
Asynchronous Multi-Robot Patrolling Against Intrusions in Arbitrary Topologies

Nicola Basilico and Nicola Gatti and Federico Villa
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133, Milano, Italy

Abstract

Use of game theoretical models to derive randomized
mobile robot patrolling strategies has recently received
a growing attention. We focus on the problem of pa-
trolling environments with arbitrary topologies using
multiple robots. We address two important issues cur-
rently open in the literature. We determine the small-
est number of robots needed to patrol a given environ-
ment and we compute the optimal patrolling strategies
along several coordination dimensions. Finally, we ex-
perimentally evaluate the proposed techniques.

Introduction

The study of autonomous mobile robots to patrol environ-
ments under risk of intrusion has received a growing atten-
tion in the scientific community during the last few years. In
particular, game theoretical approaches were demonstrated
very effective in producing randomized strategies (Agmon,
Kraus, and Kaminka 2008; Amigoni, Gatti, and Ippedico
2008; Basilico, Gatti, and Amigoni 2009; Paruchuri et al.
2008). The basic idea is to model the patrolling scenario as
a two-player non-cooperative game (Fudenberg and Tirole
1991) between a team of patrolling robots and an intruder.
The intruder is assumed to observe the strategy of the robots,
derive a correct belief, and act on the basis of it by playing
its best response. This makes the game a leader-follower
game (von Stengel and Zamir 2004), where the leader is the
team of robots and the follower is the intruder.

The literature provides three main game theoretical ap-
proaches for robot patrolling. In (Pita et al. 2008), the au-
thors study the problem of placing a number of checkpoints
to secure an environment without considering its specific
topology. The problem is modeled as a two-player strate-
gic form game with incomplete information and the leader-
follower solution is computed. The absence of a topology
makes this approach only applicable to the placement of
static checkpoints, while it is unsuitable for a team of robots
moving within an environment. In (Agmon, Kraus, and
Kaminka 2008), the authors study the problem of patrolling
a perimeter with evenly separated synchronized multiple
robots (with ‘synchronized’ we mean that the robots are

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

forced to move together in the same direction). The opti-
mal patrolling strategy is computed as a max-minimization
over the detection probabilities. The constraint that the en-
vironments are perimeters prevents the use of the approach
in general settings. The seminal work dealing with arbitrary
environments is presented in (Basilico, Gatti, and Amigoni
2009). The patrolling scenario is modeled as a two-player
extensive form game with imperfect information. The envi-
ronment is characterized by a set of targets connected by a
given topology and a single patrolling robot is considered.
This approach can be easily extended to study synchronized
multi-robots in settings with arbitrary topology (relaxing the
constraint that the robots must be evenly separated). Indeed,
as shown in (Basilico, Gatti, and Amigoni 2009), the syn-
chronized multi-robot problem can be reduced to a single
robot problem. However, in settings with arbitrary topol-
ogy, it can be easily shown that constraining the robots to be
synchronized can lead to strategies that are not optimal.

We formulate the problem of multi-robot patrolling in en-
vironments with arbitrary topologies in which robots are not
synchronized and we address the two following open issues.

A lower bound over the number of robots. We study the
positions of robots such that the intruder cannot have suc-
cess to strike a target with a probability of one. In game-
theoretic related work the robot number is provided as a part
of the problem, while the results developed in the pursuit-
evasion field to find the smallest number of robots are not di-
rectly applicable to our problem because in them the robots ’
strategies are provided as part of the problem (instead in our
problem they are a part of the solution). We produce a graph-
based abstraction of the patrolling setting and we show that
the problem of finding the smallest number of uncoordinated
robots needed to patrol the environment is equivalent to find-
ing the smallest number of maximal cliques such that each
target belongs to at least one clique.

Coordination dimensions. We identify two coordination
dimensions for robots’ patrolling strategies: the strategy of
a robot can or cannot depend on the strategies of the other
robots and the environment can or cannot be partitioned.
We provide three values per dimension. The choice of the
specific values to adopt depends on the problem itself (e.g.,
whether or not the robots can communicate) and on compu-
tational hardness (e.g., some values save computational time
providing potentially non-optimal solutions). For each com-

1224

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



bination of values we provide a mathematical programming
formulation and we experimentally compare their effective-
ness in terms of computational times and expected utility.

