
An Analytic Characterization of Model Minimization in Factored Markov
Decision Processes

Wenyuan Guo and Tze-Yun Leong
School of Computing

National University of Singapore
Computing 1. 13 Computing Drive, Singapore 117417

Abstract

Model minimization in Factored Markov Decision Pro-
cesses (FMDPs) is concerned with finding the most
compact partition of the state space such that all states in
the same block are action-equivalent. This is an impor-
tant problem because it can potentially transform a large
FMDP into an equivalent but much smaller one, whose
solution can be readily used to solve the original model.
Previous model minimization algorithms are iterative in
nature, making opaque the relationship between the in-
put model and the output partition. We demonstrate that
given a set of well-defined concepts and operations on
partitions, we can express the model minimization prob-
lem in an analytic fashion. The theoretical results devel-
oped can be readily applied to solving problems such as
estimating the size of the minimum partition, refining
existing algorithms, and so on.

1 Introduction
Large planning problems with stochastic action effects and
state transitions can be represented as Factored Markov De-
cision Processes (FMDPs) (Boutilier, Dearden and Gold-
szmidt 1995) where the states are described in terms of a set
of features or fluents. However, the state space of an FMDP
still grows exponentially in the number of fluents, giving rise
to significant computational problems. Amongst the vari-
ous problem abstraction and decomposition approaches that
deal with this curse of dimensionality, model minimization
aims at converting the original FMDP into an equivalent but
much smaller model. Standard methods can then be applied
to the smaller model that induces the solution to the origi-
nal model. The main challenge in model minimization is to
identify the best partition of its state space such that action-
equivalent states are combined together. Bisimulation (Dean
and Givan 1997) is a well-defined notion of state equiva-
lence and an iterative algorithm was proposed to find such
minimum models.

Since Dean and Givan’s paper, there have been other ef-
forts to extend the work in various directions. Ravindran
and Barto (2002) extended the notion of state equivalence to
state-action equivalence, which is potentially capable of ex-
ploiting more symmetries for some problems. Givan, Leach

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Dean (2000) and Kim and Dean (2001) considered the
problem of finding approximately homogeneous partitions
to obtain more aggressive state space reduction at the cost
of precision. On the theoretical side, Goldsmith and Sloan
(2000) provided insights into the model minimization prob-
lem from a computational perspective. However, due to the
nature of the proposed iterative algorithms which work by
repeatedly applying an operator until reaching a fixed point,
the relationship between the input model and output parti-
tion is opaque; this raises difficulties when one tries to un-
derstand the theoretical properties of the minimization prob-
lem. Tasks such as estimating the quality of the solution (i.e.,
the number of blocks in the resulting partition), improving
the efficiency of existing algorithms and developing better
heuristics for approximately homogenous partitioning, can
all benefit from analytic characterizations of the minimiza-
tion problem.

In this paper, we introduce an analytic characterization of
model minimization in FMDPs. We show that the output
partition can be expressed as a product of the input parti-
tions, or some modified version of them, given suitable def-
inition of the formal concepts. We have also developed a
more efficient algorithm based on our mathematical results,
and apply it to the COFFEE domain (Boutilier, Dearden and
Goldszmidt 1995) as an example. The strength of our new
algorithm is further illuminated with a complexity analysis,
compared against the existing iterative algorithms for model
minimization.

2 Preliminaries
We will first formally define the concepts of partitions and
their associated operations. Definitions given in this section
share the same spirit as those introduced in the earlier pa-
per and restated in an expanded version (Givan, Dean and
Greig 2003), but are presented in a way that would facili-
tate a theoretical analysis on the algebraic properties of the
model minimization problem.

Definition A partition is a set of mutually exclusive disjunc-
tive normal form (DNF) formulas in minimal sum of prod-
ucts (SOP) forms. Member formulas are also called blocks
of the partition.

