
Robust Policy Computation in Reward-Uncertain MDPs
Using Nondominated Policies

Kevin Regan
University of Toronto

Toronto, Ontario, Canada, M5S 3G4
kmregan@cs.toronto.edu

Craig Boutilier
University of Toronto

Toronto, Ontario, Canada, M5S 3G4
cebly@cs.toronto.edu

Abstract

The precise specification of reward functions for Markov de-
cision processes (MDPs) is often extremely difficult, motivat-
ing research into both reward elicitation and the robust solu-
tion of MDPs with imprecisely specified reward (IRMDPs).
We develop new techniques for the robust optimization of IR-
MDPs, using the minimax regret decision criterion, that ex-
ploit the set of nondominated policies, i.e., policies that are
optimal for some instantiation of the imprecise reward func-
tion. Drawing parallels to POMDP value functions, we devise
a Witness-style algorithm for identifying nondominated poli-
cies. We also examine several new algorithms for comput-
ing minimax regret using the nondominated set, and examine
both practically and theoretically the impact of approximat-
ing this set. Our results suggest that a small subset of the
nondominated set can greatly speed up computation, yet yield
very tight approximations to minimax regret.

Introduction

Markov decision processes (MDPs) have proven their value
as a formal model for decision-theoretic planning. However,
the specification of MDP parameters, whether transition
probabilities or rewards, remains a key bottleneck. Recent
work has focused on the robust solution of MDPs with im-
precisely specified parameters. For instance, if a transition
model is learned from observational data, there will gen-
erally be some uncertainty associated with its parameters,
and a robust solution will offer some guarantees on policy
quality even in the face of such uncertainty (Iyengar 2005;
Nilim and Ghaoui 2005).

Much research has focused on solving imprecise MDPs
using the maximin criterion, emphasizing transition model
uncertainty. But recent work deals with the robust solution
of MDPs whose rewards are incompletely specified (De-
lage and Mannor 2007; McMahan, Gordon, and Blum 2003;
Regan and Boutilier 2009; Xu and Mannor 2009). This is
the problem we consider. Since reward functions must often
be tailored to the preferences of specific users, some form
of preference elicitation is required (Regan and Boutilier
2009); and to reduce user burden we may wish to solve an
MDP before the entire reward function is known. Rather

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

than maximin, minimax regret has been proposed as a suit-
able criterion for such MDPs with imprecise rewards (IR-
MDPs) (Regan and Boutilier 2009; Xu and Mannor 2009),
providing robust solutions and serving as an effective means
of generating elicitation queries (Regan and Boutilier 2009).
However, computing the regret-optimal policy in IRMDPs
is theoretically complex (Xu and Mannor 2009) and practi-
cally difficult (Regan and Boutilier 2009).

In this work, we develop techniques for solving IRMDPs
that exploit the existence of nondominated policies. Infor-
mally, if R is a set of possible reward functions, we say a
policy π is nondominated if there is an r ∈ R for which π is
optimal. The set of nondominated policies can be exploited
to render minimax regret optimization far more efficient. We
offer three main contributions. First, we describe a new al-
gorithm for the minimax solution of an IRMDP that uses
the set Γ of nondominated policies to great computational
effect. Second, we develop an exact algorithm for comput-
ing Γ by drawing parallels with partially observable MDPs
(POMDPs), specifically, the piecewise linear and convex na-
ture of optimal value over R. Indeed, we suggest several
approaches based on this connection to POMDPs. We also
show how to exploit the low-dimensionality of reward space
in factored reward models to render the complexity of our
algorithm largely independent of state and action space size.
Third, we provide a method for generating approximately
nondominated sets. While Γ can be extremely large, in prac-
tice, very close approximations of small size can be found.
We also show how such an approximate set impacts min-
imax regret computation, bounding the error theoretically,
and investigating it empirically.

Background

We begin with relevant background on IRMDPs.

Markov Decision Processes

We restrict our focus to infinite horizon, finite state and
action MDPs 〈S, A, {Psa}, γ, β, r〉, with states S, actions
A, transition model Psa(·), non-negative reward function
r(·, ·), discount factor γ < 1, and initial state distribution
β(·). We use vector notation for convenience with: r an
|S| × |A| matrix with entries r(s, a), and P an |S||A| × |S|
transition matrix. Their restrictions to action a are denoted

1127

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

ra and Pa, respectively; and matrix E is identical to P with
1 subtracted from each self-transition probability Psa(s).

