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Abstract

Existing controller-based approaches for centralized and de-
centralized POMDPs are based on automata with output
known as Moore machines. In this paper, we show that sev-
eral advantages can be gained by utilizing another type of
automata, the Mealy machine. Mealy machines are more
powerful than Moore machines, provide a richer structure
that can be exploited by solution methods, and can be eas-
ily incorporated into current controller-based approaches. To
demonstrate this, we adapted some existing controller-based
algorithms to use Mealy machines and obtained results on a
set of benchmark domains. The Mealy-based approach al-
ways outperformed the Moore-based approach and often out-
performed the state-of-the-art algorithms for both centralized
and decentralized POMDPs. These findings provide fresh
and general insights for the improvement of existing algo-
rithms and the development of new ones.

Introduction
Sequential decision-making under uncertainty is an impor-
tant and active field of study in Artificial Intelligence. The
partially observable Markov decision process (POMDP)
is used to model sequential decision-making problems in
which there are stochastic actions and noisy sensors. Ac-
tions are chosen based on imperfect system information in
order to maximize a long-term objective function. When
multiple cooperative agents are present, the decentralized
POMDP (DEC-POMDP) model can be used. This model
allows a team of agents to be represented, each of which
makes decisions based solely on possibly noisy local infor-
mation. The goal of a DEC-POMDP is to maximize a joint
objective function while executing actions in a decentralized
manner, as opposed to the centralized policies in POMDPs.

Centralized and decentralized POMDPs are models that
can represent a wide range of realistic problems, but are
often difficult to solve. Discounted infinite-horizon prob-
lems (Sondik 1978), which proceed for an infinite number
of steps and their rewards are discounted at a geometric rate,
have been shown to be undecidable (Madani, Hanks, and
Condon 2003). Even ε-optimal approaches (Hansen 1998;
Bernstein et al. 2009) for these problems are intractable ex-
cept for very small problem sizes. These approaches use
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finite-state controllers to represent polices, with actions cho-
sen at each node in the controller and with controller transi-
tions that depend on the observations seen.

Due to the difficulty in finding near optimal solu-
tions, approximate methods are often desirable. Many
such controller-based approaches have been developed for
infinite-horizon POMDPs (Meuleau et al. 1999; Poupart and
Boutilier 2003; Poupart 2005; Amato, Bernstein, and Zilber-
stein 2009) and DEC-POMDPs (Szer and Charpillet 2005;
Bernstein, Hansen, and Zilberstein 2005; Bernstein et al.
2009; Amato, Bernstein, and Zilberstein 2009). Finite-
horizon methods have also been extended to solve infinite-
horizon problems. For centralized POMDPs, these ap-
proaches, such as point-based methods (Pineau, Gordon,
and Thrun 2003; Smith and Simmons 2005; Spaan and Vlas-
sis 2005; Bonet and Geffner 2009), build up a solution at
each problem step until the discount factor causes further
actions to not substantially change the quality of the solu-
tion. Point-based approaches often work well in practice,
but rely on a manageable set of belief points and a solu-
tion that does not require a large number of steps to build.
In contrast, controller-based approaches allow a concise, in-
herently infinite-horizon representation, that is more appro-
priate for certain problem types.

Approximation algorithms using finite-state controllers
have been shown to provide high-quality solutions in a wide
range of POMDPs and DEC-POMDPs. All current ap-
proaches are based on a type of automata with output called
Moore machines. In this paper, we show that these meth-
ods can be improved by using controllers based on Mealy
machines rather than Moore machines. A Mealy machine
allows a more concise representation as well as additional
structure that can be exploited by the solution methods. Our
contribution is very general since all existing algorithms that
are based on controllers can be adapted to use Mealy ma-
chines, often leading to higher quality solutions. We demon-
strate this improved performance on a range of benchmark
problems for centralized and decentralized POMDPs.

The rest of this paper is structured as follows. We be-
gin with a general description of automata with output as
well as POMDPs and DEC-POMDPs. We also show how
agent policies can be represented using automata. Then, we
briefly discuss the related work and how existing algorithms
based on controllers can be adapted to use Mealy machines.
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We also provide experiments comparing the use of Mealy
and Moore machines as well as leading POMDP and DEC-
POMDP algorithms. We conclude with a discussion of the
key aspects of using Mealy machines.

