
g-Planner: Real-Time Motion Planning
and Global Navigation Using GPUs

Jia Pan and Christian Lauterbach and Dinesh Manocha
Department of Computer Science, University of North Carolina at Chapel Hill

{panj, cl, dm}@cs.unc.edu
http://gamma.cs.unc.edu/gplanner/

Abstract

We present novel randomized algorithms for solving global
motion planning problems that exploit the computational ca-
pabilities of many-core GPUs. Our approach uses thread and
data parallelism to achieve high performance for all com-
ponents of sample-based algorithms, including random sam-
pling, nearest neighbor computation, local planning, collision
queries and graph search. This approach can efficiently solve
both the multi-query and single-query versions of the prob-
lem and obtain considerable speedups over prior CPU-based
algorithms. We demonstrate the efficiency of our algorithms
by applying them to a number of 6DOF planning benchmarks
in 3D environments. Overall, this is the first algorithm that
can perform real-time motion planning and global navigation
using commodity hardware.

Introduction
Motion planning is one of the fundamental problems in al-
gorithmic robotics. The classical formulation of the prob-
lem is: given an arbitrary robot, R, and an environment
composed of obstacles, compute a continuous collision-free
path for R from an initial configuration to the final config-
uration. It is also known as the navigation problem or pi-
ano mover’s problem. Besides robotics, motion planning al-
gorithms are also used in CAD/CAM, computer animation,
computer gaming, computational drug-design, manufactur-
ing, medical simulations etc.

There is extensive literature on motion planning and
global navigation. At a broad level, they can be classified
into local and global approaches. The local approaches, such
as those based on artificial potential field methods (Khatib
1986), are quite fast but not guaranteed to find a path. On
the other hand, global methods based on criticality anal-
ysis or roadmap computation (Schwartz and Sharir 1983;
Canny 1988) are guaranteed to find a path. However, the
complexity of these exact or complete algorithms increases
as an exponential function of the number of degrees-of-
freedom (DOF) of the robot and their implementations have
been restricted to only low DOF.

Practical methods for global motion planning for high-
DOF robots are based on randomized sampling (Kavraki et

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

al. 1996; LaValle and Kuffner 2000). These methods at-
tempt to capture the topology of the free space of the robot
by generating random configurations and connect nearby
configurations using local planning methods. The result-
ing algorithms are probabilistically complete and have been
successfully used to solve many high-DOF motion planning
and navigation problems in different applications. However,
they are too slow for interactive applications or dynamic en-
vironments.

Main Results: We present a novel parallel algorithm for
real-time motion planning of high DOF robots that exploits
the computational capability of a $400 commodity graph-
ics processing unit (GPU). Current GPUs are programmable
many-core processors that can support thousands of concur-
rent threads and we use them for real-time computation of
a probabilistic roadmap (PRM) and a lazy planner. We de-
scribe efficient parallel strategies for the construction phase
that include sample generation, collision detection, connect-
ing nearby samples and local planning. The query phase
is also performed in parallel based on graph search. In or-
der to design an efficient single query planner, we use a lazy
strategy that defers collision checking and local planning. In
order to accelerate the overall performance, we also describe
new hierarchy-based collision detection algorithms.

The performance of the algorithm is governed by the
topology of the underlying free space as well as the meth-
ods used for sample generation and nearest neighbor com-
putation. In practice, our algorithm can generate thousands
of samples for robots with 3 or 6 DOFs and compute the
roadmap for these samples at close to interactive rates in-
cluding construction of all hierarchies. It performs no pre-
computation and is applicable to dynamic scenes, articulated
models or non-rigid robots. We highlight its performance on
multiple benchmarks on a commodity PC with a NVIDIA
GTX 285 GPU and observe a 10-80 times performance im-
provement over CPU-based implementations.

The rest of the paper is organized as follows. We survey
related work on motion planning and GPU-based algorithms
in Section 2. Section 3 gives an overview of our approach
and we present parallel algorithms for the construction and
query phase in Section 4. We highlight our performance
on different motion planning benchmarks in Section 5 and
compare with prior methods.

