
Relational Partially Observable MDPs

Chenggang Wang and Roni Khardon
Department of Computer Science

Tufts University
Medford, MA, USA

{cwan|roni}@cs.tufts.edu

Abstract

Relational Markov Decision Processes (MDP) are a use-
ful abstraction for stochastic planning problems since one
can develop abstract solutions for them that are indepen-
dent of domain size or instantiation. While there has been
an increased interest in developing relational fully observ-
able MDPs, there has been very little work on relational par-
tially observable MDPs (POMDP), which deal with uncer-
tainty in problem states in addition to stochastic action ef-
fects. This paper provides a concrete formalization of re-
lational POMDPs making several technical contributions to-
ward their solution. First, we show that to maintain correct-
ness one must distinguish between quantification over states
and quantification over belief states; this implies that solu-
tions based on value iteration are inherently limited to the
finite horizon case. Second, we provide a symbolic dynamic
programing algorithm for finite horizon relational POMDPs,
solving them at an abstract level, by lifting the propositional
incremental pruning algorithm. Third, we show that this algo-
rithm can be implemented using first order decision diagrams,
a compact representation for functions over relational struc-
tures, that has been recently used to solve relational MDPs.

Introduction

Decision problems with objects and relations can in princi-
ple be solved by by grounding a given problem with con-
crete objects and using a propositional solver. However, the
solver gets slower with increasing problem size, and the so-
lutions it provides are problem specific and they cannot be
reused. Recently there has been an increased interest in de-
veloping relational fully observable MDPs (RMDP) and ab-
stract solutions for them that hold for any domain instance.
Some examples include exact solutions (Boutilier, Reiter,
and Price 2001; Kersting, Van Otterlo, and De Raedt 2004;
Hölldobler and Skvortsova 2004; Wang, Joshi, and Khardon
2008), and several approximate or heuristic methods (e.g.,
(Fern, Yoon, and Givan 2006; Sanner and Boutilier 2009)).

Partially Observable Markov Decision Processes
(POMDP) generalize MDPs by allowing for incomplete
information about the underlying state of the process,
which is a natural situation in many applications. Each
POMDP action has two effects: changing the world and

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gathering information about the world. In recent years,
researchers have sought to combine the benefits of logic
with the power of POMDPs. However, there has been very
little research on relational POMDPs, and work has mostly
focused either on efficient algorithms for propositional or
grounded representations (Boutilier and Poole 1996;
Hansen and Feng 2000; Geffner and Bonet 1998;
Shani et al. 2008), or on representation (and not al-
gorithmic) issues in the relational case (Poole 1997;
Bacchus, Halpern, and Levesque 1999). The first approach
to handle both aspects (Wang and Schmolze 2005) devel-
oped a simple model for relational POMDPs and a compact
representation for grounded belief states, and used heuristic
search with an algorithm for updating the belief state.

To our knowledge this paper is the first to give a complete
treatment for relational POMDPs capturing non-ground op-
timal value functions and dynamic programming algorithms
for them. We use the ground observation model (Wang and
Schmolze 2005) that provides the simplest possible context
for such a study. Our first contribution is a simple but impor-
tant fact about relational POMDPs. We show that the value
function of relational POMDPs must distinguish between
quantification over states (that may specify conditions un-
der which some action may be desirable) from quantification
over belief states (that specifies the choice of action argu-
ments). This implies that solutions based on value functions
are inherently limited to the finite horizon case. On the other
hand we show that the finite horizon case can be handled at
the abstract level. Concretely we show that the incremen-
tal pruning algorithm (Cassandra, Littman, and Zhang 1997;
Hansen and Feng 2000) calculating value iteration can be
lifted to handle relational POMDPs. This approach provides
abstract solutions that are independent of domain size and
instantiation. Finally we show that the lifted algorithm can
be realized using first order decision diagrams (FODD), a
representation developed recently for RMDPs (Wang, Joshi,
and Khardon 2008). This is particularly encouraging be-
cause the FODD framework for MDPs has been extended
to more expressive settings (Joshi, Kersting, and Khardon
2009) and has been implemented and demonstrated to work
well on stochastic planning problems (Joshi and Khardon
2008; Joshi, Kersting, and Khardon 2010). Very recently
Sanner and Kersting (2010) explore extensions of our work
to handle more complex observation functions.