Minimal SOP formulas are special DNF formulas that
cannot be further simplified, e.g., (x1 ∧ x2) ∨ (x1 ∧ ¬x2) is

1077

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

not in minimal SOP form because it can be simplified to x1.
They have the important property that no variable mentioned
in the formula is redundant. All formulas in a partition must
be mutually exclusive. For example, {x1,¬x1 ∧ x2,¬x1 ∧
¬x2} is a partition, but {x1, x1 ∧ x2,¬x1} is not, because
x1 and x1 ∧ x2 are not mutually exclusive.

Definition A partition p1 is the product of two partitions p2

and p3, written as p1 = p2 ∗ p3, if and only if p1 = {a
minimal SOP form of f1 ∧ f2|f1 ∈ p2, f2 ∈ p3, f1 and f2

may not be mutually exclusive}. We define
∏

i pi as p1 ∗
p2 ∗ . . . for all i.

For example, {x1,¬x1} ∗ {x2,¬x2} = {x1 ∧ x2, x1 ∧
¬x2,¬x1 ∧ x2,¬x1 ∧ ¬x2}. Another example where
mutually exclusive blocks are eliminated is: {x1,¬x1} ∗
{x1,¬x1 ∧ x2,¬x1 ∧ ¬x2} = {x1,¬x1 ∧ x2,¬x1 ∧ ¬x2}.
Intuitively, the product of two partitions is a unique partition
(subject to logical equivalence) that is the coarsest common
refinement of them. Concepts of finer and coarser are made
precise in the following definitions.

Definition A partition p1 is finer than p2, written as p1 ≥
p2, if and only if there exists another partition p3 such that
p1 = p2 ∗ p3.

Definition A partition p1 is coarser than p2, written as p1 ≤
p2, if and only if p2 ≥ p1.

Note that every partition p1 is finer (coarser) than itself,
because we can simply take p3 to be {true}.

Next, we will formally define the mathematical model of
an FMDP, in the language of partitions.

Definition A factored Markov decision process M consists
of:

1. A set of states QM , represented as all admissible truth
assignments to a set of boolean variables, or fluents XM .
For a state s ∈ QM and a fluent x ∈ XM , we use s(x) to
denote the truth value of x in s.

2. A time index t. For any fluent x, xt denotes its instan-
tiation at time t. To avoid cluttering, we will omit time
subscripts whenever no confusion arises in the particular
context.

3. A set of Actions AM .
4. For each action a ∈ AM and each fluent x ∈ XM , a parti-

tion PM
a,x, and a time-invariant transition probability func-

tion TM
a,x(f) defined for all formulas f ∈ PM

a,x. TM
a,x(f)

denotes the probability that x will be set to true under ac-
tion a at the next time step, if the current state satisfies f ,
i.e., TM

a,x(f) = Pr(xt+1|a, ft). Furthermore, we assume
that transition probabilities of fluents are independent of
each other given the action and the current state, like in
(Givan, Dean and Greig 2003). This is mainly for sim-
plicity of presentation, because synchronic effects can be
handled by considering ancestors (Givan, Dean and Greig
2003).

5. A reward partition PM
R and a reward function RM (f) de-

fined for all formulas f ∈ PM
R . RM (f) denotes the im-

mediate reward received when performing any action un-
der a state satisfying f . We will also use [PM

R] to denote

the partition obtained from combining blocks of PM
R with

the same numerical reward, according to RM .

Definition We define bl(s, p) to be a block, i.e., DNF for-
mula, that is either the unique formula f ∈ p that is satisfied
by a state s, or false if no such block in partition p exists.
Intuitively, bl(s, p) denotes the block that s belongs to in p,
if p covers s at all.

Finally, we define transition probabilities from a state to
a block. It is simply the sum of probabilities that the source
state will transit into any state in the destination block.

Definition Given an FMDP M , the transition probability of
a state s into a block b of a partition p under action a, written
as TM

a (s, b), is defined as,∑
{s′|bl(s′,p)=b}

Pr(s′|a, s)

3 The Model Minimization Problem and
Existing Solutions

In this section, we will briefly sketch the approach of Givan,
Dean and Greig (2003), where definitions and algorithms
extracted from the original paper have been restated with
our own notations.