Automata with output
An automaton with output produces an output string when
processing an input string. There are two main types of ma-
chines, Moore and Mealy. Moore machines associate output
symbols with nodes and Mealy machines associate output
symbols with transitions.

Formally, a Moore machine is a tuple 〈Q,Σ,Ω, δ, λ, q0〉
where Q is the set of nodes, Σ and Ω are the input and out-
put alphabets, δ : Q × Σ → Q is the deterministic transition
function, λ : Q → Ω is the output function, and q0 ∈ Q
is the initial node. On an input string x1, . . . , xn ∈ Σ∗,
the machine outputs the string λ(q0), . . . , λ(qn) ∈ Ω∗ where
qi = δ(qi−1, xi) for i = 1, . . . , n.

A Mealy machine is a tuple 〈Q,Σ,Ω, δ, λ, q0〉 where Q, Σ,
Ω and q0 are as before, but λ : Q × Σ → Ω is the output
function that associates output symbols with transitions of
the automaton. Given an input string x1, . . . , xn ∈ Σ∗, the
machine outputs λ(q0, x1), . . . , λ(qn−1, xn) ∈ Ω∗ where qi =
δ(qi−1, xi) for i = 1, . . . , n. Examples of two nodes Moore
and Mealy machines are shown in Figure 1.

Both models are equivalent in the sense that for a given
machine of one type, there is a machine of the other type that
generates the same outputs. However, it is known that Mealy
machines are more succinct than Moore machines; given a
Moore machine M1, one can find an equivalent Mealy ma-
chineM2 with the same number of nodes by constraining the
outputs produced at each transition from a common node to
be the same. However, given a (general) Mealy machine, the
equivalent Moore machine has |Q|×|Ω| nodes (Hopcroft and
Ullman 1979).

In this paper, we are interested in stochastic automata.
These automata are similar to those presented above except
that probability distributions are used for transitions and out-
put. That is, for a Moore machine the transition function is
δ : Q × Σ → ∆Q (where ∆Q is the set of probability distri-
butions over Q) and the output function is λ : Q → ∆Ω.
For Mealy machines, we use a coupled or joint function
τ : Q × Σ → ∆(Q × Ω) that specifies both the transition
and output functions.

POMDPs and DEC-POMDPs
POMDPs and DEC-POMDPs are mathematical models for
sequential decision-making under uncertainty and partial in-
formation. Formally, a POMDP is a tuple 〈S,A,O, P,R, γ〉
where S, A and O are finite sets of states, actions and obser-
vations respectively, P denotes both the transition and the
observation models, R : S × A → R is the reward function,
and γ is the discount factor. The transition model is specified
by probabilities P (s′|s, a) for the system resulting in state s′
after applying action a while at state s, and the observation
model by P (o|s′, a) for the system generating observation o
when it enters state s′ after the application of action a.

Figure 1: Two node deterministic Moore and Mealy ma-
chines with output xi ∈ Ω and input yi ∈ Σ and an arrow
designating the initial node.

The goal is to maximize the expected total cumulative re-
ward for an initial state of the system that is distributed ac-
cording to b(·). In the infinite-horizon problem, the decision
making process unfolds over an infinite sequence of steps
and rewards are discounted at a geometric rate using γ.

A DEC-POMDP is a generalization of the POMDP model
for the case of multiple distributed agents that cooperate in
order to maximize a joint reward. Formally, a DEC-POMDP
can be defined as a tuple 〈I, S, {Ai}, {Oi}, P,R, γ〉, where I
is a finite set of agents, Ai and Oi are finite sets of actions
and observations for agent i ∈ I, and S, P , R remain the
same as a POMDP except now, each depends on all agents.
That is, the transition probabilities, P (s′|s,~a), define transi-
tioning from state s to s′ when the set of actions ~a is taken
by the agents, R(s,~a) is the immediate reward for being in
state s and taking the set of actions ~a, and P (~o|s′,~a) is the
probability of seeing the set of observations ~o given the set
of actions ~a was taken which results in state s′.