Our aim is to find an optimal policy π that maximizes
the sum of expected discounted rewards. Ignoring the ini-
tial state distribution β, value function V π : S → R for
deterministic policy π satisfies:

Vπ = rπ + γPπVπ (1)

where restrictions to π are defined in the usual way. Given
initial distribution β, π has expected value βVπ . It also
induces occupancy frequencies fπ, where fπ(s, a) is the
total discounted probability of being in state s and tak-
ing action a. π can be recovered from fπ via π(s, a) =
fπ(s, a)/

∑
a′ fπ(s, a′) (for deterministic π, fπ

sa = 0 for all
a 6= π(s)). Let F be the set of valid occupancy frequencies
w.r.t. a fixed MDP, i.e., those satisfying (Puterman 1994):

γE⊤f + β = 0. (2)

We write fπ[s] to denote the occupancy frequencies induced
by π when starting in state s (i.e., ignoring β). In what fol-
lows, we use frequencies and policies interchangeably since
each uniquely determines the other. An optimal policy π∗

satisfies Vπ∗

≥ Vπ (pointwise) for all π. For any positive
β > 0, maximizing expected value βVπ requires that π be
optimal in this strong sense.

Imprecise Reward MDPs

In many settings, a reward function can be hard to ob-
tain, requiring difficult human judgements of preference
and tradeoffs (e.g., in domains such as cognitive assistive
technologies (Boger et al. 2006)), or expensive computa-
tion (see, e.g., value computation as a function of resource
availability in autonomic computing (Boutilier et al. 2003;
Regan and Boutilier 2009)). We define an imprecise reward
MDP (IRMDP) 〈S, A, {Psa}, γ, β,R〉 by replacing reward
r by a set of feasible reward functions R. The set R natu-
rally arises from observations of user behaviour, partial elic-
itation of preferences, or information from domain experts,
which typically place linear constraints on reward. We as-
sume that R is a bounded, convex polytope defined by lin-
ear constraint set {r | Ar ≤ b} and use |R| to denote the
number of constraints. In the preference elicitation model
that motivates this work, these constraints arise from user
responses to queries about the reward function (Regan and
Boutilier 2009).

Given an IRMDP, we desire a policy that is robust to the
imprecision in reward. Most robust optimization for impre-
cise MDPs adopts the maximin criterion, producing policies
with maximum security level or worst-case value (Bagnell,
Ng, and Schneider 2003; Iyengar 2005; McMahan, Gordon,
and Blum 2003; Nilim and Ghaoui 2005). With imprecise
reward, maximin value is:

MMN(R) = max
f∈F

min
r∈R

r · f (3)

Maximin policies can be computed given an uncertain tran-
sition function by dynamic programming and efficient sub-
optimization to find worst case transition functions (Bagnell,
Ng, and Schneider 2003; Iyengar 2005; Nilim and Ghaoui

2005). However, these models cannot be extended to impre-
cise rewards. Maximin policies for IRMDPs can be deter-
mined using linear programming with constraint generation
(McMahan, Gordon, and Blum 2003).

The maximin criterion leads to conservative policies by
optimizing against the worst instantiation of r. Instead we
adopt the minimax regret criterion (Savage 1954) applied re-
cently to IRMDPs (Regan and Boutilier 2009; Xu and Man-
nor 2009). Let f ,g be policies (i.e., their occupancy fre-
quencies), r a reward function, and define:

R(f , r) = max
g∈F

r · g − r · f (4)

PMR(f ,g,R) = max
r∈R

r · g − r · f (5)

MR(f ,R) = max
r∈R

R(f , r) = max
g∈F

PMR(f ,g,R) (6)

MMR(R) = min
f∈F

MR(f ,R) (7)

= min
f∈F

max
g∈F

max
r∈R

r · g − r · f (8)