The Multi-Robot Patrolling Problem

A multi-robot patrolling setting is described by a direct
graph G = (V, a,T, v, d,R) where V is a set of n vertices
to be patrolled and a is a function a ∶ V × V → {0,1},
where a(i, j) = 1 means that there exists an arc from i to j
and a(i, j) = 0 otherwise. The set T ⊆ V contains tar-
gets, i.e., vertices over which the robots and the intruder
have some value. Function v ∶ T → R returns the robots’
valuations over the targets. We assume that the robots and
the intruder have the same preference ordering over the tar-
gets (the valuations can be different). With this assumption,
the game is strictly competitive and can be solved without
specifying the intruder’s valuations. In particular, the max-
min robots’ strategy is the leader-follower equilibrium of the
game. Reasonably, most practical applications can be con-
sidered strictly competitive. Function d ∶ T → N ∖ {0} as-
signs each target its penetration time, i.e., the time needed
by the intruder to successfully strike the target. R is a set
of homogeneous robots. We call configuration a set of ∣R∣
elements, each one specifying the position (i.e., a vertex) of
a robot. We denote it by c = (c1, c2, . . . , c∣R∣), where ci ∈ V
is the position of robot ri ∈ R. We denote by C the con-

figuration space, whose size is n∣R∣. We report in Fig. 1 an
example of environment represented as a grid map.

Figure 1: Grid map of a patrolling setting example.

The intruder is assumed to observe the patrollers’ strategy
before acting. The game develops in turns. At each turn the
actions available to the robots are move(c, c′) where c is the
current configuration and c′ ∈ C is such that a(ci, c

′
i) = 1 for

every i ∈ R. We assume that the robots’ strategy is Marko-
vian, depending only on the current configuration. We de-
note it as a set of probabilities {αc,c′}, where c is the cur-
rent configuration and c′ is the next one. The intruder’s ac-
tions can be represented in compact way as enter-when(t, c),
i.e., wait until the robots are not in the configuration c and
then attack target t. The possible outcomes of the game are:
intruder-capture when the intruder attempts to enter a target
t at turn k and at least one robot patrols t by k + d(t) − 1,
and penetration-t when the intruder enters a target t at turn
k and no robot patrols t by k + d(t) − 1. The robots’ utility
over the outcomes, denoted by Up, is the cumulative value

of the preserved targets, formally, Up(intruder-capture) =
∑t′∈T v(t′), while Up(penetration-t) = ∑t′∈T /{t} v(t

′).

Lower Bound over the Number of Robots

We study the problem to find the smallest number of unco-
ordinated robots such that outcome intruder-capture occurs
with a strictly positive probability. With a smaller number
of robots the intruder would successfully strike a target with
a probability of one. We introduce the following definitions.
Given a configuration c, we say that target t is exposed if the
shortest distance between the position of each robot and t is
longer than d(t) (i.e., no robot can reach t by d(t) turns).
When the robots are in a configuration c and target t is ex-
posed, the intruder can make enter-when(t, c) and the prob-
ability of intruder-capture is zero. We say that a configu-
ration causing a target to be exposed is infeasible. Given a
number of robots, determining the set of feasible configu-
rations can be easily accomplished by exploiting Dijkstra’s
algorithm. Basically, we need to find the smallest number of
robots such that they can patrol all the targets without ever
being in any infeasible configuration. In order to solve this
problem, we introduce the following abstraction of G.

We define a undirected multigraph Q = (T,E, l) where
T is the set of targets of G, E is a set of edges, and l is a
labeling function over E. Given two different targets, say ti
and tj , we call pk

ti,tj
⊆ V the k-th (in general there can be

more than one) path between ti and tj . Called e = (ti, tj , k)
the k-th edge connecting targets ti and tj , set E is defined as