Firstly they define the notions of block and partition sta-
bilities.

Definition Suppose M is an FMDP. Given a partition p of
its state space and two blocks b1 ∈ p and b2 ∈ p, b1 is said to
be stable with respect to b2, if and only if, for any two states
s1 and s2 in b1,

1. RM (bl(s1, P
M
R)) = RM (bl(s2, P

M
R)), i.e., identical im-

mediate rewards.
2. ∀a, TM

a (s1, b2) = TM
a (s2, b2), i.e., identical transition

probabilities into b2.

Definition A partition p is said to be stable if for any blocks
b1 ∈ p and b2 ∈ p, b1 is stable with respect to b2.

The model minimization problem is to find the coarsest
stable partition given an FMDP M . Givan, Dean and Greig
(2003) introduced an iterative algorithm: it starts with the
reward partition and keeps refining it by checking pairwise
block stability. Whenever it finds a block b1 unstable with
respect to another block b2, it will do a block splitting over
b1, separating those states in b1 which do not have the same
transition probabilities to b2. It has been shown that after a
finite number of steps, there will be no more unstable blocks.

The operations mentioned above can be performed with or
without considering specific instantiations of the numerical
parameters of the input model. Consider Algorithm 1 and 2
below, again as adapted from the earlier paper. Algorithm 1
does splitting purely structurally and the resulting partition
will be valid for any instantiation of parameters. However,
to get the true coarsest partition, it is necessary to consider
whether there can be equivalence of states by virtue of nu-
merical coincidence, as demonstrated by Algorithm 2. There
are two differences between Algorithm 1 and 2: firstly, Al-
gorithm 1 starts with the reward partition PM

R , while Algo-
rithm 2 start with [PM

R], a numerically merged version of

1078

PM
R ; secondly, in Algorithm 2 there is a block merge step

after we have split b1 with respect to b2, whose purpose is to
combine together those states in b1 having identical numeri-
cal transition probabilities into b2. In contrast, Algorithm 1
does not consider block merge.
Definition Given an FMDP M . The partition produced by
Algorithm 1 is said to be its coarsest structural partition,
written as PM

S . The partition produced by Algorithm 2 is
called the coarsest partition, denoted as PM

C .

Algorithm 1 Iterative Structural Splitting Algorithm
p← PM

R
while there exist b1 ∈ p and b2 ∈ p such that b1 is unstable
with respect to b2 do

pb1 ← {b1}
for all actions a ∈ AM do

for all fluents x mentioned in b2 do
pb1 ← pb1 ∗ PM

a,x
end for

end for
p← (p− {b1}) ∪ pb1

end while

Algorithm 2 Iterative Splitting Algorithm
p← [PM

R]
while there exist b1 ∈ p and b2 ∈ p such that b1 is unstable
with respect to b2 do

pb1 ← {b1}
for all actions a ∈ AM do

for all fluents x mentioned in b2 do
pb1 ← pb1 ∗ PM

a,x
end for
pb1 ← block merge(pb1 , b2, a)

end for
p← (p− {b1}) ∪ pb1

end while

Algorithm 3 block merge(p, b, a)
while there exist b1 ∈ p and b2 ∈ p such that b1 and b2

have identical transition probabilities into b do
b3 ← a minimal SOP form of b1 ∨ b2

p← (p− {b1, b2}) ∪ {b3}
end while

It has been shown in (Givan, Dean and Greig 2003) that
both PM

S and PM
C are unique, i.e., the partition produced by

the iterative algorithm is independent of the order in which
block splittings are performed.

4 Analytic Characterization of the Minimum
Models

We will first introduce an operator reduce to eliminate all
redundancies in a given FMDP M . Intuitively, a fluent is re-
dundant when it is neither mentioned in the reward partition

PM
R , nor influences any fluents in PM

R under any sequence
of actions. The reduced model M ′ = reduce(M) will only
contain the subset of essential fluents. All action effects on
the redundant fluents will also be discarded from M ′. The
reduce operator can be implemented by doing a breadth first
search from the set of fluents x mentioned in PM

R , adding in
recursively all fluents that influence them via any PM

a,x.
Next we will define the concept of a full partition given

an FMDP model, which is simply the partition that makes
all the relevant distinctions between the states.