R(f , r) is the regret or loss of policy f relative to r, i.e., the
difference in value between f and the optimal policy under r.
MR(f ,R) is the maximum regret of f w.r.t. feasible reward
setR. Should we chose a policy f , MR(f ,R) represents the
worst-case loss over possible realizations of reward; i.e., the
regret incurred in the presence of an adversary who chooses
r to maximize loss. Equivalently, it can be viewed as the ad-
versary choosing a policy with greatest pairwise max regret
PMR(f ,g,R), defined as the maximal difference in value
between policies f and g under possible reward realizations.
In the presence of such an adversary, we wish to minimize
this max regret: MMR(R) is the minimax regret of feasible
reward setR. This can be seen as a game between a decision
maker (DM) choosing f to minimize loss relative to the op-
timal policy, and an adversary selecting r to maximize this
loss given the DM’s choice. Any f∗ that minimizes max re-
gret is a minimax optimal policy, while the r that maximizes
regret of f∗ is the adversarial reward, and the optimal policy
g for r is the adversarial policy. Minimax regret measures
performance by assessing the policy ex post and makes com-
parisons only w.r.t. specific reward realizations. Thus, policy
π is penalized on reward r only if there exists a π′ that has
higher value w.r.t. r itself.

Apart from producing robust policies using an intuitively
appealing criterion, minimax regret is also an effective driver
of reward elicitation. Unlike maximin, regret provides guid-
ance as to maximal possible improvement in value should
we obtain further information about the reward. Regan and
Boutilier (2009) develop an elicitation strategy in which a
user is queried about relevant reward data based on the cur-
rent minimax regret solution. It is empirically shown to re-
duce regret very quickly and give rise to provably optimal
policies for the underlying MDP with very little reward in-
formation

Using Nondominated Policies

While minimax regret is a natural robustness criterion and
effectively guides elicitation, it is computationally complex.
Computing the regret optimal policy for an IRMDP is NP-
hard (Xu and Mannor 2009), and empirical studies using a

1128

Figure 1: Illustration of value as a linear function of reward

mixed-integer program (MIP) model with constraint gener-
ation (Regan and Boutilier 2009) show poor scaling (we dis-
cuss this further below). Hence further development of prac-
tical algorithms is needed.

We focus on the use of nondominated policies to ease the
burden of minimax regret computation in IRMDPs. In what
follows, assume a fixed IRMDP with feasible reward setR.
We say policy f is nondominated w.r.t.R iff

∃ r ∈ R s.t. f · r ≥ f ′ · r, ∀ f ′ ∈ F

In other words, a nondominated policy is optimal for some
feasible reward. Let Γ(R) denote the set of nondominated
policies w.r.t.R; sinceR is fixed, we write Γ for simplicity.

Observation 1. For any IRMDP and policy f ,
argmaxg PMR(f ,g,R) ∈ Γ.

Thus the adversarial policy used to maximize regret of f
must lie in Γ, since an adversary can only maximize regret
by choosing some r ∈ R and an optimal policy f∗r for r. If
the set of nondominated policies is relatively small, and can
be identified easily, then we can exploit this fact.

Define V (r) = maxf∈F f · r to be the optimal value ob-
tainable when r ∈ R is the true reward. Since policy value
is linear in r, V is piecewise linear and convex (PWLC),
much like the belief-state value function in POMDPs (Cheng
1988; Kaelbling, Littman, and Cassandra 1998), a fact we
exploit below. Fig. 1 illustrates this for a simplified 1-D re-
ward, with nondominated policy set Γ = {f1, f2, f3, f5} (f4
is dominated, i.e., optimal for no reward).

Xu and Mannor (2009) propose a method that exploits
nondominated policies, computing minimax regret using the
following linear program (LP), which “enumerates” Γ and
has O(|R||Γ|) variables:

minimize
z,c,δ

δ (9)

subject to:

t

i=1

ci = 1

c ≥ 0

δ ≥ b⊤z(i)

A⊤z(i) + Γ̂c = fi
z(i) ≥ 0

i = 1, 2, . . . , t (10)

HereR is defined by inequalities Ar ≤ b, and Γ̂ is a matrix
whose columns are elements of Γ. The variables c encode
a randomized policy with support set Γ, which they show
must be minimax optimal. For each potential adversarial
policy fi ∈ Γ, equations Eq. (10) encode the dual of

maximize
r

f
⊤

i − c
⊤Γ̂⊤

r

subject to: Ar ≤ b

We refer to this approach as LP-ND1. (Xu and Mannor
(2009) provide no computational results for this formula-
tion.)

