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Abstract

Recent research has shown that surprisingly rich models of
human behavior can be learned from GPS (positional) data.
However, most research to date has concentrated on mod-
eling single individuals or aggregate statistical properties of
groups of people. Given noisy real-world GPS data, we—in
contrast—consider the problem of modeling and recognizing
activities that involve multiple related individuals playing a
variety of roles. Our test domain is the game of capture the
flag—an outdoor game that involves many distinct coopera-
tive and competitive joint activities. We model the domain us-
ing Markov logic, a statistical relational language, and learn a
theory that jointly denoises the data and infers occurrences of
high-level activities, such as capturing a player. Our model
combines constraints imposed by the geometry of the game
area, the motion model of the players, and by the rules and dy-
namics of the game in a probabilistically and logically sound
fashion. We show that while it may be impossible to directly
detect a multi-agent activity due to sensor noise or malfunc-
tion, the occurrence of the activity can still be inferred by con-
sidering both its impact on the future behaviors of the people
involved as well as the events that could have preceded it. We
compare our unified approach with three alternatives (both
probabilistic and nonprobabilistic) where either the denoising
of the GPS data and the detection of the high-level activities
are strictly separated, or the states of the players are not con-
sidered, or both. We show that the unified approach with the
time window spanning the entire game, although more com-
putationally costly, is significantly more accurate.

Introduction
Motivation
Imagine two teams—seven players each—playing capture
the flag on a university campus, where each player carries
a consumer-grade global positioning system (GPS) that logs
its location every second (see Fig. 1). Accuracy of the GPS
data varies from 1 to more than 10 meters. In open areas,
readings are typically off by 3 meters, but the discrepancy
is much higher in locations with tall buildings or other ob-
structions. The error has a systematic component as well
as a significant stochastic component. Errors between de-
vices are poorly correlated, because subtle differences be-
tween players, such as the angle at which the device sits in
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Figure 1: A snapshot of a game of capture the flag that shows
the game area. Players are represented by pins with letters. In
our version of CTF, the two “flag areas” are stationary and are
shown as white circles near the top and the bottom of the figure.
The horizontal road in the middle of the image is the territory
boundary. The data is shown prior to any denoising or correc-
tions for map errors. Videos of our recorded games are available
from the first author’s website.

the player’s pocket, can dramatically affect accuracy. More-
over, since we consider multi-agent scenarios, the errors
in individual players’ readings can add up, thereby creat-
ing a large discrepancy between the reality and the recorded
dataset. Because players can move freely through open ar-
eas, we cannot reduce the data error by assuming that the
players move along road or walkways, as is done in much
work on GPS-based activity recognition (e.g., (Liao, Fox,
and Kautz 2004)). Finally, traditional techniques for denois-
ing GPS data, such as Kalman filtering, are of little help,
due to the low data rate (1 sample per second) relative to
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the small amount of time required for a player to completely
change her speed or direction.

Given such raw and noisy data, can we automatically and
reliably detect and recognize interesting events that hap-
pen within the game (such as one player capturing another
player)? Moreover, can we jointly denoise the GPS data and
infer instances of game events? In this paper, we present an
approach that provides evidence for answering a resounding
“yes” to both of the above questions.

Our work is not primarily motivated by the problem of
annotating strategy games, although there are obvious appli-
cations of our results to sports and combat situations. We
are, more generally, exploring relational learning and infer-
ence methods for recognizing multi-agent activities from lo-
cation data. We accept the fact that the GPS data at our
disposal is inherently unreliable and ambiguous for any one
individual. We therefore focus on methods that jointly and
simultaneously localize and recognize the high-level activi-
ties of groups of individuals.

GPS location data can be used to learn (perhaps surpris-
ingly) much about human behavior. Most work to date
has concentrated either on inferring activities performed
by a single person at a sequence of locations (Bui 2003;
Liao, Fox, and Kautz 2004; 2005), or on how locations are
typically used by anonymous groups of individuals (Abowd
et al. 1997). By contrast, we are interested in using GPS data
to discover particular activities that involve multiple related
individuals playing a variety of distinct roles. For example,
consider modeling a situation that includes an elderly person
interacting with a circle of caregivers. GPS data could be
used to infer various kinds of caregiving activities, such as
an adult son taking his mother clothes shopping—an event
that would be virtually impossible to capture if we consid-
ered each person in isolation.