Definition Given an FMDP M , its full partition, written as
PM

F , is defined as PM
R ∗

∏
a∈AM ,x∈XM PM

a,x.

Given these definitions, we can show the relation between
the full partition PM

F , which is in an analytic form, and the
coarsest structural partition PM

S , which is the partition pro-
duced with an iterative algorithm described in the last sec-
tion.

Theorem 1 Given an FMDP M , let M ′ = reduce(M).
Then, PM

S is identical to PM ′

F : for any f1 ∈ PM
S , there

exists f2 ∈ PM ′

F such that f1 ≡ f2 and vice versa.

The above theorem will follow directly if we can show
that PM

S ≤ PM ′

F and PM
S ≥ PM ′

F .

Lemma 1 PM
S ≤ PM ′

F

Recall that PM
S is the unique coarsest stable partition ob-

tained at the fixed point of Algorithm 1. Moreover, PM ′

F is
also a stable partition, because every block in it has a well-
defined transition probability to any complete assignment to
fluents. Thus we conclude that PM

S ≤ PM ′

F .

Lemma 2 PM
S ≥ PM ′

F

Proof Suppose there exist two states s1 and s2 of M , such
that they belong to different blocks of PM ′

F , but are in the
same block of PM

S , i.e., bl(s1, P
M ′

F) 6= bl(s2, P
M ′

F) and
bl(s1, P

M
S) = bl(s2, P

M
S).

Because PM ′

F = PM ′

R ∗
∏

a∈AM′ ,x∈XM′ PM ′

a,x , ei-
ther bl(s1, P

M ′

R) 6= bl(s2, P
M ′

R) or bl(s1, P
M ′

a1,x1
) 6=

bl(s2, P
M ′

a1,x1
) for some a1 and x1.

Suppose bl(s1, P
M ′

R) 6= bl(s2, P
M ′

R). But PM
R = PM ′

R ,
and by the construction of Algorithm 1, PM

S is a refinement
of PM

R , i.e., PM
S ≥ PM

R , thus bl(s1, P
M
S) 6= bl(s2, P

M
S).

This is a contradiction.
Therefore, bl(s1, P

M ′

a1,x1
) 6= bl(s2, P

M ′

a1,x1
) for some a1

and x1. Because M ′ has no redundant fluents, there must
exist an influence path:

x1, a2, x2, a3 . . . xR

where x1 influences x2 via action a2, i.e., x1 is mentioned
in PM ′

a2,x2
, and similarly for x2 and so on, and xR is a fluent

mentioned in PM ′

R .
Since s1 and s2 are in the same block of PM

S , say b1, no
block in PM

S should mention x1: if a block b2 does, then
b1 is not stable with respect to b2, because b1 can be further

1079

split over x1 by PM ′

a1,x1
, separating s1 and s2, contradicting

with the fact that PM
S is stable.

Moreover, because x1 is mentioned in PM ′

a2,x2
whose

blocks are all in minimal SOP form, there must exist two
states s3 and s4 such that they only differ at the truth value
of x1 and bl(s3, P

M ′

a2,x2
) 6= bl(s4, P

M ′

a2,x2
). Because we have

shown that x1 is not mentioned in PM
S , PM

S cannot tell apart
s3 and s4, i.e., bl(s3, P

M
S) = bl(s4, P

M
S).

So now we have bl(s3, P
M ′

a2,x2
) 6= bl(s4, P

M ′

a2,x2
) and

bl(s3, P
M
S) = bl(s4, P

M
S). Note that the situation is similar

to what we had before with s1 and s2. By the same reason-
ing, we will have to conclude that PM

S does not mention x2

either.
Apply this argument iteratively along the influence path,

we will eventually have to conclude that PM
S does not men-

tion xR. This is clearly absurd.