We can modify LP-ND1 to obtain the following LP (en-
coding the DM’s policy choice using Eq. (2) rather than a
convex combination of nondominated policies):

minimize
z,f,δ

δ (11)

subject to: γE
⊤
f + β = 0

δ ≥ b⊤z(i)
A⊤z(i) + f = fi
z(i) ≥ 0

i = 1, 2, . . . , t

This LP, LP-ND2, reduces the representation of the DM’s
policy from O(|Γ|) to O(|S||A|) variables. Empirically, we
find that usually |Γ| ≫ |S||A| (see below).

Rather than solving a single, large LP, we can use the con-
straint generation approach of Regan and Boutilier (2009),
solving a series of LPs:

min
f ,δ

δ

subject to: δ ≥ ri · gi − ri · f ∀ 〈gi, ri〉 ∈ GEN

γEf + f = 0

Here GEN is a subset of generated constraints correspond-
ing to a subset of possible adversarial choices of policies and
rewards. If GEN contains all vertices r of polytope R and
corresponding optimal policies g∗

r , this LP solves minimax
regret exactly. However, most constraints will not be active
so iterative generation is used: given a solution f to the re-
laxed problem with only a subset of constraints, we wish
to find the most violated constraint, i.e., the pair r,g∗

r that
maximizes regret of f . If no violated constraints exist, then
solution f is optimal. In (Regan and Boutilier 2009), vio-
lated constraints are computed by solving a MIP (the major
computational bottleneck). However, we can instead exploit
Obs. 1 and solve, for each g ∈ Γ, a small LP to determine
which reward gives g maximal advantage over the current
relaxed solution f :

maximize
r

g · r− f · r

subject to: Ar ≤ b

The g with largest objective value determines the maxi-
mally violated constraint. Thus we replace the MIP for vio-
lated constraints in (Regan and Boutilier 2009) with a set of
smaller LPs, and denote this approach by ICG-ND.

We compare these three approaches to minimax regret
computation using nondominated policies, as well as the

1129

Figure 2: Scaling of MMR computation w.r.t. nondominated
policies

MIP-approach of Regan and Boutilier (2009) (ICG-MIP), on
very small, randomly generated IRMDPs. We fix |A| = 5
and vary the number of states from 3 to 7. A sparse transition
model is generated (each (s, a)-pair has min(2, log2(|S|))
random, non-zero transition probabilities). An imprecise re-
ward model is generated by: i) random uniform selection
of each r(s, a) from a predefined range; ii) random gener-
ation of an uncertain interval whose size is normally dis-
tributed; and iii) then uniform random placement of the in-
terval around the “true” r(s, a). A random state is chosen as
the start state (point distribution). We generate 20 MDPs of
each size.

Fig. 2 shows the computation time of the different algo-
rithms as a function of the number of nondominated poli-
cies in each sampled MDP. LP-ND1 (Xu and Mannor 2009)
performs poorly, taking more than 100s. to compute mini-
max regret for MDPs with more than 1000 nondominated
policies. Our modified LP, LP-ND2, performs only slightly
better. The most effective approach is our LP-based con-
straint generation procedure, ICG-ND, in which nondom-
inated policies are exploited to determine maximally vio-
lated constraints. While |Γ| LPs must be solved at each it-
eration, these are extremely small. ICG-ND is also more
effective than the original MIP model ICG-MIP (Regan and
Boutilier 2009), which does not make use of nondominated
policies. This is seen in Fig. 3, which shows average com-
putation time (lines) and number of nondominated vectors
(scatterplot) for each MDP size. We see that, while ICG-
MIP performs reasonably well as the number of states grows
(eventually outperforming LP-ND1 and LP-ND2), the ICG-
ND approach still takes roughly an order of magnitude less
time than ICG-MIP. As a result, we focus on ICG-ND below
when we investigate larger MDPs.