Many different kinds of cooperative and competitive
multi-agent activities occur in games. Because of the rich
yet well defined nature of the domain, we had decided to be-
gin our investigation of multi-agent activity recognition with
GPS data we collected from people playing capture the flag
(details of the data collection are below). The lowest-level
joint activities are based on location and movement, and in-
clude “approaching” and “being at the same location.” Note,
that noise in the GPS data often makes it difficult or impos-
sible to directly detect these simple activities. At the next
level come competitive multi-agent activities including cap-
turing and attacking; cooperative activities include freeing;
and there are activities, such as chasing and guarding, that
may belong to either category or to both categories. There
are also more abstract tactical activities, such as making a
sacrifice, and overall strategies, such as playing defensively.
In this paper, we concentrate on activities at the first two
levels.

Our Approach
We provide a unified framework for intelligent relational de-
noising of the raw GPS data while simultaneously labeling
instances of a player being captured by an enemy. Both the
denoising and the labeling are cast as a learning and infer-
ence problem in Markov logic. By denoising, we mean mod-

ifying the raw GPS trajectories of the players such that the
final trajectories satisfy constraints imposed by the geometry
of the game area, the motion model of the players, as well
as by the rules and the dynamics of the game. In this paper,
we refer to this trajectory modification as “snapping” since
we tile the game area with 3 by 3 meter cells and snap each
raw GPS reading to an appropriate cell. By creating cells
only in unobstructed space, we ensure the final trajectory is
consistent with the map of the area.

We express the constraints as weighted formulas in
Markov logic (see section “Models” below). Some of the
constraints are “hard,” in the sense that we are only inter-
ested in solutions that satisfy all of them. Hard constraints
capture basic physical constraints (e.g., a player is only at
one location at a time) and inviolable rules of the game (e.g.,
a captured player must stand still until freed or the game
ends).1 The rest of the constraints are “soft,” meaning there
is a finite weight associated with each one. Some of the
soft constraints correspond to a traditional low-level data fil-
ter, expressing preferences for smooth trajectories that are
close to the raw GPS readings. Other soft constraints cap-
ture high-level constraints concerning when individual and
multi-agent activities are likely to occur. For example, a soft
constraint states that if a player encounters an enemy on the
enemy’s territory, the player is likely to be captured. The ex-
act weights on the soft constraints are learned from labeled
data, as described below. Fig. 2 gives an English description
of our hard and soft constraints for the low-level movement
and player capture rules of capture the flag.

The most likely explanation of the data is one that satis-
fies all the hard constraints while maximizing the sum of the
weights of the satisfied soft constraints. Inference is done
simultaneously over an entire game (on average, about 10
minutes worth of data). Note that we do not restrict infer-
ence to a (small) sliding time window. As the experiments
described below show, many events in this domain can only
be definitely recognized long after they occur. For example,
GPS noise may make it impossible to determine whether or
not a player has been captured at the moment of the capture,
but as the player thereafter remains in place for a long time,
the possibility of his capture becomes certain.

Significance of Results
We show that while it may be impossible to directly detect
a multi-agent activity due to sensor noise or malfunction,
the occurrence of the activity can still be inferred by consid-
ering both its impact on the future behaviors of the people
involved as well as the likelihood of the events that poten-
tially preceded it. Our experiments demonstrate that a fairly
short theory in Markov logic (which follows directly from
the rules of the game) coupled with automatically learned
weights, can reliably recognize instances of capture events
even at times when other approaches largely fail. Nine out
ten captures were correctly identified in tens of thousands
of GPS readings and in the presence of hundreds of almost-
captures (situations that at first sight look like captures but

1Cheating could be accommodated by making the rules highly-
weighted soft constraints rather than hard constraints.
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Hard Rules:
H1. The final trajectory is consistent with the map of the game area

(i.e., players don’t magically walk through walls).

H2. Each raw GPS reading is snapped to exactly one cell.

H3. No player is captured at the beginning of the game.

H4. When player a1 captures player a2, then both involved players
must be snapped to a common cell at that time.