The model is decentralized because each agent i does not
know the actions applied or the observations received by
other agents, observing only the fragment oi of the joint ob-
servation ~o. Thus, agents seek to maximize a joint objective
by choosing actions based solely on local information.

Finite-state controllers
Finite-state controllers can be used to represent policies for
agents in an elegant way since an agent can be conceptual-
ized as a device that receives observations and produces ac-
tions. For POMDPs a single controller provides the policy
of the agent, while for DEC-POMDPs a set of controllers,
one per agent, provides the joint policy of the agents.

In general, controllers of unbounded size may be needed
to represent optimal policies, while controllers of bounded
size represent policies of bounded memory. In the lat-
ter case, improved policies can be obtained by considering
stochastic policies (Singh, Jaakkola, and Jordan 1994) that
correspond to stochastic controllers. Due to space limita-
tions, we only discuss the use of controllers for POMDPS,
yet the case for DEC-POMDPs is similar.

Moore machines
In the standard POMDP, observations are generated only
after the application of actions. This feature makes the
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use of Moore machines natural for representing policies
as shown in the following. Let M = 〈Q,O,A, δ, λ, q0〉 be
a stochastic Moore machine denoting the stochastic policy
for the agent and assume that the environment is initially in
state s0. The first action applied by the agent, as dictated
by M , is a0 with probability λ(q0)(a0). The system makes
a transition to state s1 with probability P (s1|s0, a0) and
generates observation o1 with probability P (o1|s1, a0).
This observation triggers a transition in M to node q1 with
probability δ(q0, o1)(q1), a new action a1 with probability
λ(q1)(a1), and so on. The infinite-horizon discounted
reward incurred by policy M when the initial state is s and
the initial node of the automaton is q can be denoted by
VM (q, s) and satisfies: VM (q, s) =

a

P (a|q) R(s, a) + γ
s′,o,q′

P (s′, o|s, a)P (q′|q, o)VM (q′, s′)

where P (a|q) .
= λ(q)(a), P (q′|q, o) .

= δ(q, o)(q′) and
P (s′, o|s, a)

.
= P (s′|s, a)P (o|s′, a). The value of M at the

initial distribution is VM (b)
.
= s b(s)VM (q0, s).

Note that these representations differ slightly from those
used by some researchers (Bernstein et al. 2009; Bernstein,
Hansen, and Zilberstein 2005) in that the transition no longer
depends on the action in the Moore case. This is a minor
difference that has limited significance.

Mealy machines
Mealy machines cannot be used directly to represent policies
since these assume that observations are generated before
actions. To see this, recall that a Mealy machine generates
an output only when it makes a transition. Thus, to generate
an action, it first needs an observation.

This issue is easily solved by adding a new state s∗, new
action a∗ and new observation o∗ so that the system starts at
s∗. The rewards satisfy R(s∗, a∗) = 0, and R(s∗, a) = −M
if a 6= a∗ and R(s, a∗) = −M if s 6= s∗ where M is a very
large integer; the observations are P (o∗|s, a∗) = 1; and the
transitions are P (s∗|s∗, a) = 1 if a 6= a∗ and P (s|s∗, a∗) =
b(s) where b(·) is the initial distribution of the POMDP.

The new POMDP is such that action a∗ should be ap-
plied only once in state s∗. This application generates o∗
as the first observation. Therefore, one can shift the stream
of action-observations by one position so that it starts with
observations followed by actions as required. Furthermore,
since R(s∗, a∗) = 0, the value function of the new POMDP
satisfy V newπ (b∗) = γVπ(b) for any policy π, where b∗ is the
new initial distribution defined by b∗(s∗) = 1. This means
that the relative ranking of policies is carried over from the
original POMDP into the new POMDP; in particular, the op-
timal policies of both POMDPs are the same.