E = {(ti, tj , k)} such that ∣pk
ti,tj
∣ ≤ min{d(ti), d(tj)}. In

other words, e = (ti, tj , k) appears in E if a robot, when

moving along pk
ti,tj

, can always reach ti and tj by their

respective penetration times (and then ti and tj are never
exposed). Function l ∶ E → ℘(T ) (where ℘ is the power
set) is defined as follows: given an edge e = (ti, tj , k),

l(e) = {t ∈ T } such that for all v ∈ pk
ti,tj

there exists a

path pv,t with ∣pv,t∣ ≤ d(t). In other words, target t appears

in l(e) if a robot, wherever it is along pk
ti,tj

, can reach t by

its penetration time (and then t is never exposed). Notice
that, by definition, if e = (ti, tj , k) then ti, tj ∈ l(e). Fi-
nally, we remove from E edges that are Pareto dominated
in terms of length and labels, i.e., edges e = (ti, tj , k) such
that there exists an edge e′ = (ti, tj , k

′) with l(e) ⊆ l(e′)

and ∣pk
ti,tj
∣ ≥ ∣pk

′

ti,tj
∣. Essentially, when a robot moves from

ti to tj trying to keep a set of targets not exposed, it will
prefer, among all the paths preventing exposure, the short-
est one. Given G, abstraction Q can be built in polynomial
time in the number of vertices V by employing Dijkstra’s
algorithm. We report in Fig. 2 the abstraction Q = (T,E, l)
related to the patrolling setting reported in Fig. 1.

We resort to the graph theoretic concepts of clique and
maximal clique. A clique of a graph H is a subgraph H ′ ⊆H
such that every pair of vertices in H ′ is connected by an
edge. In the case a clique is not a strict subgraph of any
other clique, it is said maximal. In our problem, we provide a
stronger concept of clique, called labeled clique and defined
as a subgraph W = (T ′,E′, l) of Q such that:

1225



Figure 2: Abstraction related to the setting in Fig. 1.

∀ti, tj ∈ T
′
, ti ≠ tj , there exists k such that (ti, tj , k) ∈ E

′
(1)

T
′ ⊆ ⋂

e∈E′
{l(e)} (2)

A labeled clique is maximal when it is not a strict
subgraph of any labeled clique. A labeled clique W =
(T ′,E′, l) corresponds to a sub-region of G where the tar-
gets are T ′ and the vertices connecting the targets are the
paths associated with edges E′ (a pair of targets can be
connected by only one edge, W being a graph). Given a
clique W = (T ′,E′, l), a single robot can patrol all the tar-
gets T ′ without making any target in T ′ to be exposed (in-
dependently of the position of the other robots). Consider
Fig. 2, the subgraph with vertices 07,17 constitutes a (non-
maximal) labeled clique, instead the subgraph with vertices
07,08,17 constitutes a maximal labeled clique. According
to graph theory, we define a clique cover of a graph H as a
set of cliques such that each vertex of H appears in at least
one clique. Consider Fig. 2, a (labeled) clique cover is com-
posed of the clique constituted by vertices 01,10 and of the
clique constituted by vertices 07,08,17. We consider the
multi-robot setting and we state the following theorem.

Theorem 1. Given a patrolling setting G =
(V, a,T, v, d,R) and its abstraction Q = (T,E, l), if there
exists a labeled clique cover composed by ∣R∣ or less labeled
cliques, then it is possible to find a patrolling strategy that,
when executed, makes no target to be exposed.

The proof is trivial: given a labeled clique cover of ∣R∣
cliques, it is always possible to produce at least a strategy in
which at each turn, for every clique W of the cover, at least
a robot moves along the paths associated with W . When
the robots execute such a strategy, they will be exclusively
in feasible configurations. The vice versa (i.e., if there does
not exist any clique cover composed by ∣R∣ or less labeled
cliques, then there does not exist any patrolling strategy that
makes no target exposed) holds when robots are not coordi-
nated. With some form of coordination, a smaller number of
robots can be sufficient. Moreover, it can be easily demon-
strated that if Q happens not to be connected, then each one
of its connected components represents a separate problem
that can be independently addressed. The problem of find-
ing the smallest number of robots needed to patrol a given
environment can be formulated as the problem of finding
the smallest labeled clique cover. We solve this problem, at
first, by finding all the maximal labeled cliques, and, then,

by finding the smallest clique cover composed of maximal
labeled cliques.

In (Bron and Kerbosch 1973), the authors provide an ef-
ficient algorithm to compute all the cliques of a graph. This
problem was proven to be NP-complete. The same holds for
our problem, the original problem being easily reducible to
ours. We extend the work in (Bron and Kerbosch 1973) to
compute the labeled cliques of Q. With respect to the origi-
nal algorithm, we strengthen the constraints over the cliques
due to the labels and we deal with the existence of multiple
edges connecting the same pair of vertices. The algorithm,
based on branch-and-bound, follows.