H5. A player can be captured only by an enemy who is on his or her
home territory.

H6. A player can be captured only when standing on enemy territory.

H7. A player can be captured only if he or she is currently free.

H8. A player transitions from a free state to a captured state via a
capturing event.

H9. A captured player remains captured until freed.

H10. If a player is captured then he or she must remain in the same
location.

Soft Rules:
S1. Minimize the distance between the raw GPS reading and the

snapped-to cell.

S2. Minimize projection variance, i.e., two consecutive “snappings”
should be generally correlated.

S3. Maximize smoothness (both in terms of space and time) of the
final player trajectories.

S4. If players a1 and a2 are enemies, a1 is on home territory, a2 is
on a1’s territory, a2 is not captured already, and they are close to
each other, then a1 probably captures a2.

S5. Capture events are generally rare, i.e., there are typically only a
few captures within a game.

Figure 2: Description of the hard and soft rules for capture the
flag.

after careful analysis turn out to be false alarms). Further-
more, we show that our approach is applicable even in size-
able domains and is easily decomposable and extensible.

Even though the capture the flag domain doesn’t capture
all the complexities of life, most of the problems that we are
addressing here clearly have direct analogues in more real-
life tasks that artificial intelligence needs to address—such
as improving smart environments, human-computer interac-
tion, surveillance, assisted cognition, and battlefield control.

Capture The Flag Domain
We collected the CTF dataset by having subjects play three
games of capture the flag on a university campus while car-
rying basic GPS loggers. Players were required to remain
outdoors. We manually labeled instances of capture events
in all three games based partly on our notes taken during
the experiment and partly on our best judgement. We con-
sider our labeling to be the ground truth for both training our
models and for evaluation purposes.

The visualization of a game is shown in Fig. 1. In our vari-
ant of CTF, we have two teams—each consisting of seven
players. The south team’s territory is the area south of the

Figure 3: Three snapshots of a game situation that illustrate the
need for an approach that exploits both the relational and the far
reaching temporal structure of our domain.

road in the middle of the map and analogously for the north
team. The flags are actually stationary and are shown as
white circles in Fig. 1. The goal is to enter the opponent’s
flag area within 15 minutes. Players can be captured only
while on enemy territory by being touched by the enemy.
Upon being captured, they must remain in place until freed
or the game ends.

If we are to reliably recognize interesting events that hap-
pen in these games, we need to consider not only each player
individually but also the relationships among them over ex-
tended periods of time (possibly the whole length of the
game). Consider a real game situation illustrated in Fig. 3.
There we see three snapshots of a game projected over a map
before any modification of the GPS data. The game time
is shown on each snapshot. Players D, F, G are allies and
are currently on their home territory near their flag, whereas
players L and M are their enemies. In the first snapshot,
players L and M head for the opponent’s flag but then—in
the second frame—they are intercepted by G. At this point it
is unclear what is happening because of the substantial error
in the GPS data—the three players appear to be very close to
each other but in actuality they could have been 20 or more
meters apart. However, once we see the third snapshot (note
that tens of seconds have passed), in retrospect, we realize
that player G actually captured only player M and didn’t cap-
ture L since he is still chasing him. The fact that player M
remains stationary coupled with the fact that neither D nor
F attempts to capture him suggests that M has indeed been
captured. Our unified model gives the correct labeling even
for complex situations like these whereas limited approaches
largely fail.

Background
Markov Logic
Given the inherent uncertainty involved in reasoning about
real-world activities as observed through noisy sensor read-
ings, we looked for a methodology that would provide
an elegant combination of probabilistic reasoning with ex-
pressive, relatively natural, and compact but unfortunately
strictly true or false formulas of first order logic (FOL). And
that is exactly what Markov logic provides thereby allow-
ing us to elegantly model complex relational non-i.i.d. do-
mains (Richardson and Domingos 2006). A Markov logic
network (MLN) consists of a set of constants C and of a
set of pairs 〈Fi, wi〉 such that each FOL formula Fi has a
weight wi ∈ R associated with it.
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Hard Formulas