Let us illustrate the use of a Mealy machine M =
〈Q,O,A, τ, q0〉 to control a (modified) POMDP. As said be-
fore, the first action to apply in the initial state s∗ is a∗ that
generated the observation o∗. After this action, the resulting
state is s with probability b(s). At this point, M is used to
control the process by generating a new action a and node q
with probability τ(q0, o

∗)(q, a), the system changes state to
s′ and generates observation o with probabilities P (s′|s, a)
and P (o|s′, a), and the execution continues.

The infinite-horizon discounted value incurred by policy
M when the initial state is s, the observation is o and the
node of M is q is denoted by VM (q, o, s) and satisfies:
VM (q, o, s) =

a,q′

P (q′, a|q, o) R(s, a) + γ
s′,o′

P (s′, o′|s, a)VM (q′, o′, s′)

where P (q′, a|q, o) .
= τ(q, o)(q′, a). In this case, the value of

M at b is VM (b)
.
= s b(s)VM (q0, o

∗, s).
For a given controller size, Mealy machines are more

powerful than Moore machines in the following sense (a
similar result also holds for DEC-POMDPs). The proof is
straightforward and omitted due to lack of space. Also note
that in many cases, the Mealy controller will have strictly
greater value for a given controller size.
Theorem 1. Let P = 〈S,A,O, P,R, γ〉 be a POMDP with
initial state distribution b, and N a fixed positive integer.
Then, for each stochastic Moore controller M1 with N
nodes, there is an stochastic Mealy controller M2 with N
nodes such that VM2(b) ≥ VM1(b).

Proof. (sketch) This proof follows directly from the fact that
a Mealy machine can represent a Moore machine exactly us-
ing the same number of nodes. As mentioned above, this is
accomplished by constraining the Mealy machine to choose
the same output for each input symbol. For POMDP control,
this results in choosing the same action for each observation
at a given node. Thus, there is always a Mealy machine that
has the same value as a given Moore machine of any size N
for any POMDP.

We can also show that in some cases, a Mealy machine
can represent higher-valued solutions with the same number
of nodes. For instance, consider a POMDP whose optimal
policy is reactive (a mapping from single observations to ac-
tions). This can be achieved with a one node Mealy machine
(because actions depend on observations seen), but not with
a one node Moore machine (because actions depend only on
that single node). No matter what action probabilities are
defined, the Moore machine must use the same action distri-
bution at each step regardless of which observation is seen.
In fact, a Moore machine of size |O| is needed to produce the
same reactive policy as the one produced from a one node
Mealy machine. Thus, the greater representational power of
the Mealy machine can provide higher quality solutions with
the same controller size.

Previous work
Until now, only Moore machines have been used to de-
scribe policies for POMDPs and DEC-POMDPs. Optimal
approaches build up larger controllers over a number of steps
using “backups” (Hansen 1998; Bernstein et al. 2009), while
approximate approaches typically seek to determine the ac-
tion selection and node transition parameters that produce
a high-valued fixed-size controller. Approximate POMDP
methods include those utilizing gradient ascent (Meuleau et
al. 1999), linear programming (LP) (Poupart and Boutilier
2003; Poupart 2005) and nonlinear programming (NLP)
(Amato, Bernstein, and Zilberstein 2009). Approximate
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DEC-POMDP algorithms have also been developed using
heuristic search (Szer and Charpillet 2005), linear program-
ming (Bernstein, Hansen, and Zilberstein 2005) and nonlin-
ear programming (Amato, Bernstein, and Zilberstein 2009).
Recently, Mealy machines have been used in automated
planning for representing controllers that are synthesized
with classical planners (Bonet, Palacios, and Geffner 2009).

Mealy controllers for (DEC-)POMDPs
We conjecture that all of the above methods can be improved
by adapting them to use Mealy machines. This would al-
low them to produce higher value with smaller controllers.
Optimal approaches would proceed exactly as before (since
Mealy machines can represent Moore machines exactly), but
after each “backup” an improvement step can be used to im-
prove the value of the current controller. This improvement
step is similar to the use of linear programming to increase
the controller values by Bernstein et al. (2009), but utilizing
a Mealy controller formulation instead of a Moore formula-
tion. Since Mealy machines can produce higher value for a
given controller size, this can allow higher quality solutions
to be found more quickly.