A solution is constructively generated through a number
of steps, where at each step the partial solution obtained so
far (called CLI) is extended by adding an admissible can-
didate. We define CLI as a set of candidates and we define
a candidate as a pair ⟨t,Et⟩ where t ∈ T and Et ⊆ E is
a subset of edges connecting t (we cannot define a candi-
date simply as a vertex, as it is in the original algorithm, be-
cause Q is a multigraph and two vertices can be connected
by multiple edges; this pushes us to consider edges in the
candidates). Given a current partial solution CLI , the ad-
missible candidates are defined as follows. If CLI = ∅,
then all the candidates ⟨t,∅⟩s are admissible. Otherwise,
we define T (CLI) and E(CLI) as the set of vertices and
the set of edges respectively belonging to the candidates in
CLI , and the admissible candidates are ⟨t,Et⟩s such that:
t /∈ T (CLI), Et contains exactly one edge per pair (t, t′)
for each t′ ∈ T (CLI), and, called CLI ′ = CLI ∪ {⟨t,Et⟩},
the graph whose vertices are T (CLI ′) and whose edges
are E(CLI ′) is a labeled clique. Notice that, by construc-
tion, each partial solution CLI contains one clique. Given a
CLI , we call D the set of admissible candidates. In order to
avoid the generation of duplicate cliques and to distinguish
between maximal and non-maximal cliques, we use set N
containing admissible candidates for the current partial so-
lution CLI whose contribution has been already exploited.
Algorithms 1 and 2 summarize our method: function CAN-
DIDATES returns the set of candidates as discussed above,
while, with a slight abuse of notation, we denote by T (D′)
the set of targets belonging to the candidates in D′. S con-
tains the cliques found so far.

Algorithm 1: FIND SOLUTION(T,E, l)

D ← {}1
CLI ← {}2
N ← {}3
for all t in T do4

D ←D ∪ {⟨t,∅⟩}5

S ← CLIQUES(CLI, D,N)6

Once all the labeled cliques have been found, the problem
of finding the smallest labeled clique cover can be easily for-
mulated as a linear programming problem. We call Smax ⊆
S the set of maximal labeled cliques. We limit our search to
maximal cliques because their number, even if in the worst

case is 3
∣T ∣
3 , is usually negligible w.r.t. the total number of

the cliques. Given the set Smax of all the maximal labeled
cliques returned by Algorithm 1, a clique-target covering

1226



Algorithm 2: CLIQUES(CLI,D,N )

if D is empty then1
if N is empty then2

CLI is maximal clique3

else4
CLI is non maximal clique5

else6
for all t /∈N belonging to at least a candidate in D do7

for all ⟨t′,Et′ ⟩ in D with t′ = t do8
CLI′ = CLI ∪ {⟨t′, Et′ ⟩}9

D′ = CANDIDATES(CLI′)10

S ← S ∪ CLIQUES(CLI′, D′, N ∩ T (D′))11

N =N ∪ {t}12

return S13

matrix {qi,j} (where qi,j = 1 if and only if target tj appears
in clique Wi and qi,j = 0 otherwise), and called xi the binary
decision variable such that xi = 1 if clique Wi is selected
and xi = 0 otherwise, we have min ∑i∶Wi∈Smax

xi subject to

∑i∶Wi∈Smax
(xiqi,j) ≥ 1 ∀tj ∈ T and xi ∈ {0,1} ∀i ∶Wi ∈ S.

The value returned by the above optimization problem is the
smallest number of robots needed to patrol the environment.
From here on, we use ‘clique’ as ‘labeled clique’ and we as-
sume that ∣R∣ is equal to the lower bound found above. The
results that we shall discuss below can be easily extended to
the situations in which ∣R∣ is larger.