1245

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Figure 1: Our GPU-based algorithm, g-Planner, can com-
pute the collision free path for this piano in 111 ms on a PC.
This is the first planner to solve these complex problems in
real-time.

Related Work

In this section, we briefly survey related work on motion
planning and global navigation as well as GPU-based algo-
rithms.

Motion Planning An excellent survey of various motion
planning algorithms is given in (LaValle 2006). Many early
works are combinatorial approaches based on computational
geometry and potential field based approaches. Most of
the recent work in terms of global motion planning of high
DOF robots has been based on randomized methods such as
PRMs (Kavraki et al. 1996) and RRTs (Kuffner and LaValle
2000).

Many applications need real-time motion planning algo-
rithm to interact with dynamic environments. Some ap-
proaches design problem-specific heuristics to accelerate
the planners, such as decomposition strategy (Brock and
Kavraki 2001), corridor maps (Garaerts and Overmars 2007)
and replanning methods (Bruce and Veloso 2002). However,
these methods may not work well for a general planning sce-
nario. Many parallel algorithms have also been proposed
for motion planning. Some of the earlier algorithms utilize
properties of the configuration space of the robot (Lozano-
Perez and O’Donnell 1991) or use parallel VLSI architec-
tures (Deo, Cavallaro, and Walker 1991). The distributed
representation (Barraquand and Latombe 1991) can be eas-
ily parallelized (Challou et al. 2003). It is relatively sim-
ple to parallelize PRM on shared memory systems (Amato
and Dale 1999). An approximate version of the RRT al-
gorithm can also be parallelized (Carpin and Pagello 2001).
(Gini 1996) also describe a parallel version for potential field
methods. In order to deal with very high dimensional or dif-
ficult planning problems, a sampling-based roadmap of trees
can be used for parallel computation (Plaku and Kavraki
2005; Plaku et al. 2005). Above approaches are not suit-
able for mobile applications due to the large volume of the
multi-processor system.

GPU-based Algorithms The computational power of
many-core GPUs has been used for many geometric and
scientific computations (Owens et al. 2007). The rasteri-
zation capabilities of a GPU can be used for real-time mo-
tion planning of low DOF robots (Lengyel et al. 1990;
Hoff et al. 2000; Sud et al. 2006; 2007) or improve the
sample generation in narrow passages (Pisula et al. 2000;
Foskey et al. 2001). However, rasterization based planning
algorithms are complete only to the resolution of image-
space. GPUs can also be used to accelerate the roadmap
search algorithms (Kider et al. 2010), nearest neighbor
search computation (Garcia, Debreuve, and Barlaud 2008)
and collision queries (Lauterbach, Mo, and Manocha 2010;
Govindaraju et al. 2003; Govindaraju, Lin, and Manocha
2005).

Overview
In this section, we highlight some issues in developing par-
allel motion planning algorithms for current GPU architec-
tures. One of our goals is use sample-based planners that
are relatively easy to parallelize and can be used for single-
query and multiple-queries .

Current programmable GPUs are massively parallel ar-
chitectures with very high theoretical computational power,
which makes them attractive for a wide range of complex
problems. In general, they have a high number of indepen-
dent processing cores (around 30 for current GPUs) that are
all connected to high bandwidth but also high latency mem-
ory. In addition, each GPU core also is a vector processor
that can execute an instruction on several (typically 8-16)
elements at the same time. Finally, each core also supports
hardware multi-threading, i.e. it can quickly switch between
several execution threads as needed, e.g. to avoid idle wait-
ing for a memory access. This is particularly important as
there are no or just very small caches to speed up memory
requests.

As a result, algorithms that run on GPUs need to be de-
signed such that they can exploit this parallelism. In prac-
tice, this means that we need to provide hundreds or thou-
sands of parallel tasks for the processor to work on in order
to fully utilize the hardware. Communication during com-
putation is relatively slow on GPUs, so it is also important
that the algorithm require as little synchronization during the
algorithm as necessary.