1153

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Fully and Partially Observable MDPs

MDPs provide a mathematical model for sequential decision
making. A MDP can be characterized by a state space S, an
action space A, a state transition function Pr(sj |si, a) de-
noting the probability of transition to state sj given state si

and action a, and an immediate reward function r(s), spec-
ifying the immediate utility of being in state s. A solution
to a MDP is an optimal policy that maximizes expected dis-
counted total reward as defined by the Bellman equation.
The value iteration algorithm (VI) uses the Bellman equa-
tion to iteratively refine an estimate of the value function:

Vn+1(s) = maxa∈A[r(s) + γ
∑

s′∈S

Pr(s′|s, a)Vn(s′)] (1)

where Vn(s) represents our current estimate of the value
function and Vn+1(s) is the next estimate.

In POMDPs the states of the underlying MDP are not
directly observable. We add an observation space O and
an observation function Pr(o|s, a), denoting the probabil-
ity of observing o when action a is executed and the re-
sulting state is s. Since the agent does not know the state,
a belief state — a probability distribution over all states
— is commonly used. It is well known that a POMDP
can be converted to a MDP over belief space. Since the
state space for this MDP is a |S|-dimensional continu-
ous space, it is much more complex than MDPs with dis-
crete state space. However, the value function is piece-
wise linear and convex and can be represented using a
set of state-value functions {v1, · · · , vm} for some m so
that for belief state b, Value(b) = maxi

∑
s b(s)vi(s) and

this fact is useful in designing efficient algorithms. A sig-
nificant amount of work has been devoted to finding ef-
ficient algorithms for POMDPs, including algorithms for
propositionally factored POMDPs, e.g., (Hauskrecht 1997;
Cassandra, Littman, and Zhang 1997; Hansen 1998; Hansen
and Feng 2000; Shani et al. 2008).

FODDs and Value Iteration for RMDPs

In this section we briefly review the first order decision di-
agram representation and its use in solving RMDPs (Wang,
Joshi, and Khardon 2008). This work follows up on the suc-
cessful application of Algebraic Decision Diagrams (ADD)
(Bahar et al. 1993) in solving propositionally factored
MDPs (Hoey et al. 1999).

A First Order Decision Diagram (FODD) is a labeled di-
rected acyclic graph, where each non-leaf node has exactly
two children. The outgoing edges are marked with values
true and false. Each non-leaf node is labeled with an
atom P (t1, . . . , tn) or an equality t1 = t2 where ti is a vari-
able or a constant. Leaves are labeled with non-negative nu-
merical values. An example FODD is shown in Figure 1(a).

Similar to first order logical formulas, the semantics of
FODDs is given relative to interpretations. Informally, an
interpretation corresponds to a state in a relational planning
problem. An interpretation has a domain of elements, a map-
ping of constants to domain elements, and for each pred-
icate a relation over the domain elements which specifies

when the predicate is true. The semantics for FODDs is de-
fined first relative to a variable valuation ζ. Given a FODD
B over variables ~x and an interpretation I , a valuation ζ
maps each variable in ~x to a domain element in I . Once
this is done, each node predicate evaluates either to true

or false and we can traverse a single path to a leaf. The
value of this leaf is denoted by MAPB(I, ζ). The value of
the diagram on the interpretation is defined by aggregating
over all reachable leaves, and here we use maximum aggre-
gation, that is MAPB(I) = maxζ{MAPB(I, ζ)}. Consider
evaluating the diagram R in Figure 1(a) on interpretation
I with domain {1, 2} and relations {p1(1), p1(2), p2(2)}.
The valuation {x/1} leads to a leaf with value 0; the val-
uation {x/2} leads to a leaf with value 10. The final result
is MAPR(I) = max{0, 10} = 10. Thus a FODD captures a
real-valued function over interpretations. The maximum ag-
gregation corresponds to existential quantification when leaf
values are in {0, 1}, and gives useful maximization for value
functions in the general case.