Identifying Coordination Dimensions

With multiple patrolling robots, an issue of paramount im-
portance is the coordination of the robots themselves. We
identify two main coordination dimensions with three possi-
ble values each. The first dimension refers to the degree of
coordination in calculating the patrolling strategy {αc,c′}.
The three values (in decreasing coordination strength) are:

Joint strategy: the strategy of each robot depends on its
position and on the position of all the other robots. The so-

lution is {αc,c′} where c, c′ ∈ C and contains O(n∣R∣) vari-
ables of probability. The strategies are computed centrally,
as well as the realization of the strategy at each turn by a
centralized controller.

Disjointed strategies: the strategy of each robot depends
only on its position. The solution is a collection of {αi

j,k},

one for each ri, where j, k ∈ V and contains O(∣R∣ ⋅ n2)
variables of probability. The randomization probabilities
over the configurations αc,c′s are easily defined as αc,c′ =

∏i∈R αi
ci,c

′
i
. The strategy of each robot is computed cen-

trally keeping into account the strategy of all the other
robots. Disjointed strategies provide performances poten-
tially worse than the joint strategy’s ones, because the coor-
dination is limited. On the other hand, it requires a lighter
computational effort because the number of variables of the
solution is drastically smaller.

Separated strategies: as in the previous case, but the com-
putation of {αi

j,k} is accomplished by each single robot

without considering the strategies of the others. The ran-
domization probabilities αc,c′s are defined as in the previ-
ous case. This case provides performances potentially worse
than the previous two, but assures the minimal computa-

tional effort. This is because the multi-robot patrolling is
reduced to a set of ∣R∣ single-robot independent patrolling
problems whose number of variables is O(n2).

The second dimension refers to the degree of coordination
in partitioning the environment. In this case each robot is
assigned to a portion of G and is constrained to move within
such portion. The three values (in decreasing coordination
strength) are:

Full assignment: each robot can potentially move in every
vertex of G. We can safely constrain the robots to move
along the paths corresponding to the edges of Q such that at
each turn the robots are in a feasible configuration. All the
robots can potentially patrol all the targets.

Maximal clique assignment: each robot is assigned a
maximal clique (i.e., the robot moves along the paths as-
sociated with the clique’s edges). In this case, some tar-
gets (shared by more than one cliques) can be patrolled by
multiple robots, while others are patrolled by a single robot.
Consider Fig. 2, the maximal clique assignment prescribes
that one robot is assigned to the clique constituted of ver-
tices 01,08,10 and the other to the clique constituted of ver-
tices 07,08,17. This case poses some constraints over the
robots’ strategies reducing the number of possible configu-
rations and thus reducing the number of variables αc,c′s of
the solution. These constraints make maximal clique assign-
ment performances potentially worse than the full assign-
ment’s ones.

Separated assignment: each robot is assigned a clique that
has no overlaps with the cliques assigned to the other robots
(the cliques constitute a (non-maximal) clique cover). In
this case, each target is patrolled by only one robot. In this
paper, we do not study the problem of choosing the opti-
mal separated assignment given all the non-maximal clique
covers. In our experimental evaluation we enumerate all of
them and we select the one such that the patrolling strategy
is the best. Consider Fig. 2, with two robots there is only
one separated assignment where the two cliques are consti-
tuted by the vertices 01,08,10 and 07,17 respectively. The
two cliques 01,10 and 07,08,17 do not constitute a sepa-
rated assignment because a robot moving between 01 and
10 necessarily patrols also 08 and then this assignment is
of maximal clique. The separated assignment reduces the
number of possible configurations w.r.t. the previous case,
further reducing the number of αc,c′s. This makes separated
assignment performances potentially worse than the perfor-
mance of the previous two assignment methods.

Not all the possible combinations of values for the two
above dimensions are reasonable. We denote by Di the sig-
nificant ones in Tab. 1. In particular, joint strategy and dis-
jointed strategy with separated assignment can be safely re-
duced to separated strategy with separated assignment. This
is because, when the robots patrol separated portions of G,
they do not need to coordinate in choosing the next config-
uration to move to. Disjointed strategy with full assignment
can be safely reduced to disjointed strategy with maximal
clique assignment. This is because the optimal patrolling
strategy with full assignment when robots’ strategies are
disjointed prescribes that each robot moves along a single
clique (and therefore the assignment is actually of maximal

1227



clique). Otherwise, the robots’ strategies being independent
on the position of the others, it would be possible that two or
more robots are moving on the same clique leaving exposed
targets of other cliques. The same holds for separated strate-
gies with full assignment. In the following we discuss how
a patrolling setting G can be solved for each Di.

full assignment max. clique assignment separated assignment

joint strategy D1 D2 −
disjointed strategy − D3 −
separated strategy − D4 D5

Table 1: Combinations of coordination dimensions.