Generating Nondominated Policies

While the effectiveness of ICG-ND in exploiting the non-
dominated set Γ seems evident, the question remains: how
to identify Γ? The PWLC nature of the function V (r) is

Figure 3: Scaling of MMR computation (lineplot on left y-
axis) and nondominated policies (scatterplot on right y-axis)
w.r.t. number of states

analogous to the situation in POMDPs, where policy value
is linear in belief state. For this reason, we adapt a well-
known POMDP algorithm Witness (Kaelbling, Littman, and
Cassandra 1998) to iteratively construct the set of nondomi-
nated policies. As discussed below, other POMDP methods
can be adapted to this problem as well.

The πWitness Algorithm

Let f be the occupancy frequencies for policy π. Suppose,
when starting at state s we take action a rather than π(s)
as prescribed by π, but follow π thereafter. The occupancy
frequencies induced by this local adjustment to π are given
by:

f
s:a = β(s)(es:a + γ

s′

Pr(s′|s, a)f [s′]) + (1 − β(s))f

where es:a is an S×A vector with a 1 in position s, a and
zeroes elsewhere. It follows from standard policy improve-
ment theorems (Puterman 1994) that if f is not optimal for
reward r, then there must be a local adjustment s, a such that
fs:a · r > f · r.1 This gives rise to a key fact:

Theorem 1. Let Γ′ (Γ be a (strictly) partial set of non-
dominated policies. Then there is an f ∈ Γ′, an (s, a), and
an r ∈ R such that fs:a · r > f ′ · r, ∀ f ′ ∈ Γ′

This theorem is analogous to the witness theorem for
POMDPs (Kaelbling, Littman, and Cassandra 1998) and
suggests a Witness-style algorithm for computing Γ. Our
πWitness algorithm begins with a partial set Γ consisting
of a single nondominated policy optimal for an arbitrary
r ∈ R. At each iteration, for all f ∈ Γ, it checks whether
there is a local adjustment (s, a) and a witness reward r s.t.
fs,a · r > f ′ · r for all f ′ ∈ Γ (i.e., whether fs,a offers an
improvement at r). If there is an improvement, we add the
optimal policy f∗r for that r to Γ. If no improvement exists
for any f , then by Thm. 1, Γ is complete. The algorithm

1We assume β is strictly positive for ease of exposition. Our
definitions are easily modified if β(s) = 0 for some s.

1130

Algorithm 1: The πWitness algorithm

r← some arbitrary r ∈ R
f ← findBest(r)
Γ← { f }
agenda← { f }
while agenda is not empty do

f ← next item in agenda
foreach s, a do

rw ← findWitnessReward(fs:a, Γ)
while witness found do

fbest ← findBest(rw)
add fbest to Γ
add fbest to agenda
rw ← findWitnessReward(fs:a, Γ)

is sketched in Alg. 1. The agenda holds the policies for
which we have not yet explored all local adjustments. find-
WitnessReward tries to find an r for which fs:a has higher
value than any f ′ ∈ Γ by solving the LP:

maximize
δ,r

δ

subject to: δ ≤ fs:a · r− f ′ · r ∀ f ′ ∈ Γ

Ar ≤ b

There may be multiple witnesses for a single adjustment,
thus findWitnessReward is called until no more witnesses
are found. findBest finds the optimal policy given r. The
order in which the agenda is processed can have an impact
on anytime behavior, a fact we explore in the next section.

We can see that the runtime of the πWitness algorithm is
polynomial in inputs |S|, |A|, |R| (interpreted as the number
of constraints defining the polytope), and output |Γ|, assum-
ing bounded precision in the input representation. When a
witness rw is found, it testifies to a nondominated f which
is added to Γ and the agenda. Thus, the number of policies
added to the agenda is exactly |Γ|. The subroutine findWit-
nessReward is called at most |S||A| times for each f ∈ |Γ|
to test local adjustments for witness points (total of |Γ||S||A|
calls). findWitnessReward requires solution of an LP with
|S||A|+ 1 variables and no more than |Γ|+ |R| constraints,
thus the LP encoding has polynomial size (hence solvable in
polytime). findBest is called only when a witness is found,
i.e., exactly |Γ| times. It requires solving an MDP, which is
polynomial in the size of its specification (Puterman 1994).
Thus πWitness is polynomial. This also means that for any
class of MDPs with a polynomial number of nondominated
policies, minimax regret computation is itself polynomial.