∀a1, a2, t : capturing(a1, a2, t)⇒ enemies(a1, a2)∧
onHomeTer(a1, t) ∧ onEnemyTer(a2, t)∧ (H4–H7)

¬isCaptured(a2, t) ∧ samePlace(a1, a2, t)

∀a1, a2, t : samePlace(a1, a2, t)⇒ (H4)

∃c : snap(a1, c, t) ∧ snap(a2, c, t)

∀a, t : ¬isCaptured(a, t) ∧ isCaptured(a, t + 1) ⇒
∃=1a

′ : capturing(a′, a, t) (H8)

Soft Formulas

∀a, c, t : snap(a, c, t) · d1(a, c, t) · wp (S1)

∀a,c1, c2, t : (S2)

snap(a, c1, t) ∧ snap(a, c2, t + 1) · d2(a, c1, c2, t) · ws

∀a1, a2, t : enemies(a1, a2) ∧ onHomeTer(a1, t)∧ (S4)

onEnemyTer(a2, t) ∧ ¬isCaptured(a2, t)∧

samePlace(a1, a2, t) ⇒ capturing(a1, a2, t) · wc

∀a, c, t : capturing(a, c, t) · wcb (S5)

Figure 4: Selected formulas in Markov logic. See correspond-
ing constraints in Fig. 2 for an English description. (∃=1 de-
notes unique existential quantification.)

A MLN can be viewed as a template for a Markov net-
work (MN) as follows: MN contains one node for each pos-
sible ground atom of MLN. Each weight wi in the MLN
intuitively represents the relative “importance” of satisfying
(or violating, if the weight is negative) the corresponding
formula Fi. Thus the problem of satisfiability is relaxed in
MLNs. We no longer search for a satisfying truth assign-
ment as in traditional FOL. Instead, we are looking for a
truth assignment that maximizes the sum of the weights of
all satisfied formulas.

Maximum a posteriori inference in Markov logic given
the state of the observed atoms reduces to finding a truth as-
signment to the hidden atoms such that the weighed sum of
satisfied clauses is maximal. Even though this problem is
in general #P-complete, we achieve reasonable run times by
applying Cutting Plane MAP Inference (CPI) (Riedel 2008).
CPI can be thought of as a meta solver that incrementally
and partially grounds a Markov logic network thereby creat-
ing a Markov network that is subsequently solved by any ap-
plicable method—such as MaxWalkSAT or via a reduction
to an integer linear program. After obtaining this (possibly
preliminary) solution, CPI searches for additional grounding
that could contribute to the score.

Models
Since to date no results on attacking a comparable multi-
agent relational learning, denoising, and recognition prob-
lem have been published, we compare our unified ap-
proach with three alternative models. The first two models
(baseline and baseline with states) are purely determinis-
tic and they separate the denoising of the GPS data and the
labeling of game events. We implemented both of them in
Perl. They do not involve any training phase.

On the other hand, the two-step model and the unified
model are probabilistic and are both cast in Markov logic.
The unified model handles the denoising and labeling in a
joint fashion whereas the two-step approach first performs
snapping given the geometric constraints and subsequently
labels instances of capturing. The latter two models are eval-
uated using three-fold cross-validation where in order to test
on a given game, we first trained our model on the two other
games.

Our models can access the following observed data: raw
GPS position of each player at any time and indication
whether they are on enemy or home territory, location of
each 3 by 3 meter cell, cell adjacency, and list of pairs of
players that are enemies. We tested all four models on the
same raw GPS data. The following subsections describe
each of the four approaches in more detail.

Baseline Model
This model has two separate stages. First we snap each read-
ing to the nearest cell and afterward we label the instances
of player a capturing player b. The labeling rule is simple:
we loop over the whole discretized (via snapping) data set
and output capturing(a,b,t) every time we encounter a pair
of players a and b such that they were snapped (in the first
step) to either the same cell or to two mutually adjacent cells
at time t, they are enemies, and a is on its home territory
while b is not.

Baseline Model with States
This second model builds on top of the previous one by in-
troducing a notion that players have states. If player a cap-
tures player b at time t, b enters a captured state (in logic,
isCaptured(b,t+1)). Then b remains in captured state until it
moves (is snapped to a different cell at a later time) or the
game ends. As per rules of CTF, a player who is in captured
state cannot be captured again.