We choose the PRM algorithm as the underlying method,
because it is most suitable to exploit the multiple cores and
data parallelism on GPUs. The PRM algorithm is composed
of several steps and each step performs similar operations on
the input samples or the links joining those samples. Many
other efficient CPU-based algorithms have also been devel-
oped, including RRT (Kuffner and LaValle 2000) and SBL
(Sanchez and Latombe 2001). However, these methods may
not be able to exploit the GPU parallelism due for two rea-
sons. Firstly, these methods proceed in an incremental man-
ner in terms of adding new samples to the underlying tree
structure. Secondly, the order of adding new samples is crit-
ical in terms of how the tree expands.

The PRM algorithm has two phases: roadmap construc-
tion and query phase. The roadmap construction phase in-

1246

cludes four main steps: 1) generate samples in the configu-
ration space; 2) compute milestones that correspond to the
samples in the free space by performing discrete collision
queries; 3) for each milestone, find other milestones that are
nearest to it; 4) connect nearby milestones using local plan-
ning and form a roadmap. The query phase includes two
parts: 1) connect initial and goal configurations of query
to the roadmap; 2) execute a graph search algorithm on the
roadmap and find collision free paths.

Parts of the PRM algorithm such as the collision queries
are embarrassingly parallel (Amato and Dale 1999). How-
ever, we can use a many-core GPU to significantly enhance
the performance of the other components as well. The
framework of our PRM algorithm on the GPU is shown in
Fig 2. We parallelize each of the 6 steps of PRM algorithm
efficiently: First, each thread of a multi-core GPU generates
a random configuration of robot and some samples will col-
lide with obstacles. All of the collision-free samples are the
milestones and become vertices of the roadmap graph. Then
each GPU thread computes the k-nearest neighbors of one
milestone and we collect all the neighborhood pairs. Next,
each thread checks whether it is possible to connect these
adjacent pairs by performing local planning. If there is a
collision-free path between that neighborhood pair of mile-
stones, we add the edge to the roadmap. Once the roadmap
is built, queries are connected to the roadmap in parallel and
we use a parallel graph search algorithm to find paths.

The resulting GPU-based framework is very efficient for
a multi-query version of the planning problem. The most
expensive step in this computation is the local planning al-
gorithm, therefore we use new collision detection algorithms
to improve its performance. In order to accelerate the single
query algorithm, we also introduce a solution that uses a lazy
strategy and defers collision checking for local planning.
In other words, the algorithm connects all the edges corre-
sponding to the nearest neighbors and searches for paths be-
tween the initial and final configurations. Finally it performs
local planning on the edges that constitute these paths.

Parallelized PRM Motion Planning Algorithm

In this section, we give details of our algorithm and describe
how each step is parallelized.

Hierarchy Computation

We construct a bounding volume hierarchy (BVH) for the
robot and another one for all the obstacles in the environ-
ment to accelerate the collision queries. We use the GPU-
based construction algorithm introduced in (Lauterbach et
al. 2009), which can construct the hierarchy of axis-aligned
bounding boxes (AABB) or oriented bounding boxes (OBB)
for a given triangle data in parallel on the GPU. For collision
detection, we use the OBB hierarchy as it provides higher
culling efficiency and improved performance on GPU-like
architectures. These hierarchies are stored in the GPU mem-
ory and we apply appropriate transformations for different
configurations.

Figure 2: PRM overview and parallel components in our
algorithm

Roadmap Construction
The roadmap construction phase tries to capture the connec-
tivity of free configuration space, which is the main compu-
tationally intensive part of the PRM algorithm.

Sample Generation We first need to generate random
samples within the configuration space. Since samples are
independent, we schedule enough parallel threads to uti-
lize the GPU and use the MD5 cryptographic hash function
based method (Tzeng and Wei 2008) which in practice pro-
vide good randomness without a shared seed.

Milestone Computation For each configuration gener-
ated in the previous step, we need to check whether it is a
milestone, i.e. lies in the free space and does not collide
with the obstacles. We use a hierarchical collision detection
approach using bounding volume hierarchies (BVHs) to test
for overlap between the obstacles and the robot in the con-
figuration defined by the sample. The collision detection is
performed in each thread by using a traversal algorithm in
the two BVHs. The traversal algorithm starts with the two
BVH root nodes and tests the OBB nodes for overlap in a
recursive manner. If two nodes overlap, then all possible
pairings of their children should be recursively tested for in-
tersection.