Approximate approaches can be improved by utilizing
Mealy machines as well. We describe how bounded policy
iteration (BPI) (Poupart and Boutilier 2003) and the NLP
formulation (Amato, Bernstein, and Zilberstein 2009) can
be adapted for solving POMDPs. Decentralized BPI (Bern-
stein, Hansen, and Zilberstein 2005) and the NLP formu-
lation (Amato, Bernstein, and Zilberstein 2009) for DEC-
POMDPs can be adapted in a similar way by optimizing a
controller for each agent while including constraints to en-
sure decentralized execution.

Bounded policy iteration
Bounded policy iteration utilizes linear programming to im-
prove the action selection and node transition parameters
of the controller. That is, it iterates through the nodes of
the controller and seeks to find parameters that increase the
value of that node for all states while assuming that the other
parameters and values remain fixed. The algorithm termi-
nates once no further improvements can be achieved. Im-
provements such as growing the controller or biasing the
improvements based on information from the initial state
can also be conducted. We describe the improvement of a
fixed-size controller without bias. Mealy controllers can be
grown in the same way as described by Poupart and Boutilier
(2003) and bias can be added in a similar way to that de-
scribed by Poupart (2005).

The Mealy version of BPI breaks the problem in two
parts: improving the first node and improving the other
nodes. The parameters for the initial node q0 can be im-
proved by updating the probabilities of choosing actions and
transitioning to other nodes from q0 with the following LP
that has variables {P̂ (q, a|q0, o∗) : q ∈ Q, a ∈ A}:

max
a,q

P̂ (q, a|q0, o∗)
s

b(s) R(s, a)+

γ
s′,o′

P (s′, o′|s, a)V (q, o′, s′)

subject to

a,q

P̂ (q, a|q0, o∗) = 1 , P̂ (q, a|q0, o∗) ≥ 0 for q ∈ Q, a ∈ A.

The parameters for other controller nodes q can be ad-
justed similarly with the following LP that has the variables
{ε} ∪ {P̂ (q′, a|q, o) : q′ ∈ Q, a ∈ A}:

max ε

subject to V (q, o, s) + ε ≤
a,q′

P̂ (q′, a|q, o) R(s, a)+

γ
s′,o′

P (s′, o′|s, a)V (q′, o′, s′) ∀s ∈ S,

a,q′

P̂ (q′, a|q, o) = 1, P̂ (q′, a|q, o) ≥ 0 for q′ ∈ Q, a ∈ A

Algorithmic benefits In this version of BPI, we iterate
through each pair 〈q, o〉 rather than just through each node q
as is done with Moore machines. Similar to the Moore ver-
sion, parameters are updated if better values can be found
for all states of the system, but because each q and o is
used, there are more opportunities for improvements and
thus some local optima may be avoided. Also, the linear
program used for the first node allows a known initial state
to be directly incorporated in the solution. Lastly, because
a Mealy machine is used, higher value can be represented
with a fixed size, thus improving the potential of the algo-
rithm for that size. Due to space limitations, we leave this
promising area of research for future work.

Nonlinear programming
The nonlinear programming formulation for POMDPs seeks
to optimize the action and node transition parameters for the
whole controller in one step. This is achieved by allowing
the values to change by defining them as variables in the op-
timization. The fixed-size controller is then optimized with
respect to a known initial state, b(·), using any NLP solver.
An optimal solution of the NLP formulation would produce
an optimal Moore controller for the given size, but this is
often intractable, causing approximate methods to be used.

The Mealy formulation of the NLP is shown in Table 1.
This NLP defines an optimal Mealy controller of given
size. Its variables are {V̂ (q, o, s) : q ∈ Q, o ∈ O, s ∈
S}∪{P̂ (q′, a|q, o) : q, q′ ∈ Q, a ∈ A, o ∈ O}∪{P̂ (q, a|q0, o∗) :
q ∈ Q, a ∈ A}. Like the Moore case, this problem is difficult
to solve optimally, but approximate solvers can be used to
produce locally optimal solutions for a given size. Observe
that for the NLP one does not need to extend the sets A, O
and S with a∗, o∗ and s∗ respectively.