Thus, this model works just like the previous one except
whenever it is about to label a capturing event, it checks the
states of the involved players and outputs capturing(a,b,t)
only if both a and b are not in captured state.

Two-Step Model
In the two-step approach, we have two separate theories in
Markov logic. The first theory is used to perform a pre-
liminary snapping of each of the player trajectories indi-
vidually using constraints H1, H2, and S1–S3. The second
theory then takes this preliminary denoising as a list of ob-
served atoms in the form preliminarySnap(a,c,t) (meaning
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player a is snapped to cell c at time t) and uses the remain-
ing constraints to label instances of capturing, while con-
sidering cell adjacency in the same manner as the baseline
model. The two-step model constitutes a decomposition of
the unified model (see below) and overall contains virtually
the same formulas, thus we omit elaborating on it here.

Unified Model
In the unified approach, we express all the hard constraints
H1–H10 and soft constraints S1–S5 in Markov logic as a
single theory that jointly denoises the data and labels game
events. Selected interesting formulas are shown in Fig. 4—
their labels correspond to the listing in Fig. 2. Note that
formulas S1 and S2 contain real-valued functions d1 and
d2 respectively. (Markov logic networks that contain such
functions are called hybrid MLNs.) d1 returns the distance
between agent a and cell c at time t. Similarly, d2 returns
the dissimilarity of the two consecutive “snapping vectors”2

given agent a’s position at time t and t+1 and the location
of the centers of two cells c1 and c2. Since wp and ws are
both assigned negative values during training, formulas S1
and S2 effectively softly enforce the corresponding geomet-
ric constraints.

Experiments and Results
The raw data set contains missing data at a rate of approx-
imately 1 in 250, while there are typically contiguous, sev-
eral seconds long segments of readings missing. Since the
players can move quite erratically, in this work we haven’t
attempted to explicitly fill in the missing data. Instead we
simply assume that a player whose data is missing remains
at his or her last seen location. Adding extra formulas to our
theory that weigh readings according to their corresponding
logged signal quality, which would be lowest for missing
data points, has been left for future work.

We apply theBeast software package to do weight learn-
ing and MAP inference in our domain. theBeast imple-
ments the cutting plane inference meta solving scheme and
we use the integer linear program solver as the base solver
(as opposed to MaxWalkSAT) since the resulting run times
are still relatively short (under an hour even for training and
testing the most complex unified model) and we gain exact-
ness of the inference.

We specify the Markov logic formulas by hand and opti-
mize the weights of the soft formulas via supervised on-line
learning. We set theBeast to use Margin Infused Relaxed
Algorithm (MIRA) for weight updates while the loss func-
tion is computed from the number of false positives and false
negatives over the hidden atoms.

Table 1 lists for each game the number of raw GPS read-
ings and the number of captures (ground truth), and summa-
rizes our results in terms of precision, recall, and F1 score.
We see that the unified approach yields the best results in
each case. Overall, it labels 9 out of 10 captures correctly—
there is only one false negative. In fact, this tenth capture

2The initial point of each snapping (projection) vector is a raw
GPS reading and the terminal point is the center of the cell we snap
that reading to.

#GPS #C B B+S 2-SML UML

Game 1 13,412 2
Precision 0.006 0.065 1.000 1.000
Recall 1.000 1.000 1.000 1.000
F1 0.012 0.122 1.000 1.000

Game 2 14,400 2
Precision 0.006 0.011 1.000 1.000
Recall 0.500 0.500 0.500 1.000
F1 0.013 0.022 0.667 1.000

Game 3 3,472 6
Precision 0.041 0.238 1.000 1.000
Recall 0.833 0.833 0.833 0.833
F1 0.079 0.317 0.909 0.909

Table 1: Summary of the dataset and the results. #GPS denotes
the number of raw GPS readings, #C is the number of actual cap-
tures, B denotes the baseline model, B+S is the baseline model with
states, 2-SML and UML are the two-step and the unified Markov
logic models, respectively.

event is missed by all the models because it involves two
enemies that appear unusually far apart (about 12 meters)
in the raw data. Even the unified approach fails on this in-
stance since the cost of adjusting the players’ trajectories—
thereby losing score due to violation of the geometry-based
constraints—is not compensated for by the potential gain
from labeling an additional capture. Such a situation is not
present in the training data for game 3 and thus the weights
on the capture recognition formulas are too low in this case.

