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Abstract

The results of the latest International Probabilistic Planning
Competition (IPPC-2008) indicate that the presence of dead
ends, states with no trajectory to the goal, makes MDPs hard
for modern probabilistic planners. Implicit dead ends, states
with executable actions but no path to the goal, are particu-
larly challenging; existing MDP solvers spend much time and
memory identifying these states.

As a first attempt to address this issue, we propose a machine
learning algorithm called SIXTHSENSE. SIXTHSENSE helps
existing MDP solvers by finding nogoods, conjunctions of
literals whose truth in a state implies that the state is a dead
end. Importantly, our learned nogoods are sound, and hence
the states they identify are true dead ends. SIXTHSENSE is
very fast, needs little training data, and takes only a small
fraction of total planning time. While IPPC problems may
have millions of dead ends, they may typically be represented
with only a dozen or two no-goods. Thus, nogood learning
efficiently produces a quick and reliable means for dead-end
recognition. Our experiments show that the nogoods found
by SIXTHSENSE routinely reduce planning space and time
on IPPC domains, enabling some planners to solve problems
they could not previously handle.

Introduction

Recent work on “probabilistic interestingness” has sug-
gested that probabilistic planners have difficulty on domains
with avoidable dead ends, non-goal states with no potential
trajectories to the goal (Little and Thiebaux 2007). This con-
jecture is supported by the recent International Probabilis-
tic Planning Competition (IPPC) (Bryce and Buffet 2008),
in which domains with a complex dead-end structure, e.g.,
Exploding Blocks World, have proven the most challeng-
ing. Surprisingly, however, there has been little research on
methods for quickly and reliably avoiding such dead ends in
Markov Decision Processes (MDPs).

It is useful to distinguish between two types of dead ends.
If a non-goal state doesn’t satisfy the preconditions of any
action, we term it an explicit dead end. Implicit dead ends,
on the other hand, have executable actions (just no workable
path to the goal) and are much harder for MDP solvers to
detect than the explicit type.

Broadly speaking, existing planners use one of two ap-
proaches for identifying dead ends. When faced with a
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yet-unvisited state, many planners (e.g., LRTDP (Bonet and
Geftner 2003)) apply a heuristic value function, which hope-
fully assigns a high cost to dead-end states. This method is
fast to invoke, but often fails to catch many implicit dead
ends, causing the planner to waste much time in subse-
quent search. Other MDP solvers use state-value estima-
tion approaches that recognize dead ends reliably but are
very expensive; for example, RFF (Teichteil-Koenigsbuch,
Infantes, and Kuter 2008), HMDPP (Keyder and Geffner
2008) and ReTrASE (Kolobov, Mausam, and Weld 2009)
employ full deterministic planners. When a problem con-
tains many dead ends, these MDP solvers may spend a lot of
their time launching classical planners from dead-end states.
Indeed, most probabilistic planners would run faster if they
could quickly recognize implicit dead ends.

This paper presents SIXTHSENSE, a novel mechanism to
do exactly that — quickly and reliably identify dead-end
states in MDPs. Underlying SIXTHSENSE is a key insight:
large sets of dead-end states can usually be characterized by
a compact logical conjunction, called a nogood, which “ex-
plains” why no solution exists. For example, a Mars rover
that flipped upside down will be unable to achieve its goal,
regardless of its location, the orientation of its wheels etc..
Knowing this explanation lets a planner quickly recognize
millions of states as dead ends. Crucially, dead ends in most
domains can be described with a small number of nogoods.
SIXTHSENSE learns nogoods by generating candidates with
a bottom-up greedy search (akin to that used in rule induc-
tion (Clark and Niblett 1989)) and tests them to avoid false
positives with a planning graph-based procedure. We make
the following contributions:

e We identify implicit dead ends as an important prob-
lem for probabilistic planning and present a fast domain-
independent machine learning algorithm for finding no-
goods, very compact representations of large sets of dead-

end states.

We show that SIXTHSENSE is sound — every nogood
output represents a set of true dead-end states.