We also compute the actual BVH structure both for robot
and obstacles on the GPU by using a parallel hierarchy con-
struction algorithm (Lauterbach et al. 2009). Since the
robot’s geometric objects move depending on the configu-
ration, its BVH is only valid for the initial configuration. In
order to avoid recomputing a BVH for each configuration,
we instead transform each node of the robot’s BVH with
the current configuration sample before performing overlap
tests. Thus, only nodes that are actually needed during col-
lision testing must be transformed.

Previous work (Lauterbach, Mo, and Manocha 2010) has
used BVH collision on GPUs to parallelize the tests within
one query. The approach here is different because we in-

1247

stead parallelize a high number of collision queries, so each
thread performs a fully independent collision. In addition,
we do not need to find the actual intersection, just whether
one exists or not. Therefore, we can also abort the traversal
operation as soon as any collision is found and do not have
to exhaustively search the hierarchy. In our implementation,
each thread performs traversal in a stack-based DFS algo-
rithm. We can store the DFS stack in the shared memory of
the GPU which has a higher access speed than global mem-
ory on the GPU. Moreover, the DFS also supports early exit
from the traversal when the first collision between leaf nodes
is computed.

Proximity Computation For each milestone computed,
we need to find its k-nearest neighbors (KNN). In general,
there are two types of KNN algorithms: exact KNN and
approximated KNN which is faster by allowing a small re-
laxation. Unlike previously proposed GPU solutions using
brute force (Garcia, Debreuve, and Barlaud 2008), our prox-
imity algorithm is based on a range query that uses a BVH
structure of the points in configuration space. We describe
the method for 3-DOF robots and then present its extension
to high-DOF robots.

For 3-DOF Euclidean space, we first construct the BVH
structure for all the milestones using a parallel algorithm
(Lauterbach et al. 2009). For each configuration q, we en-
close it within an axis-aligned ε box: a box with q as center
and with 2ε as edge length. Next, we traverse the BVH tree
to find all leaf nodes (i.e. configurations) that within the ε
box. This reduces to a range-query for q. For non-Euclidean
DOFs, we duplicate samples to transform it into a Euclidean
space locally. For example, suppose one DOF is rotation an-
gle α ∈ [0, 2π]. We add another sample α∗ ∈ [−π, 3π] with
a distance 2π to α. If all 3-DOF are rotations, we need to add
another 7 samples for each milestone. Once the range query
finishes, we choose the k-nearest one from all the query re-
sults. Overall, this gives us the exact nearest neighbors.

For high dimensional spaces we use a decomposition
strategy to compute the approximate nearest neighbors. We
use 6-DOF as an example. We first decompose each con-
figuration q into 3-DOF projections q1, q2 and obtain two
3-DOF groups. For each of them we build separate BVHs
and perform range queries. Suppose we find k1 neighbors
within q1’s ε1 box and k2 neighbors within q2’s ε2 box. We
then compute the distances of these candidates to q in 6-
DOF space and choose k of them that are nearest to q. For
configuration spaces with higher dimensions, we just repeat
above process until all dimensions are considered. The final
result is the approximated KNNs whose distance to q is at
most

√
3

∑
i εi.

To further improve the performance of proximity compu-
tation in high dimensional space, we have developed a new
k-nearest neighbor algorithm, which uses locality sensitive
hashing (LSH) and cuckoo hashing to efficiently compute
approximate k-nearest neighbors in parallel on the GPU. For
more details, please refer to our recent work (Pan, Lauter-
bach, and Manocha 2010).

Local Planning Local planning checks whether there is
a local path between two milestones, which corresponds

to an edge on the roadmap. Many methods are available
for local planning. The most common way is to discretize
the path between the two milestones into ni steps and we
claim the local path exists when all the intermediate samples
are collision-free by performing discrete collision queries
(DCD) at those steps. We can also perform local planning
by continuous collision detection (CCD), a local RRT algo-
rithm or computing distance bounds (Schwarzer, Saha, and
Latombe 2005).