Empirical Results

The number of nondominated policies is influenced largely
by the dimensionality of the reward function and less so
by conventional measures of MDP size, |S| and |A|. In-
tuitively, this is so because a high dimensional r allows vari-
ability across the state-action space, admitting different op-
timal policies depending on the realization of reward. When
reward is completely unrestricted (i.e., the r(s, a) are “in-

State Number of Vectors πWitness Runtime (secs)
Size µ σ µ σ

4 3.463 2.231 0.064 0.045

8 3.772 3.189 0.145 0.144

16 7.157 5.743 0.433 0.329

32 7.953 6.997 1.228 1.062

64 11.251 9.349 4.883 3.981

Table 1: Varying Number of States

Reward Number of Vectors πWitness Runtime (secs)
Dim. µ σ µ σ

2 2.050 0.887 1.093 0.634

4 10.20 10.05 4.554 4.483

6 759.6 707.4 1178 1660

8 6116 5514 80642 77635

Table 2: Varying Dimension of Reward Space

dependent”), we saw above that even small MDPs can ad-
mit a huge number of nondominated policies. However, in
practice, reward functions typically have significant struc-
ture. Factored MDPs (Boutilier, Dean, and Hanks 1999)
have large state and action spaces defined over sets of state
variables; and typically reward depends only on a small frac-
tion of these, often in an additive way.2 In our empirical in-
vestigation of πWitness, we exploit this fact, exploring how
its performance varies with reward dimension.

We first test πWitness on MDPs of varying sizes, but
with reward of small fixed dimension. States are defined by
2–6 binary variables (yielding |S| = 4 . . . 64), and a fac-
tored additive reward function on two attributes: r(s) =
r1(x1) + r(x2). The transition model and feasible reward
set R is generated randomly as above, with random reward
intervals generated for the parameters of each factor rather
than for each (s, a)-pair.3 Table 1 shows the number of non-
dominated policies discovered (with mean (µ) and standard
deviation (σ) over 20 runs), and demonstrates that Γ does
not grow appreciably with |S|, as expected with 2-D reward.
The running time of πWitness is similar, growing slightly
greater than linearly in |S|. We also examine MDPs of
fixed size (6 attributes, |S| = 64), varying the dimensional-
ity of the reward function from 2–8 by varying the number of
additive reward attributes from 1–4. Results (20 instances of
each dimension) are shown Table 2. While Γ is very small
for dimensions 2 and 4, it grows dramatically with reward
dimensionality, as does the running time of πWitness. This
demonstrates the strong impact of the size of the output set
Γ on the running time of πWitness.

Approximating the Nondominated Set

The complexity of both πWitness and our procedure ICG-
ND are influenced heavily by the size of Γ; and while the

2Our approach extends directly to more expressive generalized
additive (GAI) reward models, to which the minimax regret formu-
lations can be applied in a straightforward manner (Braziunas and
Boutilier 2005).

3We can exploit factored reward computationally in πWitness
and minimax regret computation (we defer details to a longer ver-
sion of the paper). We continue to use an unstructured transition
model to emphasize the dependence on reward dimensionality.

1131

Figure 4: Relative minimax regret error and cumulative
πWitness runtime vs. number of nondominated policies.

number of nondominated policies scales reasonably well
with MDP size, it grows quickly with reward dimensional-
ity. This motivates investigation of methods that use only a
subset of the nondominated policies that reasonably approx-
imates Γ, or specifically, the PWLC function VΓ(·) induced
by Γ. We first explore theoretical guarantees on minimax
regret when ICG-ND (or any other method that exploits Γ)
is run using a (hopefully, well-chosen) subset of Γ.