Given two functions f1, f2 captured by FODDs we can
add the functions (denoted by f1 ⊕ f2), multiply them (f1 ⊗
f2), take the maximum between their values (max(f1, f2)),
or use any other binary operation. Taking addition as an ex-
ample, this means that if f = f1 ⊕ f2 then for any interpre-
tation I , the value of f on I is the sum of the values returned
by f1 and f2 when evaluated on I . A representation for f
can be computed using a dynamic programming algorithm
similar to the one for ADDs. Like ADDs, FODDs use a total
order over node labels in order to simplify the computations.
On the other hand simplification of FODDs is more com-
plex; in previous work we developed a set of reduction op-
erators to minimize representation size. The details of these
FODD operations are not important for the constructions in
the paper and are omitted due to space constraints.

RMDPs are MDPs where the states, transitions, and re-
ward functions can be captured compactly by referring to
objects and relations among them. Following Boutilier, Re-
iter, and Price (2001) RMDPs are specified by describing
stochastic actions as a randomized choice among a small
number of deterministic alternatives. In the FODD for-
mulation of RMDPs, the domain dynamics of determinis-
tic action alternatives are defined by truth value diagrams
(TVDs). For every action schema A(~a) and each predicate
schema p(~x) the TVD T (A(~a), p(~x)) is a FODD with {0, 1}
leaves. The TVD gives the truth value of p(~x) in the next
state when A(~a) has been performed in the current state.
We call ~a action parameters, and ~x predicate parameters.
No other variables are allowed in the TVD. Probabilities,
rewards, and value functions can be represented directly us-
ing FODDs, with the restriction that probability FODDs can
only refer to constants or action parameters.

We use the following simple domain to illustrate the
representation and later extend it to show how relational
POMDP domains are formalized. The domain includes two
predicates p1(x) and p2(x), and two actions A1 and A2.
A1(x) deterministically makes p1(x) true. When attempting
A2(x), a successful version A2S(x) is executed with prob-
ability 0.7 and it makes p2(x) true, and an unsuccessful ver-
sion A2F (effectively a no-op) is executed with probability

1154

0.3. The reward function, capturing a planning goal, awards
a reward of 10 if the formula ∃x, p1(x) ∧ p2(x) is true. We
assume the discount factor is 0.9 and that there is an absorb-
ing state ∃x, p1(x)∧p2(x), i.e., no extra value will be gained
once the goal is satisfied. Figure 1(a) gives the reward func-
tion for this domain and TVDs are given in Figure 1(b)(c).
All the TVDs omitted in the figure are trivial in the sense
that the predicate is not affected by the action. The prob-
abilistic choice of actions in this example can be captured
with a FODD with a single numerical leaf; the framework
allows the choice of actions to be state dependent.

The general first order value iteration algorithm for
RMDPs works as follows (Boutilier, Reiter, and Price 2001).
Given the reward function R and action model as input, set
V0 = R, n = 0 and repeat Procedure 1 until termination:

Procedure 1 (Performing one Iteration of Relational Value
Iteration for MDPs)
1. For each action type A(~x), compute:

Q
A(~x)
Vn

= R ⊕ [γ ⊗⊕j(prob(Aj(~x)) ⊗ Regr(Vn, Aj(~x)))]

2. QA
Vn

= obj-max(Q
A(~x)
Vn

).

3. Vn+1 = maxA QA
Vn

.

In the first step we calculate the Q-function of a stochastic
action A(~x) parameterized with action parameters ~x. We
can regress Vn through a deterministic action choice Aj(~x)
by block replacement, i.e., replacing each node in Vn with
the corresponding TVD, with outgoing edges connected to
the 0,1 leaves of the TVD. Figure 1(d) illustrates regres-
sion by block replacement. A slightly more complex algo-
rithm is needed in general to avoid violations of node order-
ing (Wang, Joshi, and Khardon 2008). To handle absorbing
states in goal based domains where R has only one non-zero

leaf (as in our example), we can replace step 1 with Q
A(~x)
Vn

=

max(R, γ ⊗ ⊕j(prob(Aj(~x)) ⊗ Regr(Vn, Aj(~x))). Fig-

ure 1(e) and (f) show parameterized Q-functions Q
A1(x

∗)
V0

and Q
A2(x

∗)
V0

calculated by the first step.

In the second step we maximize over the action parame-
ters of each Q-function to get the maximum value that can be
achieved by using an instance of the action. To implement
this the FODD based algorithm simply renames the action
parameters using new variable names. This captures the cor-
rect meaning due to the maximum aggregation semantics of
the FODDs. The third step maximizes over the Q-functions.
This algorithm correctly calculates regression and hence VI
for RMDPs (Wang, Joshi, and Khardon 2008).