Local planning is the most expensive part of the PRM al-
gorithm. Suppose we have nm milestones, each milestone
has at most nk nearest neighbors. Then the algorithm per-
forms local planning at most nm · nk times. If we use DCD,
then we need to perform at most nl = nm · nk · ni collision
queries, which can be very high for a complex benchmark.
For multi-query problems, this cost can be amortized over
multiple queries as the roadmap is constructed only once.
For a single-query problem, computing the whole roadmap
is too expensive.

Therefore, in the single-query case, we use a lazy strat-
egy to defer local planning until absolutely needed. Given
a query, we compute several different candidate paths in the
roadmap graph from initial to final configuration and only
check local planning for roadmap edges on the candidate
paths. Local planning may conclude that some of these
edges are not valid and we delete them from the roadmap.
If there exists one candidate path without invalid edges, the
algorithm computes a collision-free solution. Otherwise, we
compute candidate paths again on the updated roadmap and
repeat the above process. This lazy strategy can greatly im-
proves performance for single queries.

Query Phase
The query phase includes two parts: connecting queries to
the roadmap and executing graph searches to find paths.

Query Connection Given the initial-goal configurations
in one query, we connect them to the roadmap. For both
of these configurations, we find the k nearest milestones on
the roadmap and add edges between query and milestones
that can be connected by local planning. We use the same
algorithm from the roadmap construction phase except that
k used is 2− 3 times larger so as to increase the probability
to find a path.

Graph Search The search algorithm tries to find a path
on the roadmap connecting initial and goal configurations.
Many solutions for this, such as DFS, BFS, A*, R* (Kider et
al. 2010). A* and R* can find the shortest path, which is not
necessary for the basic motion planning problem. Moreover,
A* and R* are not efficient when a lazy strategy is used. As
a result, we use DFS or BFS algorithms. For the multi-query
case, each GPU thread traverses the roadmap for one query
in a DFS way and the final results are collision-free paths.
For the single-query case, we exploit all the GPU threads to
find the path for one query using a BFS search: for nodes
that are of the same steps to the initial node, we can add
their unvisited neighbors into the queue in parallel. In other
words, different GPU cores traverse different part of graph.
The main challenge of this method is that work is generated

1248

dynamically as BFS traverse progresses and the computa-
tional load on different cores can change significantly. To
address the problem of load balancing and work distribution
so that the availability of parallelism for all cores is main-
tained, we use the light-weight load balancing strategy in
(Lauterbach, Mo, and Manocha 2010).

When using a lazy strategy, we first run BFS for several
iterations and find a set of nodes that are reachable from
initial node. Then we run DFS/BFS/A* in each thread with
one of these nodes as initial node and find several candidate
paths. We use local planning to check whether any one of
them are collision-free path. If yes, we return a valid path.
Otherwise we remove all invalid edges from the roadmap
and repeat the process again.

Implementation and Results
In this section, we present some details of the implemen-
tation and highlight the performance of our algorithm on a
set of benchmarks. All the timings reported here were taken
on a machine using a Intel Core i7 CPU (∼$600) at 3.2GHz
CPU and 6GB memory. We implemented our algorithms us-
ing CUDA on a NVIDIA GTX 285 GPU (∼$380) with 1GB
of video memory.

Our algorithm is designed to work well on any massively
processor- and data-parallel architecture by using vector par-
allelism and low synchronization overhead. In this regard,
both NVIDIA and ATI (as well as Intels Larrabee proces-
sor) are relatively similar. We used CUDA since it was the
most stable development platform at the moment, but look
forward to testing in OpenCL and comparing across archi-
tectures.

