pass′Vs′ − Vs)

) (13)

We can extract a policy using π(a|s) = psa/
∑
a psa, and

hence optain Eq. (9). Reinserting these results into Eq.(11),
we obtain the dual function

g (θ, η, λ) = −η + ηε+ λ = −η log
(
e1−λη e−ε

)
,

which can be rewritten as Eq.(10) by inserting Eq.(12).

1612