Algorithmic benefits As with other approaches, Mealy
machines provide a more efficient method to exploit a given
controller size. For the NLP formulation, one drawback is
that more nonlinear constraints are needed because the value
function now includes three items (node, observation and
state) instead of the two (node and state) required for Moore
machines. This may make the NLP more difficult to solve.
In the next section we discuss how to use the structure of the
Mealy machine in order to simplify the NLP.
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max
s

b(s)
a,q

P̂ (q, a|q0, o∗) R(s, a) + γ
s′,o′

P (s′, o′|s, a)V̂ (q, o′, s′)

subject to V̂ (q, o, s) =
a,q′

P̂ (q′, a|q, o) R(s, a) + γ
s′,o′

P (s′, o′|s, a)V̂ (q′, o′, s′) for q ∈ Q, o ∈ O, s ∈ S,

a,q′

P̂ (q′, a|q, o) = 1 for q ∈ Q, o ∈ O,
a,q′

P̂ (q′, a|q0, o∗) = 1

Table 1: Nonlinear program representing an optimal Mealy machine POMDP policy of a given size with variables P̂ (q, a|q0, o∗),
P̂ (q′, a|q, o) and V̂ (q, o, s). Additional constraints also ensure that probabilities are at least zero.

Solving the Mealy machine more efficiently
The structure of the Mealy machine can be used to iden-
tify unreachable state-observation pairs or dominated ac-
tions that can be removed without impact on optimality. The
Mealy formulation can then be solved more efficiently while
automatically determining important problem structure.

For given transition and observation dynamics, certain
state-observation pairs cannot occur; if P (s′, o|s, a) = 0 for
every s and a, then the pair 〈s′, o〉 does not need to be con-
sidered and thus neither does V (q, o, s′). This can drastically
reduce the number of constraints in some problems.

Actions can also be removed based on their values given
the last observation seen. For example, for a robot in a grid,
if the last observation seen is that there is a wall directly
in front of it, then trying to move forward is unlikely to be
helpful. To determine which actions are useful after an ob-
servation, upper and lower bounds for the value of actions
at each state after an observation can be computed. Actions
whose upper bound values are lower than the lower bound
values of another action can be removed without affecting
optimality. In the POMDP case, the upper bound can be
found using heuristics such as the MDP value or crossprod-
uct MDP (Meuleau et al. 1999) and random or previously
found solutions can be used for lower bounds.

Once upper and lower bounds of the value function
are computed, an upper bound on choosing action a af-
ter being in state s and seeing o, QU (o, s, a), is obtained
with QU (o, s, a) = R(s, a) + γ s′,o′ P (s′, o′|s, a)V U (o′, s′),
while a lower bound QL(o, s, a) is obtained similarly. An
agent does not know the exact state it is in, and thus in gen-
eral, an action must have an upper bound that is at most the
lower bound for all states of the problem. That is, if there
is a′ such that QU (o, s, a) ≤ QL(o, s, a′) ∀s ∈ S then the ac-
tion a is dominated by a′ with respect to o because a higher-
valued policy can always be formed by choosing a′ rather
than a. This can be refined by noticing that typically, a sub-
set of states are reachable after observing o, requiring that
value is examined only ∀s ∈ So where So is the set of states
possible after seeing o. In these instances, action a does not
need to be considered, allowing the corresponding parame-
ters to be removed from {P̂ (q′, a|q, o) : q′ ∈ Q}.

Experimental results
We performed experiments on selected POMDP and DEC-
POMDP benchmarks comparing approximate solutions of

the Moore and Mealy NLP formulations with other lead-
ing approximate algorithms. These approaches represent the
state-of-the-art in terms of both controller-based and general
approximate approaches for infinite-horizon problems.

All Moore and Mealy experiments were conducted on
the NEOS server (http://neos.mcs.anl.gov) using the snopt
solver. They were initialized with random deterministic con-
trollers and averaged over 10 trails. As described above,
unreachable state-observation pairs and dominated actions
were removed from the Mealy formulation. MDP and
POMDP policies were used as upper bounds for POMDPs
and DEC-POMDPs respectively, while reactive or previ-
ously found policies were used as lower bounds. Controller
size was increased until the formulation could no longer be
solved given the NEOS resource limitations (approximately
400MB and 8 hours).