We empirically demonstrate that SIXTHSENSE speeds up
two different types of MDP solvers on several IPPC do-
mains with implicit dead ends. SIXTHSENSE tends to
identify most of the dead ends that the solvers encounter,
reducing memory consumption by as much as 90%. Be-
cause SIXTHSENSE runs quickly, it also gives a 30-50%



speedup on large problems. With these savings, it enables
some planners to solve problems they couldn’t previously
handle.

Background

Markov Decision Processes (MDPs). In this paper, we
focus on probabilistic planning problems that are modeled
by factored goal-oriented indefinite-horizon MDPs. They
are defined as tuples of the form (S, A,7,C, G, sp), where
S is a finite set of states, A is a finite set of actions, 7
is a transition function § x A x § — [0,1] giving the
probability of moving from s; to s; by executing a, C is a
map S X A — R specifying action costs, s¢ is the start
state, and G is a set of (absorbing) goal states. Indefinite
horizon refers to the fact that the total action cost is accu-
mulated over a finite-length action sequence whose length
is apriori unknown. Our method also handles discounted
infinite-horizon MDPs, which reduce to the goal-oriented
case (Bertsekas and Tsitsiklis 1996).

In a factored MDP, each state is represented as a conjunc-
tion of domain literals. We concentrate on MDPs with goals
that are literal conjunctions as well. Solving an MDP means
finding a good (i.e., cost-minimizing) policy 7 : S — A
that specifies the actions the agent should take to eventually
reach the goal. The optimal expected cost of reaching the
goal from a state s satisfies the following conditions, called
Bellman equations:

Vi(s)
Vi(s)

0 if s € G, otherwise
. ! * /
Erélﬁ[C(s, a) + Z T (s,a,s)V*(s")]
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policy may be com-
argmin, . 4[C(s,a) +

Given V*(s), an optimal
puted as follows: 7*(s)

Ywes T(s,a,8)V ().

Solution Methods. The above equations suggest a dy-
namic programming-based way of finding an optimal policy,
called value iteration (VI), which iteratively updates state
values using Bellman equations in a Bellman backup and
follows the resulting policy until the values converge. VI
has given rise to many improvements. Trial-based methods,
e.g., RTDP, try to reach the goal multiple times (in multi-
ple trials) and update the value function over the states in
the trial path, successively improving the policy during each
Bellman backup. A popular variant, LRTDP, adds a termi-
nation condition to RTDP by labeling states whose values
have converged as ‘solved’ (Bonet and Geffner 2003).
Basis Functions. Most modern factored MDP solvers op-
erate in trials aimed at achieving the goal while looking for
a policy. Successful trials produce goal trajectories, which
are, in turn, a rich source of information about the structure
of the problem at hand. For instance, regressing the goal
through such a trajectory yields a set of literal conjunctions,
called basis functions (Kolobov, Mausam, and Weld 2009),
with an important property: each such conjunction is a pre-
condition for the trajectory suffix that was regressed to gen-
erate it. Thus, if a basis function applies in a state, this state
can’t be a dead end.

Determinization. Whenever an MDP solver finds a suc-
cessful trajectory to the goal, regression may be used to gen-
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erate basis functions. However, there is an often faster way
to get a trajectory — by running a classical planner on the
all-outcomes determinization (Yoon, Fern, and Givan 2007)
Dy of the domain D at hand. For each action a with pre-
condition ¢ and outcomes o1, . . ., 0, With respective proba-
bilities p1, ..., pn, all-outcome determinization produces a
set of deterministic actions ay, . . ., a,, each with precondi-
tion c and effect 0;. A plan from a given state to the goal in
the classical domain Dy exists if and only if a corresponding
trajectory exists in probabilistic domain D. Therefore, one
may use a classical planner on Dy to quickly generate basis
functions as needed.

Planning Graph. Blum & Furst (Blum and Furst 1997) de-
fine the planning graph as a directed graph alternating be-
tween proposition and action levels. The 0* level contains
all literals present in an initial state s. Odd levels contain all
actions, including a special no-op action, whose precondi-
tions are present (and pairwise “nonmutex’) in the previous
level. Subsequent even levels contain all literals from the ef-
fects of the previous action level. Two literals in a level are
mutex if all actions achieving them are pairwise mutex at the
previous level. Two actions in a level are mutex if their ef-
fects are inconsistent, one’s precondition is inconsistent with
the other’s effect, or one of their preconditions is mutex at
the previous level. As levels increase, additional actions and
literals appear (and mutexes disappear) until a fixed point is
reached. Graphplan (Blum and Furst 1997) uses the graph
as a polynomial-time reachability test for the goal, and we
soon show how it may be used as a sufficient condition for
nogoods.