As PM ′

F is in an analytic form, with its relationship to PM
S

established, we can infer properties of the latter by scruti-
nizing the former. For example, the following theorem gives
us a means to estimate the size of PM

S by looking at the
constituent sub-partitions of PM ′

F . These sub-partitions are
directly specified in the reduced model M ′, which is just a
redundancy-removed version of our input model M .

Theorem 2 Given an FMDP M , let M ′ = reduce(M) and
S = {PM ′

R } ∪ (
⋃

a∈AM′ ,x∈XM′{PM ′

a,x }). Suppose Y is any
subset of S such that for any distinct p1, p2 ∈ Y , p1 and p2

mention disjoint set of fluents, and K is any set of partitions
where each ki ∈ K is coarser than some partition in S\Y
and mentions no fluent in Y , then,

|PM
S | ≥

∏
p∈Y

|p| ∗ |
∏

ki∈K

ki|

The validity of the theorem follows from the observation
that: the number of blocks resulting from the product of par-
titions in Y is simply

∏
p∈Y |p| because they all mention

disjoint fluents; moreover, each ki underestimates some par-
tition in S\Y . The size of

∏
ki∈K ki can be estimated recur-

sively with exactly the same technique.
Having dealt with the coarsest structural partition PM

S , we
will now turn to PM

C , i.e., the coarsest partition taking into
account numerical coincidences. As a start, we note that PM

C

is a coarsening of PM ′

F , as stated by the following lemma.

Lemma 3 Given an FMDP M , let M ′ = reduce(M). We
have PM ′

F ≥ PM
C .

This can be shown by noting that PM ′

F is identical to PM
S ,

which is finer than PM
C by the constructions of Algorithms

1 and 2.
Lemma 3 therefore suggests that we can obtain the coars-

est partition PM
C by simply considering merging blocks of

PM ′

F . However, as proven in Theorem 2, the number of
blocks in PM ′

F can be very large. Moreover, as PM ′

F is in
a factored form (products of partitions), there is the ques-
tion of whether we can exploit that structure to avoid direct

multiplications of all the partitions before considering po-
tential merges. Fortunately, it turns out that PM

C can also be
expressed in a product form. This result is stated below in
Theorem 3, which can be proven with the help of Lemma 4.
Definition Given an FMDP M . For each action a ∈ AM ,
we define SM

a as
∏

x∈XM PM
a,x. Intuitively, SM

a represents
the partition of the state space that matters to action a.
Lemma 4 Given an FMDP M , let M ′ = reduce(M). For
any two states s1 and s2 of M , if bl(s1, P

M
C) 6= bl(s2, P

M
C),

then either their immediate rewards are different, or there
exist some action a ∈ AM ′

such that,
1. bl(s1, S

M ′

a) 6= bl(s2, S
M ′

a), i.e., s1 and s2 belong to dif-
ferent blocks of SM ′

a .
2. for all states s3 and s4, if bl(s1, S

M ′

a) = bl(s3, S
M ′

a)
and bl(s2, S

M ′

a) = bl(s4, S
M ′

a), then bl(s3, P
M
C) 6=

bl(s4, P
M
C). This condition states that all states belong-

ing to the same block of SM ′

a as s1 and s2 respectively
will be separated in PM

C .
Intuitively, if two states s1 and s2 are not equivalent but have
the same immediate rewards, then there has to be at least one
action responsible for their different transition probabilities.
By the properties of FMDPs, that action must also separate
all pairs of states similar to s1 and s2 respectively. We omit
the proof due to space restriction.
Theorem 3 Given an FMDP M , and let M ′ =
reduce(M). We have PM

C = [PM ′

R] ∗
∏

a∈AM′ PM ′

a , where
for each action a, PM ′

a is some partition that is coarser than
SM ′

a .
Proof We can interpret a partition as making all the required
separations, i.e., sub-partitions, between states, and written
as the product of all those sub-partitions. [PM ′

R] is necessary
and sufficient to take care of all separations due to different
immediate rewards. For any two states s1 and s2 having the
same immediate rewards but which must still be separated
in PM

C , by Lemma 4, there must exist some action a1 such
that,

1. b1 = bl(s1, S
M ′

a1
).