We implement the PRM on the GPU (G-PRM) for multi-
query planning problems and its lazy version (GL-PRM) for
single-query problems. We compare them with the PRM
and RRT algorithms implemented in the OOPSMP library
(Plaku, Bekris, and Kavraki 2007) which is a popular li-
brary for motion planning algorithms on CPU. The bench-
marks used are shown in Fig 3. Our comparisons are de-
signed as follows: For each benchmark, we find a suitable
setting where C-PRM finds a solution, then we run G-PRM
with comparable number of samples. After that we run GL-
PRM with the same setting as G-PRM and C-RRT with the
same setting as C-PRM. Of course, the compared PRM algo-
rithms on GPU and CPU are not identical in terms of the fi-
nal result, e.g. due to underlying random sample generation.
Even though these random generators are slightly different,
the number of collision-free nodes and collision-free arcs in
the computed roadmaps are comparable. Moreover, the final
paths for the lazy version are somewhat close. In practice,
the total work performed by the non-lazy GPU planner is
actually higher than the CPU version.

Table 1 shows the comparison of timings between algo-
rithms. In general G-PRM is about 10 times faster than
C-PRM and GL-PRM can provide another 10 times of ac-
celeration for single query problems. C-RRT is usually
faster than C-PRM. G-PRM is fast enough for even dynamic
scenes. The current C-RRT and C-PRM are both single-core
version. However, even a multi-core version of PRM would
only improve the timing by 4x at most, because on a 8-core

C-PRM C-RRT G-PRM GL-PRM
piano 6.53s 19.44s 1.71s 111.23ms

helicopter 8.20s 20.94s 2.22s 129.33ms
maze3d1 138s 21.18s 14.78s 71.24ms
maze3d2 69.76s 17.4s 14.47s 408.6ms
maze3d3 8.45s 4.3s 1.40s 96.37ms
alpha1.5 65.73s 2.8s 12.86s 1.446s

Table 1: The left two columns highlight the implementations of
PRM and RRT algorithm in the OOPSMP. The right two columns
highlight the performance of our GPU-based algorithms.

Figure 4: Split-up of timings: the fraction of time spent in parts
of algorithm differ between G-PRM and GL-PRM.

CPU it is hard to scale the hierarchy computations and near-
est neighbor computation linearly. Therefor GPU can still
provide 1-2 orders of magnitude higher performance than
CPU.

Fig 4 shows the timing breakdown between various steps
for G-PRM and GL-PRM and the difference between the
performance of two algorithms is clear: In G-PRM, local
planning is the bottleneck which dominates the timing while
in GL-PRM graph search takes longer time because local
planning is performed in a lazy or output sensitive manner.
In GL-PRM, three components take most timing: milestone
construction, proximity computation and graph search, be-
cause all of them may perform collision queries heavily. If
the environment is cluttered and the model has complex ge-
ometry, milestone construction will be slow (Alpha puzzle
in Fig 4). If the environment is an open space and has many
milestones, the proximity computation will be the bottleneck
(mazed3d2 in Fig 4). If the lazy strategy can not guess a
correct path, then graph search will be computational inten-
sive due to the large number of collision queries (maze3d3
in Fig 4). However, in all these environments, GL-RPM out-
performs other methods.

We test the scalability of G-PRM and GL-PRM on the
maze3d3 benchmark and the result is shown in Fig 5. It is
obvious that GL-PRM is generally faster than G-PRM and
both algorithms achieve near-linear scaling on the bench-
mark. However, notice that the performance of GL-PRM re-
duces faster than G-PRM. The reason is that when the num-
ber of samples increases, proximity computation becomes
more and more expensive and dominates the timing when
the number of samples is near 1 million.

1249

Figure 3: The benchmark scenes used for our algorithms in this order: piano (2484 triangles), helicopter (2484 triangles), maze3d1 (40
triangles), maze3d2 (40 triangles), maze3d3 (970 triangles), alpha puzzle (2016 triangles).

Figure 5: The scalability of G-PRM and GL-PRM algorithms.

Conclusions and Future Work
In this paper, we have introduced a whole motion plan-
ning algorithm on GPUs. Our algorithm can exploit all
the parallelism within the PRM algorithm including the
high-level parallelism provided by the PRM framework and
the low-level parallelism within different components of
the PRM algorithm, such as collision detection and graph
search. As a result, our method provides 1-2 orders of mag-
nitude higher performance over previous CPU-based plan-
ners. This makes our work the first to perform real-time mo-
tion planning and global navigation in general environments.
There are many avenues for future work. We are interested
in extending the GPU planning algorithms to high-DOF ar-
ticulated models. We are also interested in using exact al-
gorithms for local planning. Moreover, we hope to apply
our real-time algorithms to dynamic scenarios. Finally, we
will test our algorithm in OpenCL/DirectX11 and compare
across different architectures.