Joint strategy – full assignment (D1) In this case, the
problem can be formulated as a single-robot problem where
the robot moves over the space of configurations instead
of the space of vertices. The mathematical programming
formulation is an extension of that described in (Basilico,

Gatti, and Amigoni 2009). The variable γ
h,w
c,c′ gives the

probability that patrollers reach in h turns configuration c′

starting from configuration c without passing through tar-
get w. We denote by C−w the set of all the configurations
where w is not occupied by any robot. For brevity, we call
X = Ur(intruder-capture) and Yi = Ur(penetration-i). The
mathematical programming formulation (non linear) is:

maxu

s.t.

αc,c′ ≥ 0 ∀c, c′ ∈ C (3)

∑
c′∈C

αc,c′ = 1 ∀c ∈ C (4)

αc,c′ ≤ ∏
r∈R

a(ci, c
′
i) ∀c, c′ ∈ C (5)

γ
1,w

c,c′
= αc,c′ ∀w ∈ T, c, ∈ V, c′ ∈ C−w (6)

γ
h,w

c,c′
= ∑

x∈C−w

(γh−1,w
c,x αx,c′)

∀h ∈ {2, . . . , d(w)},
∀w ∈ T,c ∈ C, c

′ ∈ C−w

(7)

P (c,w) = 1 − ∑
c′∈C−w

γ
d(w),w

c,c′
∀w ∈ T, c ∈ C (8)

u ≤ P (c,w)(X − Yw) + Yw ∀w ∈ T, c ∈ C (9)

Constraints (3) and (4) assure that the probabilities αc,c′ are
positive and are well defined for every configuration c. Con-
straints (5) assure that αc,c′ is zero if the vertex of at least a
robot in c′ is not adjacent to its vertex in c. Constraints (6)
and (7) impose the robots’ strategy to be Markovian. Con-
straints (8) assign P (c,w) the intruder’s capture probability
when it makes enter-when(w, c). The right hand of con-
straints (9) is the robots’ expected utility when the intruder
makes enter-when(w, c), while u is the actual robots’ ex-
pected utility. Essentially, we must maximize u.

Joint strategy – maximal clique assignment (D2) In this
case we assign each patroller r a maximal clique Qr and
we introduce the constraint that at every turn of the game
r’s position should be in a vertex associated with Qr. The
mathematical programming formulation is the same we used
in the previous case after discarding from C those configu-
rations that violate the clique assignment constraint.

Disjointed strategy – maximal clique assignment (D3)
This case requires a slightly different mathematical formu-
lation. Given a clique assignment, a robot r patrols a subset
of targets, i.e., in its patrol activity it will cover only certain
targets. If w is a target, we denote with Rw ⊆ R the set
of robots which, according to the given clique assignment,
patrol target w. (Obviously, Rw ≥ 1 for every w). The math-
ematical programming formulation (non linear):

maxu

s.t.

α
r
i,j ≥ 0 ∀r ∈ R, i, j ∈ V (10)

∑
j∈V

α
r
i,j = ar(i, i) ∀r ∈ R,i ∈ V (11)

α
r
i,j ≤ ar(i, j) ∀r ∈ R, i, j ∈ V (12)

γ
1,w

r,i,j
= α

r
i,j ∀r ∈ Rw,w ∈ T, i, j ∈ V, j ≠ w (13)

γ
h,w
r,i,j

= ∑
x∈V ∖w

(γh−1,w
r,i,x

α
r
x,j)

∀h ∈ {2, . . . , d(w)},
∀r ∈Rw, w ∈ T, i, j ∈ V, j ≠ w

(14)

P (c,w) = 1 − ∏
r∈Rw

∑
j∈V ∖{w}

γ
d(w),w
r,cr,j

∀w ∈ T, c ∈ C (15)

constraints (9)

Constraints (10)-(14) are the analogous to constraints (3)-
(9). Constraints (15) assign P (c,w) the intruder’s capture
probability when it makes enter-when(w, c) by considering
the strategies of all the robots patrolling target w.