Approach

A domain may have an exponential number of dead end
states, but usually there are just a few “explanations” for why
a state has no goal trajectory. A Mars rover flipped upside
down is in a dead-end state, irrespective of the values of the
other variables. In the Drive domain of IPPC-06, all states
with the (not (alive)) literal are dead ends. Knowing these
explanations obviates the dead-end analysis of each state in-
dividually and the need to store the explained dead ends in
order to identify them later.

The method we are proposing, SIXTHSENSE, strives to
induce explanations as above in the factored MDP set-
ting and use them to help the planner recognize dead ends
quickly and reliably. Formally, its objective is to find no-
goods, conjunctions of literals with the property that all
states in which such a conjunction holds (or, the states it rep-
resents) are dead ends. After at least one nogood is discov-
ered, whenever the planner encounters a new state, SIXTH-
SENSE notifies the planner if the state is represented by a
known nogood and hence is a dead end.

To discover nogoods, we devise a machine learning
generate-and-test algorithm for use by SIXTHSENSE. The
“generate” step proposes a candidate conjunction, using
some of the dead ends the planner has found so far as train-
ing data. For the testing stage, we develop a novel planning
graph-based algorithm that tries to prove that the candidate
is indeed a nogood. Nogood discovery happens in several
attempts called generalization rounds. First we outline the
generate-and-test procedure for a single round in more detail



and then describe the scheduler that decides when a gener-
alization round is to be invoked. Algorithm 1 contains the
learning algorithm’s pseudocode.

Generation of Candidate Nogoods. There are many ways
to generate a candidate but if, as we surmise, the number
of explanations/nogoods in a given problem is indeed very
small, naive hypotheses, e.g., conjunctions of literals picked
uniformly at random, are very unlikely to pass the test stage.
Instead, our procedure makes an “educated guess” by em-
ploying basis functions according to one crucial observation.
Recall that basis functions are literal conjunctions that result
from regressing the goal through a trajectory. Thus, the set
of all basis functions in a problem is an exhaustive set of suf-
ficient conditions that make states in the problem transient.
Since a basis function is a certificate of a positive-probability
trajectory to the goal, any state it represents can’t be a dead
end. On the other hand, any state represented by a nogood
by definition must be a dead end. These facts combine into
a theorem:

Theorem 1. A state may be generalized by a basis function
or by a nogood but not both.

Of more practical importance to us is the corollary that
any conjunction that has no conflicting pairs of literals (a lit-
eral and its negation) and contains the negation of at least
one literal in every basis function (i.e., defeats every basis
function) is a nogood. This fact provides a guiding principle
— form a candidate by going through each basis function in
the problem and, if the candidate does not defeat it, picking
the negation of one of the basis function’s literals. By the
end of the run, the candidate provably defeats all basis func-
tions in the problem. The idea has a big drawback though:
finding all basis functions in the problem is prohibitively
expensive. Fortunately, it turns out that making sure the
candidate defeats only a few randomly selected basis func-
tions (100-200 for the largest problems we encountered) is
enough in practice for the candidate to be a nogood with
reasonably high probability (although not for certain, moti-
vating the need for verification). Therefore, before invoking
the learning algorithm for the first time, our implementation
acquires 100 basis functions by running the classical planner
FF. Candidate generation is described on lines 5-11.

So far, we haven’t specified how exactly defeating literals
should be sampled. Here as well we can do better than naive
uniform sampling. Intuitively, the frequency of a literal’s oc-
currence in the dead ends that the “mothership” MDP solver
has encountered so far correlates with the likelihood of the
literal’s presence in nogoods. The algorithm’s sampleDe-
featingLiteral subroutine samples a literal defeating basis
function b with a probability proportionate to the literal’s
frequency in the dead ends represented by the constructed
portion of the nogood candidate. The method’s strengths are
twofold: not only does it take into account information from
the solver’s experience but also lets literals’ co-occurrence
patterns direct creation of the candidate.