Specifying Relational POMDPs

In POMDPs, observations replace knowledge of the world
state. We follow standard POMDP convention where the
observation probability Pr(o|s, a) in the POMDP refers to
the probability of observing o when action a is executed and
the resulting state is s.

In general one could consider complex observations that
might even include quantification. For example, in the ex-
ample domain we may have a sensing action which gives
information on ∃x, p2(x). In this paper, like (Wang and

Schmolze 2005), we restrict ourselves to atomic observa-
tions and assume that each observation is associated with a
subset of the action parameters, i.e., the agent can only have
relational ground observations about the objects it operates
on. We allow a modular representation of observations that
can be combined. We use predicates to specify different as-
pects of an observation and a complete observation is the
cross product of different aspects. If A has n observation as-
pects then |OA|, the number of possible observations associ-
ated with A, is 2n. Note that if A provides no feedback, the
null observation is obtained with certainty, and |OA| = 1,

For this paper we assume that different observation as-
pects are statistically independent. The general case can be
handled in a similar way by capturing the conditional de-
pendencies; we defer the details to the full version of the
paper. An alternative approach (Poole 1997) associates each
observation with something similar to a deterministic action
alternative, and can be captured in our model as well. Each
of the two approaches can be used to capture some situations
more compactly than the other.

We next extend the example domain to illustrate the for-
malization. Suppose p2 is not observable and we have a
pure sensing action, A3(x), that does not change the state
of the world but provides imperfect information about p2(x)
through q2(x). If p2(x) is true, then q2(x) is true with prob-
ability 0.9. If p2(x) is false, then q2(x) is true with probabil-
ity 0.2. Altogether this is a very simple domain. Each action
has only one effect: it either changes the world or gathers
information. Notice how the restriction to atomic observa-
tions is enforced. For object x∗ if we execute A3(x

∗), then
the observation we get will be either q2(x

∗) or ¬q2(x
∗). In

this domain A1 and A2 have no observations and A3 has a
single aspect thus |OA1 |=|OA2 |=1 and |OA3 |=2.

We use FODDs to specify observation probabilities
prob(o(~y)|A(~x)) where ~y ⊆ ~x. To guarantee correctness of
the FODD procedure given below we require that the corre-
sponding FODDs not contain variables; only action param-
eters and constants can appear as arguments in the obser-
vation probability FODD. Figure 1(h) gives the observation
probability prob(q2(x

∗)|A3(x
∗)) where the condition p2()

refers to the truth value of p2() after action execution. Due
to independence, if we have more than one observation as-
pect, we can use ⊗ to multiply the FODD for each aspect
and get the probability of a complete observation.

The Expected Value of a Belief State

Action selection requires that we evaluate the value func-
tion in the context of a belief state. When we have 0 steps
to go, the expected value of a belief state given a reward
function R can be computed using

∑
s b(s)MAPR(s) =∑

s b(s)maxζMAPR(s, ζ). However, as we show next

given a Q-function, e.g. QA(~x) capturing value when we
have one step to go, we cannot use the same equation. In
relational domains two actions are the same iff they have the
same action name and parameters. If we calculate as above
then it is possible that the maximizing valuations for two
different states do not agree on action parameters. If this
happens then the calculated value wrongly assumes we can

1155

execute two different actions in the same belief state.
We illustrate this with an example. Suppose we have

the following belief state in a world with objects {1, 2}
and where we know that both p1(1) and p1(2) are false:
([¬p1(1)∧p2(1)∧¬p1(2)∧p2(2)] : 0.63; [¬p1(1)∧¬p2(1)∧
¬p1(2)∧p2(2)] : 0.27; [¬p1(1)∧p2(1)∧¬p1(2)∧¬p2(2)] :
0.07; [¬p1(1)∧¬p2(1)∧¬p1(2)∧¬p2(2)] : 0.03). The Q-
function we use is depicted in Figure 1(e) where x∗

1 is the
action parameter. For the first and the fourth states it does
not matter what value x∗

1 takes. Both x∗
1 = 1 and x∗

1 = 2
give the first state value of 9 and the fourth state value of
0. For the second and the third states, x∗

1 = 2 and x∗
1 = 1

give value 9 respectively. Therefore the expected value cal-
culated using a state based formula is wrong because it is
based on the best action for each state in a belief state.