Separated strategies (D4,D5) Here the multi-robot prob-
lem is reduced to ∣R∣ single-robot patrolling problems and
each single problem can be solved as discussed in (Basil-
ico, Gatti, and Amigoni 2009). Given an assignment, we
solve all the associated single-robot problems. The opti-
mal robots’ expected utility related to this assignment is the
smallest utility it receives among all the single-robot prob-
lems. Since there can be multiple assignments, we need to
solve all of them. The optimal robots’ expected utility is the
largest among all the possible assignments. D5 presents an
anomaly: once we have solved all the single-robot problems,
in order to compute the robots’ expected utility, we need to
find the intruder’s best response and, on the basis of this, we
can compute the robots’ expected utility. This is because the
single-robot problems neglect that other robots patrol com-
mon targets.

Experimental Evaluation

We implemented our algorithms in C. We used
AMPL (Fourer, Gay, and Kernighan 1990) with
CPLEX (ILOG Inc. 2010) to solve the linear mathematical
programming problems and with SNOPT (Stanford Busi-
ness Software Inc. 2010) to solve the nonlinear problems.
Initially, we experimentally evaluated our algorithm for
computing the robot number lower bound. We developed a
generator of random connected multigraphs Q = (T,E, l)
with ∣T ∣ ∈ [3,15], ∣E∣ ∈ [∣T ∣ − 1, ∣T ∣2], and, for every
e = (ti, tj , k), l(e) ∈ ℘(T ) ∪ {ti, tj}. (The computation of
{αc,c′} with more than 15 settings is hard even with a single
robot.) We generated 100 instances of Q and we computed
the robot number lower bound. We used a UNIX computer
with dual quad-core 2.33GHz CPU and 4GB RAM. For all
the instances the computational time was shorter than 2 s.

1228



vertices targets range of d() # max. clique ass. #sep. ass.

setting1 8 3 [2,3] 1 2

setting2 11 4 [4,5] 1 4

setting3 13 3 [4,6] 1 4

setting4 17 4 [6,9] 1 4

setting5 23 8 [6,9] 1 4

Table 2: Experimental settings.

We produced five patrolling settings with different sizes
in terms of the number vertices and targets. We report their
characteristics in Tab. 2. We generated 10 instances per set-
ting where the penetration times are uniformly drawn from
the corresponding ranges (constraining the robot number
lower bound to be two) and the robots’ values over the tar-
gets are uniformly drawn from [0, 1

∣T ∣ ] in such a way the

robots’ utilities are normalized, i.e., Ur(intruder-capture) =
1 and Ur(penetration-i) ∈ [0,1]. We solved these instances
with two robots and we report the average computational
times in Tab. 3 and the average robots’ utilities in Tab. 4.
For D5 we enumerated all the possible assignments and, in
Tab. 3, we report the cumulative computational time and, in
the parentheses, the longest one; in Tab. 4, we report the
utilities with the best assignment. The percentages are cal-
culated w.r.t. D5, being with lowest coordination degree.

D1 D2 D3 D4 D5

setting1 18.80 s 0.38 s 0.01 s < 0.01 s < 0.01 s

setting2 1 h 1 m 29 m 2.95 s 0.03 s 0.06 s (0.01 s)

setting3 1 h 20 m 2 m 48.71 s 0.28 s 0.12 s 0.30 s (0.04 s)

setting4 memory over. memory over. 8.54 s 1.50 s 4.21 s (0.66 s)

setting5 memory over. memory over. 284.60 s 12.42 s 36.64 s (8.12 s)

average 1 h (+104%) 22 m (+103%) 59.01 (+600%) 2.81 s (-65%) 8.25 s (8.12 s)

Table 3: Average computational times.

D1 D2 D3 D4 D5

setting1 1.00 (+51%) 1.00 (+51%) 0.75 (+13%) 0.53 (-20%) 0.66

setting2 1.00 (+127%) 0.65 (+52%) 0.49 (+9%) 0.40 (-10%) 0.44

setting3 1.00 (+121%) 1.00 (+121%) 0.52 (+21%) 0.35 (-19%) 0.43

setting4 memory over. memory over. 0.41 (+36%) 0.21 (-30%) 0.30

setting5 memory over. memory over. 0.35 (+10%) 0.15 (-53%) 0.32

average 1.00 (+117%) 0.88 (+92%) 0.55 (+18%) 0.26 (-19%) 0.46

Table 4: Average robots’ expected utilities.