Let Γ̃ ⊆ Γ. The V
Γ̃
(r) induced by Γ̃ is clearly a lower

bound on VΓ(r). Define the error in V
Γ̃

to be maximum dif-
ference between the approximate and exact value functions:

ǫ(Γ̃) = max
r∈R

VΓ(r)− V
Γ̃
(r)

This error is illustrated in Fig. 1, where the dashed line
(marked with a *) shows the error introduced by using the
subset of dominated policies {f1, f3, f5} (removing f2). The
error in V

Γ̃
can be used to derive a bound on error in com-

puted minimax regret. Let MMR(Γ) denote true mini-
max regret when adversarial policy choice is unrestricted

and MMR(Γ̃) denote the approximation when adversarial

choice is restricted to Γ̃.4 MMR(Γ̃) offers a lower bound

on true MMR; and the difference ǫMMR(Γ̃) can be bounded,
as can the difference between the true max regret of the ap-
proximately optimal policy so constructed:

Theorem 2.

ǫMMR(Γ̃) = MMR(Γ)−MMR(Γ̃) ≤ ǫ(Γ̃); and

MR(Γ̃,R)−MMR(Γ) ≤ 2ǫ(Γ̃).

Thus, should we generate a set of nondominated policies

Γ̃ that ǫ-approximates Γ, any algorithm (including ICG-ND)
that uses nondominated sets will produce a policy that is

within a factor of 2ǫ(Γ̃) of minimizing max regret.
This suggests that careful enumeration of nondominated

policies can provide tremendous computational leverage. By

4This does not depend on the algorithm used to compute MMR.

Figure 5: πWitness computation time (hrs.) vs. number of
nondominated policies.

adding policies to Γ that “contribute” the most to error re-

duction, we may be able to construct a partial set Γ̃ of small
size, but that closely approximates Γ. Indeed, as we dis-
cuss below, the agenda in πWitness can be managed to help
accomplish just this. We note that a variety of algorithms
for POMDPs attempt to build up partial sets of f -vectors to
approximate a value function (e.g., (Cheng 1988)) and we
are currently investigating the adaptation of such methods to
nondominated policy enumeration as well.

πWitness Anytime Performance

We can construct a small approximating set Γ̃ using
πWitness by exploiting its anytime properties and careful
management of the agenda. Intuitively, we want to add poli-

cies to Γ̃ that hold the greatest “promise” for reducing error

ǫ(Γ̃). We measure this as follows. Let Γ̃n be the nth non-
dominated set produced by πWitness, constructed by adding
optimal policy f∗n for the nth witness point rn. When f∗n is
added to the agenda, it offers improvement to the current
approximation:

∆(f∗n) =VΓn
(rn)− VΓn−1

(rn).

We process the agenda in priority queue fashion, using ∆(f)
as the priority measure for any policy f remaining on the
agenda. Thus, we examine adjustments to policies that pro-

vided greater increase in value when added to Γ̃ before con-
sidering adjustments to policies that provided lesser value.

Informal experiments show that using a priority queue re-

duced the error ǫ(Γ̃) much more quickly than using standard
stack or queue approaches. Hence we investigate the any-
time performance of πWitness with a priority queue on ran-
dom MDPs with 128 and 256 states (30 runs of each). The
reward dimension is fixed to 6 (3 additive factors) and the
number of actions to 5. We first compute the exact minimax
regret for the MDP, then run πWitness. When the nth non-
dominated policy is found, we compute an approximation of

1132

minimax regret using the algorithm ICG-ND with approxi-
mate nondominated set Γn. We measure the relative error in
minimax regret: ǫMMR(Γ̃)/MMR.

Fig. 4 shows the relative error as nondominated policies
are added using the priority queue implementation. The run-
time of ICG-ND algorithm for computing minimax regret is
also shown. With 256 (resp., 128) states, relative error drops
below 0.02 after just 500 (resp., 300) policies have been
added to Γ. Minimax regret computation using ICG-ND
grows linearly with the number of nondominated policies
added to |Γ|, but stays well below 1 second: at the 0.02 error
point, solution of 256-state (resp., 128-state) MDPs averages
under 0.4 seconds (resp., 0.2 seconds). Given our goal of us-
ing minimax regret to drive preference elicitation, these re-
sults suggest that using a small set of nondominated policies
and the ICG-ND algorithm will admit real-time interaction
with users. Critically, while πWitness is much more compu-
tationally intensive, it can be run offline, once, to precom-
pute nondominated policies (or a small approximate set) be-
fore engaging in online elicitation with users. Fig. 5 shows
the cumulative runtime of πWitness as it adds policies to
Γ. With 256 states, the first 500 policies (error level 0.02)
are generated in under 2 hours on average (128 states, un-
der 1 hour). In both cases, runtime πWitness is only slightly
super-linear in the number of policies.