Unless otherwise noted, other experiments were per-
formed on a 2.8 GHz machine with 4GB of RAM. The code
for HSVI2 and PERSEUS was used from the web sites of T.
Smith and M. Spaan respectively and were run with a time
limit of 90 minutes. For PERSEUS, 10,000 points were used
and the average of 10 runs is provided. As experiments were
conducted on different machines, results may vary slightly,
but we expect the trends to remain the same.

Table 2 shows the results for three POMDPs benchmarks.
The aloha problem is a networking domain using the slot-
ted aloha scheme (Cassandra 1998) and the tag problem in-
volves a robot that must catch and tag an opponent (Pineau,
Gordon, and Thrun 2003). Because the original tag problem
stops after the opponent is successfully tagged and thus is
not fully infinite-horizon, we also provide results for a ver-
sion in which the problem repeats rather than stopping. A
discount factor of 0.999 was used for the Aloha domain and
0.95 was used for the tag problems.

In the first and third problems, Mealy machines provide
the highest-valued solutions and generally use much less
time than the other methods. In the second problem, the
Mealy formulation is competitive with the state-of-the-art in
terms of quality and time. In all cases Mealy machines out-
perform Moore machines.

Table 3 shows the results for three two agent DEC-
POMDP benchmarks: the meeting in a grid problem (Bern-
stein, Hansen, and Zilberstein 2005), the box pushing do-
main (Seuken and Zilberstein 2007) and the stochastic Mars
rover problem (Amato and Zilberstein 2009). On all of the
DEC-POMDP domains a discount factor of 0.9 was used.
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Algorithm Value Size Time
Aloha: |S| = 90, |A| = 29, |O| = 3

Mealy 1,221.72 7 312
HSVI2 1217.95 5,434 5,430
Moore 1,211.67 6 1,134
PERSEUS 853.42 68 5,401

Tag: |S| = 870, |A| = 5, |O| = 30

PBPI1 -5.87 818 1,133
RTDP-BEL1 -6.16 2.5m 493
PERSEUS1 -6.17 280 1,670
HSVI21 -6.36 415 24
Mealy -6.65 2 323
biased BPI1 -6.65 17 250
BPI1 -9.18 940 59,772
Moore -13.94 2 5,596

Tag Repeat: |S| = 870, |A| = 5, |O| = 30

Mealy -11.44 2 319
PERSEUS -12.35 163 5,656
HSVI2 -14.33 8,433 5,413
Moore -20.00 1 37

Table 2: Results for POMDP problems comparing Mealy and
Moore machines and other algorithms. The size for the machines is
the number of nodes in the controller. The size for other algorithms
is the number of planes or belief points. The time is in seconds.

To put the results from the Moore and Mealy machines into
perspective, we also include results from heuristic policy it-
eration with nonlinear programming (HPI w/ NLP) (Bern-
stein et al. 2009) and the goal-directed sampling algorithm
(Amato and Zilberstein 2009). This goal-directed approach
assumes special problem structure and thus is not a general
algorithm. As such we would expect it to outperform the
other algorithms.

In all three problems, the Mealy machine obtains higher
quality solutions than the Moore machine or HPI with NLP.
The Mealy formulation also outperforms the Goal-directed
approach on the first problem and is competitive with it
in the other domains, showing that much of the problem
structure can be automatically discovered with our approach.
This is accomplished with concise controllers and a very rea-
sonable running time. Note that both the goal directed and
HPI w/ NLP approaches use Moore machines as their pol-
icy representation. We believe that using Mealy machines
would improve their value, but leave this for future work.