To correctly capture the intended semantics of the
value function, we define the expected value of a

belief state given a Q-function as V al(QA(~x), b) =
maxζ~x

∑
s b(s)maxζMAPQ(s, ζ~xζ) where ζ~x is valuation

to action parameters and ζ is valuation to all the other vari-
ables in the function. Note that for the belief state dis-
cussed above, the expected value given the Q-function in
Figure 1(e) is 8.73 when x∗

1 = 2.
As we show later in the value iteration algorithm, a set

of parameterized value functions that make up a value func-
tion includes all the action parameters accumulated over the
decision stages. Given a parameterized value function vi as
FODD, the expected value of a belief state is defined as

V al(vi, b) = maxζ~xi

∑

s

b(s)maxζi
MAPvi(s, ζ~xi

ζi) (2)

where ζ~xi
is valuation to all the action parameters in vi

and ζi is valuation to all the other variables in vi. The ex-
pected value given a set of parameterized value functions
{v1, · · · , vn} is defined as

V al(b) = maxi≤n{V al(vi, b)}. (3)

Value Iteration for Relational POMDPs

This section presents a generalization of the incremental
pruning algorithm (Cassandra, Littman, and Zhang 1997;
Hansen and Feng 2000) for relational POMDPs. The al-
gorithm works as follows: given the reward function R and
the action model, we set V0 = R, n=0, and repeat Proce-
dure 2 until termination. Steps 1,2,3,5 in the algorithm fol-
low the structure in (Cassandra, Littman, and Zhang 1997;
Hansen and Feng 2000) lifting the operations and adapting
them to use appropriate operations with FODDs. Step 4 is
new to the relational case and is required for correctness.

Procedure 2 (Performing one Iteration of Relational Value
Iteration for POMDPs)

1. For each action type A(~x), each observation O
A(~x)
k asso-

ciated with A(~x), and each vi ∈ Vn compute:

QA(~x),O
A(~x)
k

,i = R
|OA| ⊕ γ[

∑
j(prob(Aj(~x)) ⊗

Regr(prob(O
A(~x)
k), Aj(~x)) ⊗ Regr(vi, Aj(~x)))].

2. QA(~x),O
A(~x)
k = ∪iQ

A(~x),O
A(~x)
k

,i.

3. QA(~x) =
⊕

k Q
A(~x),O

A(~x)
k .

4. QA = rename action parameters ~x as special constants
in QA(~x).

5. Vn+1 = ∪AQ
A.

The result in steps 2-5 of the algorithm is a set of Q or
value functions. At each stage we can prune dominated

members of this set. For example in step 2, if QA(~x),O
A(~x)
k

,i

dominates QA(~x),O
A(~x)
k

,j for some j 6= i then the latter can
be removed. This type of pairwise dominance can be done
with operations over FODDs. However, the test where one
vj is dominated by a set of other vi’s is more complex and
requires further research. The model checking reductions of
(Joshi, Kersting, and Khardon 2009) may provide a potential
implementation of this step. Further details and discussion
are given in (Wang 2007).

When we have an absorbing state (as in our example), the
equation in the first step becomes:

QA(~x),O
A(~x)
k

,i = γ[
∑

j

(prob(Aj(~x)) ⊗ (4)

Regr(prob(O
A(~x)
k), Aj(~x)) ⊗ Regr(vi, Aj(~x)))].

The equation in the third step becomes

QA(~x) = max(R,
⊕

k

QA(~x),O
A(~x)
k). (5)

The first step: fixes an action and an observation, and
associates the pair with some vector vi in Vn. The result
captures the expected future value of executing action A(~x),

and on observing O
A(~x)
k following the policy encoded in vi.

We have to regress over conditions of observation probabil-
ities because they are specified in terms of the future state.

If the action has no observation, i.e., |OA| = 1, the first

step can be rewritten as VA(~x),i = R⊕γ[
∑

j(prob(Aj(~x))⊗

Regr(vi, Aj(~x)))] which is the same as the calculation for
RMDPs. Finally, note that in the first iteration, we do not
need to take observations into account since they do not af-
fect the result when no future actions are taken (since there
are “0 steps to go”).