Note that even the two-step approach recognizes 8 out of
10 captures. It misses one instance in which the involved
players are moderately far apart are snapped to mutually
nonadjacent cells. On the other hand, the unified model does
not fail in this situation because it is not limited by prior non-
relational snapping to a few nearby cells.

Both baseline models perform very poorly, although they
yield a respectable recall. They produce an overwhelming
amount of false positives ranging from 121 to 332 for the
baseline model and from 21 to 89 for the augmented baseline
model. This validates our hypothesis that we need to exploit
the rich relational and temporal structure of the domain in a
probabilistic way.

Related Work
Previous work heavily focused on denoising single-agent
GPS traces and subsequent activity recognition (Limketkai,
Fox, and Liao 2007; Liao, Fox, and Kautz 2004). Those
authors cast the problem as learning and inference in a con-
ditional random field and a dynamic Bayesian network re-
spectively.

The most studied multi-agent activity is undoubtedly con-
versation. Mobile phone data (call and location logs) have
been used to infer social networks and user mobility pat-
terns (Eagle and Pentland 2006). However, only a relatively
small number of activities can be inferred from cell phone
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data (e.g., conversation, text message, etc.), and GPS infor-
mation has only an indirect impact on the particular joint ac-
tivity, since the participants are necessarily not in the same
location. A recent effort to collect data on face-to-face con-
versation along with GPS data (Wyatt et al. 2007) might well
be useful for inferring location-based multi-agent activities,
but results published to date from that study have not made
use of location information.

Recent work on relational spacial reasoning includes
an attempt to locate—using spacial abduction—caches of
weapons in Iraq based on information about attacks within
a geographic area (Shakarian, Subrahmanian, and Spaino
2009).

Finally, a number of researchers in machine vision have
worked on the problem of recognizing events in videos of
sporting events, such as impressive recent work on learn-
ing models of baseball plays (Gupta et al. 2009). Most
work in that area has focused on recognizing individual
actions (e.g., catching and throwing), and the state of the
art is just beginning to consider relational actions (e.g., the
ball is thrown from player a to player b). The computa-
tional challenges of dealing with video data make it neces-
sary to limit the time windows of a few seconds; by con-
trast, we demonstrated above that many events in the cap-
ture the flag data can only be disambiguated by consider-
ing arbitrarily long temporal sequences. In general, how-
ever, both our work and that in machine vision rely upon
similar probabilistic models, and there is already some evi-
dence that Markov logic-type relational models can be used
for activity recognition from video (Tran and Davis 2008;
Biswas, Thrun, and Fujimura 2007).

Conclusions and Future Work
We presented a novel methodology—cast in Markov logic—
for effectively combining data denoising with higher-level
relational reasoning about a complex multi-agent domain.
Experiments on real GPS data validate our approach while
leaving an open door for future (incremental) additions to
the ML theory.

We compared our unified model with three alternatives
(both probabilistic and nonprobabilistic) where either the de-
noising of the GPS data and the detection of the high-level
activities are strictly separated, or the states of the players
are not considered, or both. We showed that the unified
approach with the time window spanning the entire game,
although more computationally costly, is significantly more
accurate.

We are currently extending our framework in three direc-
tions. The first focuses on recognizing a richer set of game
events of various types outlined in the introduction (such as
freeing, chasing, hiding, cooperation, failed attempts at an
activity, . . . ). The events are often tied together and thus rec-
ognizing one of them improves the performance on the oth-
ers (e.g., imagine adding freeing recognition to our theory).
The second extension is built on top of the denoising and
recognition model and performs reinforcement learning to
learn game tactics while exploiting the higher-level informa-
tion inferred by the base model. Finally, we explore casting
our activity recognition and denoising problem as inference

in logical hidden Markov models (LHMMs), a generaliza-
tion of standard HMMs that compactly represents probabil-
ity distributions over sequences of logical atoms (Kersting,
De Raedt, and Raiko 2006).
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