Acknowledgements
We would like to thank Jean-Paul Laumound for provid-
ing some of the models. This research was supported in
part by ARO Contract W911NF-04-1-0088, NSF awards
0636208, 0917040 and 0904990, DARPA/RDECOM Con-
tract WR91CRB-08- C-0137, and Intel.

References
Amato, N., and Dale, L. 1999. Probabilistic roadmap meth-
ods are embarrassingly parallel. In Proceedings of IEEE In-
ternational Conference on Robotics and Automation, 688–
694.

Barraquand, J., and Latombe, J.-C. 1991. Robot motion
planning: A distributed representation approach. Interna-
tional Journal of Robotics Research 10(6):628–649.
Brock, O., and Kavraki, L. E. 2001. Decomposition-based
motion planning: A framework for real-time motion plan-
ning in high-dimensional configuration spaces. In Proceed-
ings of IEEE International Conference on Robotics and Au-
tomation, 1469–1474.
Bruce, J., and Veloso, M. 2002. Real-time randomized path
planning for robot navigation. In IEEE/RSJ International
Conference On Intelligent Robots and Systems, 2383–2388.
Canny, J. 1988. The Complexity of Robot Motion Planning.
ACM Doctoral Dissertation Award. MIT Press.
Carpin, S., and Pagello, E. 2001. A distributed algorithm
for multi-robot motion planning. In Proceedings of Fourth
European Workshop on Advanced Mobile Robots, 207–214.
Challou, D.; Gini, M.; Kumar, V.; and Karypis, G. 2003.
Predicting the performance of randomized parallel search:
An application to motion planning. Journal of Intelligent
and Robotics Systems.
Deo, A. S.; Cavallaro, J. R.; and Walker, I. D. 1991. New
real-time robot motion algorithms using parallel vlsi archi-
tectures. In Fifth SIAM Conference on Parallel Processing
for Scientific Computing, 369–375.
Foskey, M.; Garber, M.; Lin, M.; and Manocha, D. 2001. A
voronoi-based hybrid planner. In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems,
55–60.
Garaerts, R., and Overmars, M. H. 2007. The corridor map
method: Real-time high-quality path planning. In Proceed-
ings of IEEE International Conference on Robotics and Au-
tomation, 1023–1028.
Garcia, V.; Debreuve, E.; and Barlaud, M. 2008. Fast k
nearest neighbor search using GPU. In Proceedings of the
CVPR Workshop on Computer Vision on GPU, 1–6.
Gini, M. 1996. Parallel search algorithms for robot motion
planning. In Proceedings of IEEE International Conference
on Robotics and Automation, 46–51.
Govindaraju, N.; Redon, S.; Lin, M.; and Manocha, D.
2003. CULLIDE: Interactive collision detection between
complex models in large environments using graphics hard-
ware. In Proceedings of ACM SIGGRAPH/EG Workshop on
Graphics Hardware, 25–32.
Govindaraju, N.; Lin, M.; and Manocha, D. 2005. Quick-