The experimental results confirm that, as the degree of co-
ordination decreases (i.e., as i inDi increases), the computa-
tional time and the robots’ utilities decrease (except for D4,
discussed below). With instances of SETTING4 and SET-
TING5, D1 and D2 cannot be solved because they require
more than 4GB RAM. This shows that D1 and D2 do not
scale with large settings and therefore they are employable
only with very small settings. D3 performs better in terms
of expected utilities than D5, but it requires computational
times longer than D5. However, this result is limited to set-
tings where the number of possible separated assignments
is small, otherwise the resolution of all the possible assign-
ments can take a time drastically longer than the D3’s one.
We have modified SETTING1-3 such that their robot lower
bounds are 3 and 4 and we solved the related instances with
D3 and D5. The average computational times with D3 and
D5 are shorter than those with two robots. This is because
the portion of G assigned to each robot is strictly smaller
than that with two robots. That is, D3 and D5 scale with

the number of robots, while the computational time strongly
depends on size of the subgraphs assigned to the robots . As
a result, D3 and D5 are the most appropriate for medium-
large settings: the choice between them depends on the set-
ting structure. When both D3 and D5 are intractable, D5

should be supported by an heuristic algorithm to choose the
assignment without solving all the possible ones. In all our
evaluations the worst D5 assignment returned an expected
utility larger than the one returned by D4. This shows that
patrolling overlapping areas without any strategy coordina-
tion negatively affects the expected utility even w.r.t. D5.

Conclusions and Future Research
We studied the multi-robot patrolling problem with adver-
saries in environments with arbitrary topologies. Extending
the most general model for single-robot patrolling, we pro-
vided a game model when there are multiple robots. We
studied the problem of computing the smallest number of
robots needed to patrol an environment avoiding that an in-
truder will successfully attack a target with a probability
of one, and we identified two coordination dimensions for
the patrolling strategies. Our experimental evaluation shows
that each dimension presents a different tradeoff in terms of
computational times and expected utility making each di-
mension suitable for particular kinds of patrolling settings.

In the future, we shall study D3 and D5 in large settings,
providing an heuristic for enumeratingD5, and we shall de-
velop techniques to reduce the space of search based on it-
erated dominance.

References
Agmon, N.; Kraus, S.; and Kaminka, G. 2008. Multi-robot perime-
ter patrol in adversarial settings. In ICRA, 2339–2345.

Amigoni, F.; Gatti, N.; and Ippedico, A. 2008. A game-theoretic
approach to determining efficient patrolling strategies for mobile
robots. In IAT, 500–503.

Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-follower
strategies for robotic patrolling in environments with arbitrary
topologies. In AAMAS, 57–64.

Bron, C., and Kerbosch, J. 1973. Algorithm 457: finding all cliques
of an undirected graph. COMMUN ACM 16(9):575–577.

Fourer, R.; Gay, D.; and Kernighan, B. 1990. A modeling language
for mathematical programming. Management Science 36(5):519–
554.

Fudenberg, D., and Tirole, J. 1991. Game Theory. The MIT Press.

ILOG Inc. 2010. http://ilog.com.sg/products/cplex.

Paruchuri, P.; Pearce, J.; Marecki, J.; Tambe, M.; Ordonez, F.; and
Kraus, S. 2008. Playing games for security: An efficient exact
algorithm for solving Bayesian Stackelberg games. In AAMAS,
895–902.

Pita, J.; Jain, M.; Marecki, J.; Ordonez, F.; Portway, C.; Tambe, M.;
Western, C.; Paruchuri, P.; and Kraus, S. 2008. Deployed ARMOR
protection: the application of a game theoretic model for security
at the Los Angeles International Airport. In AAMAS, 125–132.

Stanford Business Software Inc. 2010. http://www.sbsi-sol-
optimize.com/.

von Stengel, B., and Zamir, S. 2004. Leadership with commitment
to mixed strategies. CDAM Research Report LSE-CDAM-2004-
01, London School of Economics.

1229