In a final experiment, we compare the quality of con-
trollers obtained by utilizing fixed-size Mealy and Moore
machines on the DEC-POMDP benchmarks. Table 4 shows
the results of the comparison. As can be seen, Mealy ma-
chines always achieve better quality for a fixed size. Similar
results were also obtained in the POMDP benchmarks. By

1These results are taken from PBPI: (Ji et al. 2007), RTDP-
BEL: (Bonet and Geffner 2009), PERSEUS: (Spaan and Vlassis
2005), HSVI2: (Smith and Simmons 2005), biased BPI: (Poupart
2005) and BPI: (Poupart and Boutilier 2003)

Algorithm Value Size Time
Meeting in a Grid: |S| = 16, |Ai| = 5, |Oi| = 2

Mealy 6.13 5 116
HPI w/ NLP 6.04 7 16,763
Moore 5.66 5 117

Goal-directed2 5.64 4 4

Box Pushing: |S| = 100, |Ai| = 4, |Oi| = 5

Mealy 143.14 4 774
HPI w/ NLP 95.63 10 6,545
Moore 50.64 4 5,176

Goal-directed2 149.85 5 199

Mars Rover: |S| = 256, |Ai| = 6, |Oi| = 8

Mealy 19.67 3 396
HPI w/ NLP 9.29 4 111
Moore 8.16 2 43

Goal-directed2 21.48 6 956

Table 3: Results for DEC-POMDP problems comparing Mealy
and Moore machines and other algorithms. The size refers to the
number of nodes in the controller and the time is in seconds.

using approximate solvers, there may be problems for which
this is not the case, but we are encouraged by the results.

We can also see that in these problems much larger Moore
controllers are needed to represent the same value as a given
Mealy controller. In fact, the solver often exhausted re-
sources before this was possible. In the box pushing and
mars rover problems, the largest solvable Moore machines
were not able to achieve the same quality as a one node
Mealy machine. In the meeting in a grid problem, a four
node Moore machine is required to approximate the one
node Mealy machine.

It is also worth noting that similar value was often found
using Mealy machines without state-observation reachabil-
ity or action elimination. For instance, in the meeting in a
grid problem, three node controllers could be solved produc-
ing an average value of 5.87 (the same as the three node con-
troller with the more efficient representation) in the some-
what longer time of 31s. Thus, even without using the con-
troller structure to increase solution efficiency, the Mealy
formulation can be beneficial.

Discussion
We presented a novel type of controller for centralized and
decentralized POMDPs that is based on the Mealy machine.
Existing controller-based algorithms can be adapted to use
this type of machine instead of the currently used Moore ma-
chine. We adapted one such algorithm and our experiments
show that Mealy machines can lead to higher-valued con-
trollers when compared to the state-of-the-art approaches for
both POMDPs and DEC-POMDPs.

2Goal-directed results assume special problem structure and
thus cannot be directly compared with general approaches such as
the Mealy, Moore and HPI methods.
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Number of nodes

Type 1 2 3 4 5
Meeting in a grid: |S| = 16, |Ai| = 5, |Oi| = 2

Mealy 5.50 6.00 5.87 6.05 6.13
Moore 3.58 4.83 5.23 5.62 5.66

Box pushing: |S| = 100, |Ai| = 4, |Oi| = 5

Mealy 123.46 124.20 133.67 143.14
Moore -1.58 31.97 46.28 50.64

Mars rover: |S| = 256, |Ai| = 6, |Oi| = 8

Mealy 18.92 19.17 19.67
Moore 0.80 8.16

Table 4: Results for Mealy and Moore machines of different sizes
for DEC-POMDP benchmarks. A blank entry means that the con-
troller of that size could not been computed given the resource re-
strictions of the NEOS server.

Mealy machines are beneficial for several reasons. First,
they are more powerful than Moore machines, resulting in
higher-valued solutions with the same representation size.
Second, they possess special structure that can be straight-
forward to exploit. This includes start state information and
knowledge from informative observations. The increased
representational power can cause solving Mealy machines to
be more difficult for a given controller size, but more concise
representations may be sufficient. Also, as shown in our ex-
periments, the ability to exploit domain structure may make
solution methods that utilize Mealy machines more scalable
than those that utilize Moore machines.

In the future, we plan to adapt other controller-based algo-
rithms to utilize Mealy machines and measure the improve-
ment in performance. Also, we would like to devise addi-
tional ways to exploit the structure of the Mealy machine
and to explore the relationship between Mealy and Moore
machines in order to obtain a better understanding of both
types of machines.
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