Figure 1(e)(f)(g) give a set of FODDs {v1, v2, v3} as the
result of the first iteration. We omit details of calculat-
ing these but give details of the second iteration since it is

more informative. Figure 1(i)(j) show QA3(x∗),q2(x
∗),v1

and

QA3(x
∗),¬q2(x

∗),v2

respectively, calculated by Equation 4.
Figure 1(i) corresponds to the expected future value of ex-
ecuting action A3(x

∗), and on observing q2(x
∗) following

the policy encoded in v1. Figure 1(j) captures the case with
observation ¬q2(x

∗) and the policy encoded in v2. Note
that A3() is a pure sensing action and it does not change the
world; therefore there is only one deterministic alternative,
which is no-op. As a result the calculation is simplified since
prob(Aj) = 1 and FODDs before and after regression over
this action are the same.

The second step: groups the resulting FODDs in the first
step by the action and the observation for all possible next
step values vi. To argue correctness of the algorithm, note

1156

Figure 1: An example of value iteration. Left going edges in the diagrams represent true branches and right edges represent
false branches. Variables decorated with a ∗ (as in x∗

1) represent action parameters; other variables (such as x1) repre-
sent regular variables of the FODD. (a) The reward function R. (b) The TVD for p1(x) under action A1(x

∗
1). (c) The TVD

for p2(x) under action alternative A2S(x∗
2). (d) Calculating Regr(R, A1(x

∗
1)) by block replacement. (e) Q

A1(x
∗

1)
R (i.e., v1).

(f) Q
A2(x

∗

2)
R (i.e., v2). (g) Q

A3(x
∗

3)
R (i.e., v3). (h) Observation probability prob(q2(x

∗)|A3(x
∗)). (i) QA3(x

∗),q2(x
∗),v1

.

(j) QA3(x
∗),¬q2(x∗),v2

. (k) One parameterized value function in QA3(x
∗). (l) The parameterized policy tree corresponding

to the value function in (k).

1157

that if we use Equation 3 to maximize over the set of result-
ing FODDs we get the best value that can be obtained when

taking A(~x) and observing O
A(~x)
k .

The third step: sums together all the value contributions
from different observations by calculating the cross sum

⊕

on sets of FODDs for the same parameterized action, where
A

⊕
B = {α ⊕ β|α ∈ A, β ∈ B} given two sets of

FODDs A and B. Note that we use
⊕

to denote cross
sum, while use ⊕ to denote the addition of two FODDs.

Figure 1(k) gives the result of max(R,QA3(x
∗),q2(x∗),v1

⊕

QA3(x
∗),¬q2(x∗),v2

), calculated as in Equation 5. This gives
one of the functions for the action type A3(x

∗). It also en-
codes a non-stationary 2-step parameterized policy tree as
shown in Figure 1(l). To argue correctness, note that for any
set of concrete action parameters ~x, if we use Equation 3 to
maximize over the set of resulting FODDs we get the best
value that can be obtained by taking A(~x).

The fourth step: Recall that so far we have calculated Q
relative to an action parameterized with arguments ~x. The
fourth step turns the action parameters into special constants
for each FODD in the set. The corresponding step in value
iteration for RMDPs performs object maximization at this
stage to get the maximal value an instance of an action can
achieve. However, as discussed in the previous section, we
cannot use existential quantification here because the for-
mulas will be evaluated in each state separately leading to
wrong results. We therefore conclude:

Observation 1 The value function calculated in value iter-
ation in relational POMDPs must distinguish standard ex-
istentially quantified variables (quantified per state) from
those which are quantified once over the belief state. This
is a property of relational POMDPs and is true across dif-
ferent representation frameworks.

Consider again our running example. In the first itera-
tion when we reach the fourth step, we have Q-functions for
A1(x

∗
1), A2(x

∗
2), and A3(x

∗
3) as shown in Figure 1(e)(f)(g)

and we denote them as {v1, v2, v3}. Here x∗
1 and x∗

2 are
action parameters for the corresponding Q-functions. No-

tice that x∗
3 was dropped in reducing Q

A3(x
∗

3)
R . This is sim-

ply because A3() is a pure sensing action and will not have
any effect when there is only one step to go. In the sec-
ond iteration, the value function FODD for A3(x

∗) shown
in Figure 1(k) contains three action parameters: its own ac-
tion parameter x∗ and two action parameters, x∗

1 and x∗
2,

“inherited” from its future plan. The action parameters are
treated as constants for the purpose of FODD reductions. In
evaluation they are treated differently than other variables as
prescribed in Equation 2.