Conclusion

We presented a new class of techniques for solving IR-
MDPs that exploit nondominated policies. We described
new algorithms for computing robust policies using mini-
max regret that leverage the set Γ of nondominated policies,
and developed the πWitness algorithm, an exact method for
computing Γ in polynomial time. We showed how low-
dimensional factored reward allows πWitness to scale to
large state spaces, and examined the impact of approximate
nondominated sets, showing that small sets can yield good,
quickly computable approximations to minimax regret.

Some important directions remain. We are investigating
methods to compute tight bounds on minimax regret error
while generating nondominated policies, drawing on algo-
rithms from the POMDP literature (e.g., Cheng’s (1988) lin-
ear support algorithm). An algorithm for generating non-
dominated policies that yields a bound at each step, al-
lows termination when a suitable degree of approximation
is reached. We are exploring the integration with preference
elicitation as well. A user provides reward information (e.g.,
by responding to queries), to reduce reward imprecision and
improve policy quality. Since this constrains the feasible
reward space, fewer nondominated policies result; thus as
elicitation proceeds, the set of nondominated policies can be
pruned allowing more effective computation. Finally, we are
interested in the formal relationship between the number of
nondominated policies and reward dimensionality.

References

Bagnell, A.; Ng, A.; and Schneider, J. 2003. Solving uncer-
tain Markov decision problems. Technical Report CMU-RI-
TR-01-25, Carnegie Mellon University, Pittsburgh.

Boger, J.; Poupart, P.; Hoey, J.; Boutilier, C.; Fernie, G.; and
Mihailidis, A. 2006. A planning system based on Markov
decision processes to guide people with dementia through
activities of daily living. IEEE Transactions on Information
Technology in Biomedicine 10(2):323–333.

Boutilier, C.; Das, R.; Kephart, J. O.; Tesauro, G.; and
Walsh, W. E. 2003. Cooperative negotiation in autonomic
systems using incremental utility elicitation. In Proceedings
of the Nineteenth Conference on Uncertainty in Artificial In-
telligence (UAI-03), 89–97.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision the-
oretic planning: Structural assumptions and computational
leverage. Journal of Artificial Intelligence Research 11:1–
94.

Braziunas, D., and Boutilier, C. 2005. Local utility elic-
itation in GAI models. In Proceedings of the Twenty-first
Conference on Uncertainty in Artificial Intelligence (UAI-
05), 42–49.

Cheng, H.-T. 1988. Algorithms for Partially Observable
Markov Decision Processes. Ph.D. Dissertation, University
of British Columbia, Vancouver.

Delage, E., and Mannor, S. 2007. Percentile optimization
in uncertain Markov decision processes with application to
efficient exploration. In Proceedings of the Twenty-fourth
International Conference on Machine Learning (ICML-07),
225–232.

Iyengar, G. 2005. Robust dynamic programming. Mathe-
matics of Operations Research 30(2):257.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1-2):99–134.

McMahan, B.; Gordon, G.; and Blum, A. 2003. Planning
in the presence of cost functions controlled by an adversary.
In Proceedings of the Twentieth International Conference on
Machine Learning (ICML-03), 536–543.

Nilim, A., and Ghaoui, L. E. 2005. Robust control of
markov decision processes with uncertain transition matri-
ces. Operations Research 53(5):780–798.

Puterman, M. 1994. Markov decision processes: Discrete
stochastic dynamic programming. Wiley, New York.

Regan, K., and Boutilier, C. 2009. Regret-based reward
elicitation for Markov decision processes. In Proceedings
of the Twenty-fifth Conference on Uncertainty in Artificial
Intelligence (UAI-09).

Savage, L. J. 1954. The Foundations of Statistics. New
York: Wiley.

Xu, H., and Mannor, S. 2009. Parametric regret in uncertain
Markov decision processes. In 48th IEEE Conference on
Decision and Control, 3606–3613.

1133