1250

CULLIDE: Efficient inter- and intra- object collision culling
using GPUs. In Proceedings of IEEE Virtual Reality, 59–66.
Hoff, K.; Culver, T.; Keyser, J.; Lin, M.; and Manocha, D.
2000. Interactive motion planning using hardware acceler-
ated computation of generalized voronoi diagrams. In Pro-
ceedings of IEEE International Conference on Robotics and
Automation, 2931–2937.
Kavraki, L.; Svestka, P.; Latombe, J. C.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12(4):566–580.
Khatib, O. 1986. Real-time obstable avoidance for manipu-
lators and mobile robots. International Journal of Robotics
Research 5(1):90–98.
Kider, J. J.; Henderson, M.; Likhachev, M.; and Safonova,
A. 2010. High-dimensional planning on the GPU. In Pro-
ceedings of IEEE International Conference on Robotics and
Automation, to appear.
Kuffner, J., and LaValle, S. 2000. RRT-connect: An effi-
cient approach to single-query path planning. In Proceed-
ings of IEEE International Conference on Robotics and Au-
tomation, 995–1001.
Lauterbach, C.; Garland, M.; Sengupta, S.; Luebke, D.;
and Manocha, D. 2009. Fast bvh construction on GPUs.
Computer Graphics Forum (In Proceedings of Eurograph-
ics) 28(2):375–384.
Lauterbach, C.; Mo, Q.; and Manocha, D. 2010. gprox-
imity: Hierarchical GPU-based operations for collision and
distance queries. Computer Graphics Forum (In Proceed-
ings of Eurographics), to appear.
LaValle, S. M., and Kuffner, J. J. 2000. Rapidly-exploring
random trees: Progress and prospects. Robotics: The Algo-
rithmic Perspective (In Proceedings of the 4th International
Workshop on the Algorithmic Foundations of Robotics) 293–
308.
LaValle, S. M. 2006. Planning Algorithms. Cambridge
University Press.
Lengyel, J.; Reichert, M.; Donald, B. R.; and Greenberg,
D. P. 1990. Real-time robot motion planning using ras-
terizing computer graphics hardware. Computer Graphics
24:327–335.
Lozano-Perez, T., and O’Donnell, P. 1991. Parallel robot
motion planning. Proceedings of IEEE International Con-
ference on Robotics and Automation 1000–1007.
Owens, J. D.; Luebke, D.; Govindaraju, N.; Harris, M.;
Krüger, J.; Lefohn, A. E.; and Purcell, T. 2007. A sur-
vey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1):80–113.
Pan, J.; Lauterbach, C.; and Manocha, D. 2010. Efficient
nearest-neighbor computation for GPU-based motion plan-
ning. Technical report, Department of Computer Science,
University of North Carolina.
Pisula, C.; Hoff, K.; Lin, M. C.; and Manocha, D. 2000.
Randomized path planning for a rigid body based on hard-
ware accelerated voronoi sampling. In Proceedings of Inter-

national Workshop on Algorithmic Foundation of Robotics,
55–60.
Plaku, E., and Kavraki, L. 2005. Distributed sampling-based
roadmap of trees for large-scale motion planning. In Pro-
ceedings of IEEE International Conference on Robotics and
Automation, 3879–3884.
Plaku, E.; Bekris, K. E.; and Kavraki, L. E. 2007. Oops
for motion planning: An online open-source programming
system. In Proceedings of IEEE International Conference
on Robotics and Automation, 3711–3716.
Plaku, E.; Bekris, K.; Chen, B.; Ladd, A.; and Kavraki,
L. 2005. Distributed sampling-based roadmap of trees for
large-scale motion planning. IEEE Transactions on Robotics
21(4):597–608.
Sanchez, G., and Latombe, J. 2001. A single-query bi-
directional probabilistic roadmap planner with lazy collision
checking. In Proceedings of International Symposium on
Robotics Research, 403–417.
Schwartz, J. T., and Sharir, M. 1983. On the piano movers
problem II, general techniques for computing topological
properties of real algebraic manifolds. Advances in Applied
Mathematics 4:298–351.
Schwarzer, F.; Saha, M.; and Latombe, J. 2005. Adaptive
dynamic collision checking for single and multiple articu-
lated robots in complex environments. IEEE Transactions
on Robotics 21(3):338–353.
Sud, A.; Govindaraju, N.; Gayle, R.; Kabul, I.; and
Manocha, D. 2006. Fast proximity computation among de-
formable models using discrete voronoi diagrams. In Pro-
ceedings of ACM SIGGRAPH, 1144–1153.
Sud, A.; Andersen, E.; Curtis, S.; Lin, M.; and Manocha, D.
2007. Real-time path planning for virtual agents in dynamic
environments. In Proceedings of IEEE Virtual Reality, 91–
98.
Tzeng, S., and Wei, L.-Y. 2008. Parallel white noise genera-
tion on a GPU via cryptographic hash. In Proceedings of the
Symposium on Interactive 3D Graphics and Games, 79–87.

1251