The fifth step: puts together the Q-functions for all ac-
tions (each of which is made up of a set of value function
FODDs) and the combined set forms the updated value func-
tion. As sketched in the discussion above we have:

Theorem 1 If the input to Procedure 2, Vn, is a collection
of Q-functions correctly capturing the value of belief states
when there are n steps to go, then the output Vn+1 is a col-
lection of Q-functions correctly capturing the value function
when there are n + 1 steps to go.

Acknowledgments
This work was partly supported by NSF grant IIS 0936687.

References
Bacchus, F.; Halpern, J. Y.; and Levesque, H. J. 1999. Reasoning
about noisy sensors and effectors in the situation calculus. Artificial

Intelligence 111:171–208.

Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.; Macii, E.;
Pardo, A.; and Somenzi, F. 1993. Algebraic decision diagrams and
their applications. In Proceedings of the International Conference
on Computer-Aided Design, 188–191.

Boutilier, C., and Poole, D. 1996. Computing optimal policies for
partially observable decision processes using compact representa-
tions. In AAAI, 1168–1175.

Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dynamic
programming for first-order MDPs. In IJCAI, 690–700.

Cassandra, A.; Littman, M.; and Zhang, N. 1997. Incremen-
tal pruning: A simple, fast, exact method for partially observable
Markov Decision Processes. In UAI, 54–61.

Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate policy iter-
ation with a policy language bias: Solving relational markov deci-
sion processes. JAIR 25:75–118.

Geffner, H., and Bonet, B. 1998. High-level planning and control
with incomplete information using POMDPs. In Proceedings of
Fall AAAI Symposium on Cognitive Robotics.

Hansen, E. A., and Feng, Z. 2000. Dynamic programming for
POMDPs using a factored state representation. In AIPS, 130–139.

Hansen, E. A. 1998. Solving POMDPs by search in policy space.
In UAI, 211–219.

Hauskrecht, M. 1997. A heuristic variable-grid solution method
for POMDPs. In AAAI, 727–733.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. SPUDD:
Stochastic planning using decision diagrams. In UAI, 279–288.

Hölldobler, S., and Skvortsova, O. 2004. A logic-based approach
to dynamic programming. In AAAI-04 workshop on learning and
planning in Markov Processes – advances and challenges.

Joshi, S., and Khardon, R. 2008. Stochastic planning with first
order decision diagrams. In ICAPS, 156–163.

Joshi, S.; Kersting, K.; and Khardon, R. 2009. Generalized first
order decision diagrams for first order markov decision processes.
In IJCAI, 1916–1921.

Joshi, S.; Kersting, K.; and Khardon, R. 2010. Self-taught decision
theoretic planning with first order decision diagrams. In ICAPS.

Kersting, K.; Van Otterlo, M.; and De Raedt, L. 2004. Bellman
goes relational. In ICML, 465–472.

Poole, D. 1997. The independent choice logic for modeling multi-
ple agents under uncertainty. Artificial Intelligence 94:7–56.

Sanner, S., and Boutilier, C. 2009. Practical solution techniques
for first-order MDPs. Artificial Intelligence 173:748–488.

Sanner, S., and Kersting, K. 2010. Symbolic dynamic program-
ming for first-order POMDPs. In AAAI.

Shani, G.; Brafman, R.; Shimony, S.; and Poupart, P. 2008. Effi-
cient ADD operations for point-based algorithms. In ICAPS.

Wang, C., and Schmolze, J. 2005. Planning with POMDPs using a
compact, logic-based representations. In ICTAI, 523–530.

Wang, C.; Joshi, S.; and Khardon, R. 2008. First order decision
diagrams for relational MDPs. JAIR 31:431–472.

Wang, C. 2007. First order Markov Decision Processes. Ph.D.
Dissertation, Tufts University. Technical Report TR-2007-4.

1158