2. b2 = bl(s2, S
M ′

a1
).

3. b1 6= b2.
Thus, the partition {b1, b2,¬b1∧¬b2}, a coarsening of SM ′

a1
,

is sufficient to separate s1 and s2. It also turns out that
{b1, b2,¬b1 ∧ ¬b2} is necessary in the sense that it does not
erroneously separate two states which are supposed to be in
the same block of PM

C . This is because by Lemma 4, any
two states belonging to b1 and b2 respectively will be sep-
arated in PM

C . Therefore, PM
C must be expressible as the

product of [PM ′

R] with all those partitions that separate pairs
of states in different blocks of PM

C ,

PM
C = [PM ′

R] ∗ {b1, b2,¬b1 ∧ ¬b2} ∗ . . . (1)

= [PM ′

R] ∗
∏

a∈AM′

(pa
1 ∗ pa

2 ∗ ...) (2)

= [PM ′

R] ∗
∏

a∈AM′

PM ′

a (3)

1080

where in the second step we have merely grouped together
all partitions p which is a coarsening of the same SM ′

a .
Clearly, for each a, PM ′

a , a product of partitions each of
which is coarser than SM ′

a , must itself be coarser than SM ′

a .

5 A More Efficient Minimization Algorithm
Theorem 3 suggests that to compute the coarsest partition
PM

C , instead of explicitly multiplying out all the products
in the full partition of the reduced model PM ′

F to merge the
resulting blocks, we can, at one time, only consider merging
blocks of SM ′

a for each action a. The resulting partitions can
be simply multiplied together with [PM ′

R] to obtain PM
C . We

propose the following algorithm to capitalize on the idea.

Algorithm 4 merge PM ′

F

p← [PM ′

R]
repeat

for all a ∈ AM ′
do

PM ′

a ←
∏

b∈p block merge(SM ′

a , b, a)
end for
p← [PM ′

R] ∗
∏

a∈AM′ PM ′

a
until p does not change

Algorithm 4 proceeds as follows: as [PM ′

R] ≤ PM
C , any

partition stable with PM
C must also be stable with [PM ′

R].
In particular, PM

C is stable with itself, implying that PM
C is

stable with [PM ′

R]. Thus, we can consider merging blocks
of PM ′

F with respect to [PM ′

R]. It can be shown that the re-
sulting partition is also coarser than PM

C and therefore the
process can be repeated until it stabilizes. It is important
to note that during the merging operation, we always con-
sider each SM ′

a separately: we do block merge(SM ′

a , b, a)
for each a instead of block merge(PM ′

F , b, a).
We will use the example from the COFFEE domain to

compare Algorithms 2 and 4. This domain was proposed in
(Boutilier, Dearden and Goldszmidt 1995) and was also used
in (Givan, Dean and Greig 2003). Briefly, a robot is expected
to fetch the user a cup of coffee while trying to stay dry at
the same time. There are 6 state variables: L (location of the
robot, either at office or at the store), W (robot is wet), U
(robot has an umbrella), R (it is raining), HCR (robot has
coffee) and HCU (user has coffee). There are 4 actions: Go
(go to opposite location), BuyC (buy coffee), DelC (deliver
coffee) and GetU (get an umbrella). Each action has the
intuitively intended effect, with a small probability to fail.
Different amounts of reward are given depending on whether
the user has coffee, and whether the robot is dry.

Now, the reward partition PM
R is:

{HCU ∧W, HCU ∧ ¬W,¬HCU ∧W,¬HCU ∧ ¬W}
Let us focus our attention on action Go. Note that Go

will affect wetness of the robot depending on W , R and U .
In particular, for example, when the robot is already wet, R
and U no longer matter since it must stay wet. Go will also

influence the value of L in the next time step, depending on
the present value of L. For the other fluents, Go will not
change their values in any way, that is, if U = true right
now, it has a probability of 1 to be true in the next time step,
and so on.