Nogood Verification. Let us denote the problem of es-
tablishing whether a given conjunction is a nogood as
NOGOOD-DECISION. A NOGOOD-DECISION instance
can be broken down into a large set of problems on the
all-outcome determinization of the problem at hand, each
checking the existence of a path from a state the nogood
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Algorithm 1 SIXTHSENSE

l:

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44.
45:
46:
47.

Input: training set of known non-generalized dead ends
setDFEs, set of basis functions set BF's, set of nogoods
setNG, goal conjunction g, set of all domain literals
setL

function learnNogood(set DE's, set BF's, setNGs, g)
// construct a candidate
declare candidate conjunction ¢ = {}
for all b € setBF's do
if ¢ doesn’t defeat b then

declare literal L =
sampleDefeatingLiteral(set D E's, b, c¢)
c=cU{L}
end if
end for

/I check candidate with planning graph, and prune it
if checkWithPlanningGraph(setL, c, g) then
for all literals L € cdo
if checkWithPlanningGraph(setL, ¢ \ {L}, g) ==
success then
¢c=c\{L}
end if
end for
else
return failure
end if
/I if we got here then the candidate is a valid nogood
/I remove all dead ends from the training set
empty setDEs
add cto setNG
return success

function checkWithPlanningGraph(setL, c, g)
for all literals G in (g \ ¢) do
declare conjunction ¢’ = cU ((setL \ (—¢)) \ {G})
if PlanningGraph(c’) == success then
return failure
end if
end for
return success

function sampleDefeatingLiteral(set D Es, b, ¢)
declare counters C1, forall L € b\ ¢
for all d € setDEs do
if ¢ generalizes d then
forall L € bs.t. L € ddo
Cop++
end for
end if
end for
sample a literal L’ according to P(L’) ~ C,
return '




candidate represents to the goal. Each of these deterministic
plan existence decision problems is polynomial in the size
of the original MDP, by definition of the all-outcome deter-
minization, and PSP AC E-complete, as shown in (Bylan-
der 1994). All of them together can be solved (and therefore,
trivially, verified) in polynomial space by a Turing machine
that handles them in sequence and reuses space on the tape
after completing each instance, until either in some instance
a path to the goal is established to exist or until it nega-
tively decides all instances. Hence, NOGOOD-DECISION
can be verified in polynomial space, proving that NOGOOD-
DECISION € PSPACE and, coupled with a straightfor-
ward polynomial reduction from the same deterministic plan
existence decision problem, yields the following result:

Theorem 2. NOGOOD-DECISION PSPACE-
complete.

Thus, we may realistically expect an efficient algorithm
for NOGOOD-DECISION to be either sound or complete,
but not both. Accordingly, one key contribution of our pa-
per lies in noticing that all the checks in the naive scheme
above can be replaced by a single sound operation whose
time is polynomial in the problem size and that remains
effective in practice despite its theoretical incompleteness.
The check is carried out on several superstates, amalga-
mations of states represented by the candidate under veri-
fication. Each superstate is a conjunction of the candidate,
the negation of one of the goal literals that are not present
in the candidate, and all literals over all other variables in
the domain. Thus, the number of superstates is linear in
the number of literals in the goal conjunction. As an ex-
ample, suppose the complete set of literals in our prob-
lem is {A,—A, B,-B,C,—-C,D,-D, E,-E}, the goal is
A A =B A E, and the candidate is A A C. Then the set of
superstates our algorithm constructs is {A AB A C A D A
-DANEAN-E,ANBA-BANCADA-DA-E}. Note that
every state in which the candidate holds and the goal doesn’t
hold (i.e., every state in which the candidate holds and that
could be a dead end) represents one of these superstates. To
find out whether the candidate is a nogood, our procedure
runs the planning graph algorithm on each derived super-
state. Each instance returns success iff it can reach the goal
literals and resolve all mutexes between them. The initial
set of mutexes it feeds to the planning graph are just the mu-
texes between each literal and its negation. Since the plan-
ning graph is sound, failure on all superstate expansions
indicates the candidate is a true nogood (lines 28-35), as we
state in the following theorem.