Recall that Algorithm 2 proceeds by checking stability be-
tween pairs of blocks, starting with the reward partition PM

R .
Let’s see what happens when we check block {HCU∧¬W}
against {HCU ∧ W} via action Go. Algorithm 2 will
first split {HCU ∧ ¬W} by refining it with PM

Go,HCU and
PM

Go,W , producing three blocks:

HCU ∧ ¬W ∧ ¬R

HCU ∧ ¬W ∧R ∧ U

HCU ∧ ¬W ∧R ∧ ¬U

It will then try to merge them numerically. In particular
for example, it will find the two blocks

HCU ∧ ¬W ∧R ∧ U

HCU ∧ ¬W ∧R ∧ ¬U

to be unmergeable. Intuitively, this is due to the fact that
when it is raining, the probabilities of get wet with and with-
out umbrella are different.

However, when Algorithm 2 proceeds to check block
{¬HCU∧¬W} against {¬HCU∧W}, it will make similar
findings. In particular, it will find that

¬HCU ∧ ¬W ∧R ∧ U

¬HCU ∧ ¬W ∧R ∧ ¬U

are not mergeable either. The key observation is that this
second checking of mergeability is redundant regardless of
the different values of HCU from the previous case. This
is because if merging were possible here, it must also have
been possible for the two blocks in the previous case.

On the other hand, Algorithm 4 will start by trying to
merge SM

Go against the blocks of the initial target partition
p = PM

R to obtain its coarsened version PM
Go. By the same

observation made above, we should expect that Algorithm 4
will find PM

Go to be

{W,¬W ∧ ¬R,¬W ∧R ∧ U,¬W ∧R ∧ ¬U} ∗ p1

where p1 is the sub-partition concerning the other variables.
In particular, it says that when the robot is not wet and it
is raining, then states with different truth values of U must
be separated, regardless of the value of the other variables.
When PM

Go is multiplied with PM
R at the end of that iteration,

PM
Go will serve to refine both blocks {HCU ∧ ¬W} and
{¬HCU ∧ ¬W} simultaneously, separating the two pairs
of blocks mentioned above without explicitly check for them
twice.

We can see that with Algorithm 4, we check merging pos-
sibilities of SM

a in a centralized fashion: Instead of checking
that information repeatedly for each pair of blocks, it is only
verified once (per iteration) on SM

a directly; any merging
will then be applied globally by multiplying it with other
sub-partitions to update the target partition p. This approach

1081

generalizes to models with multiple actions and its correct-
ness is guaranteed by Theorem 3, which states that PM

C takes
a product form in which some coarsening of SM

a is indeed
applied globally. In other words, it is impossible that a cer-
tain coarsening of SM

a is only applied to a particular block
of PM

R but not the others. Therefore, considering merging
possibilities locally for each block during pairwise stability
checking is not necessary.

To estimate the complexities of Algorithms 2 and 4: we
assume that the number of actions is m, and the largest |SM

a |
is n, i.e.,

n = maxa|SM
a |

For Algorithm 2, even if we ignore all costs incurred to
reach PM

C by progressive splitting (which can be very high
depending on the order pairs of blocks are checked for sta-
bility), it requires |PM

C |2 number of pairwise block stabil-
ity tests to confirm that a fix point has been reached and
hence the algorithm can be terminated. We will analyze
the complexity of the algorithm by focusing on the number
of calls to block merge. Assume that the cost of doing a
block merge(p, b, a) is c(|p|). For each pairwise block sta-
bility checking in that final phase of Algorithm 2, the maxi-
mum cost is O(mc(n)) (observe the nested for loop in Algo-
rithm 2). Thus, after we multiply it by the number of pairs of
blocks, the total cost for Algorithm 2, ignoring all operations
needed to reach PM

C , is O(|PM
C |2mc(n)).

For Algorithm 4, the cost for each iteration is
O(m|p|c(n)), where p is the intermediate partition produced
in the last iteration. Since |p| ≤ |PM

C |, the cost per iteration
is bounded by O(|PM

C |mc(n)). To determine the maximum
number of iterations, observe that for at least one of PM

a ,
i.e.,, a coarsening of SM

a , the number of its blocks must in-
crease by at least one compared with the last iteration. Oth-
erwise, the algorithm will have reached a fixed point and
terminate. Thus, the maximum number of iterations is sim-
ply mn, that is, the total number of times all |PM

a | can in-
crease. In total, the cost for Algorithm 4 is bounded by
O(|PM

C |m2nc(n)). Note that in general, |PM
C | scales pro-

portionally with nm. Therefore, unlike in Algorithm 2, the
cost for Algorithm 4 is not quadratic in |PM

C |. This can be
very significant when the target partition is large.

6 Discussion and Conclusion
The main contributions of this paper are as follows. Through
a series of rigorous mathematical developments, we have
derived a number of analytic results concerning the model
minimization problem in FMDPs. In particular, the coarsest
structural partition, introduced by an iterative algorithm in
earlier papers, is shown to be expressible in a closed form
formula given adequate definitions of partitions and their as-
sociated operators. The coarsest partition can also, to some
extent, be expressed in an analytic fashion (as the product of
[PM ′

R] and all the PM ′

a , although the latter cannot be written
in closed forms). While there were papers that discussed the
computational aspects of the problem, e.g., (Goldsmith and
Sloan 2000), our focus is to elucidate the analytic proper-
ties, e.g., the relationship between the input model and out-
put partition, in a clear and usable fashion. We have also

demonstrated some applications of our theoretical results,
such as estimating sizes of resulting partitions and improv-
ing the minimization algorithms by taking advantage of the
factored form of the target partitions. We have given both a
working example for the COFFEE domain and a complexity
analysis for the new algorithm.

One limitation of the work is that we have not addressed
how we can improve the current algorithms and heuristics of
approximately homogeneous partitioning given our formal
results, which can be very important in practical problems.
Another direction of extending the current work is to con-
sider the impact our results may have on the approximate
solvers of FMDPs (Guestrin et al. 2003).

Acknowledgments
This work is supported by an Academic Research Grant no.
R252-000-327-112 from the Ministry of Education, Singa-
pore. We would also like to thank the anonymous reviewers
for their valuable feedback.

References
Boutilier, C., Dearden, R., and Goldszmidt, M. (1995).
Exploiting Structure in Policy Construction. Proceedings of
the Fourteenth International Joint Conference on Artificial
Intelligence: 1104-1111.

Dean, T. and Givan, R. (1997). Model minimization
in Markov decision processes. Proceedings of the Four-
teenth National Conference on Artificial Intelligence:
106-111.

Givan R., Leach S., and Dean T. (2000). Bounded-parameter
Markov decision processes. Artificial Intelligence 122:
71-109.

Givan, R., Dean, T., and Greig, M. (2003). Equiva-
lence Notions and Model Minimization in Markov Decision
Processes. Artificial Intelligence 147: 163-223.

Goldsmith J. and Sloan R. H. (2000). The complexity
of model aggregation. Artificial Intelligence Planning
Systems: 122-129.

Guestrin, C., Koller, D., Parr, R., and Venkataraman,
S. (2003). Efficient Solution Algorithms for Factored
MDPs. Journal of Artificial Intelligence Research 19:
399-468.

Kim, K.-E., and Dean, T. (2001). Solving factored
MDPs using non-homogeneous partitioning. Proceedings of
the Seventeenth International Joint Conference on Artificial
Intelligence: 683-689.

Ravindran, B., and Barto, A. G. (2002). Model min-
imization in hierarchical reinforcement learning. Fifth
Symposium on Abstraction, Reformulation and Approxima-
tion: 196-211.

1082