Theorem 3. The candidate conjunction is a nogood if each
of the planning graph expansions on the superstates either
a) fails to achieve all of the goal literals or b) fails to resolve
mutexes among any two of the goal literals.

is

If the test is passed, we try to prune away unnecessary
literals (lines 13-18) that may have been included into the
candidate during sampling. This analog of Occam’s razor
strives to reduce the candidate to a minimal nogood and of-
ten gives us a much more general conjunction than the orig-
inal one at little extra verification cost. At the conclusion
of the pruning stage, compression empties the set of dead
ends that served as the training data so that the MDP solver
can fill it with new ones. The motivation for this step will
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become clear once we discuss scheduling of compression
invocations.

Scheduling. Since we don’t know apriori the number of
nogoods in the problem, we need to perform several gen-
eralization rounds. Optimally deciding when to do that is
hard, if not impossible, but we have designed an adaptive
scheduling mechanism that works well in practice. It tries to
estimate the size of the training set likely sufficient for learn-
ing an extra nogood, and invokes learning when that much
data has been accumulated. When generalization rounds
start failing, the scheduler calls them exponentially less fre-
quently, thereby wasting very little computation time after
all common nogoods have been discovered.

Our algorithm is inspired by the following tradeoff. The
sooner a successful round happens, the earlier SIXTHSENSE
can start using the resulting nogood, saving time and mem-
ory. On the other hand, trying too soon, with hardly any
training data available, is improbable to succeed. The exact
balance is difficult to locate even approximately, but our em-
pirical trials indicate three helpful trends: (1) The learning
algorithm is capable of operating successfully with surpris-
ingly little training data, as few as 10 dead ends. The num-
ber of basis functions doesn’t play a big role provided there
is more than about 100 of them. (2) If a round fails with
statistics collected from a given number of dead ends, their
number usually needs to be increased drastically. However,
because learning is probabilistic, such a failure could also
be accidental, so it’s justifiable to return to the “bad” train-
ing data size occasionally. (3) A typical successful general-
ization round saves the planner enough time and memory to
compensate for many failed ones. These three regularities
suggest the following algorithm.

o Initially, the scheduler waits for a small batch of basis
functions, 100, and a small number of dead ends, 10, to
be accumulated before invoking the first generalization

round.

After the first round and including it, whenever a round
succeeds the scheduler waits for a number of dead ends
unrecognized by known nogoods equal to half of the pre-
vious batch size to arrive before invoking the next round.
Decreasing the batch size is usually worth the risk accord-
ing to observations (2) and (3) and because the round be-
fore succeeded. If a round fails, the scheduler waits for
the accumulation of twice the previous number of unrec-
ognized dead ends before trying generalization again.

Perhaps unexpectedly, we witnessed very large training
sets to decrease the probability of learning a nogood. This
phenomenon can be explained by training sets of large sizes
usually containing dead ends from different parts of the state
space and hence caused by different nogoods. As an up-
shot, the literal occurrence statistics induced by such sets
make it hard to generate reasonable candidates. This finding
led us to restrict the training batch size to 10000. If, due
to exponential backoff, the scheduler is forced to wait for
the arrival of more than n > 10000 dead ends, it skips the
first (n — 10000) and retains only the latest 10000 for train-
ing. For the same locality considerations, each training set
is emptied at the end of each round (line 24).

Algorithm’s Properties Before presenting the experimen-
tal results, we analyze SIXTHSENSE’s properties. One of



the most important is summarized in the following theorem,
which follows directly from the definition of a nogood:

Theorem 4. The procedure of identifying dead ends as
states in which at least one nogood holds is sound.

Importantly, SIXTHSENSE puts no bounds on the nogood
length, being theoretically capable of discovering any no-
good. However, nontrivial theoretical guarantees on the
amount of training data needed to construct a nogood of a
particular length (even length 1) with at least a certain prob-
ability, unsurprisingly, seem to require strong assumptions
about reachability of dead ends and about properties of the
classical planner used to obtain the basis functions. Such as-
sumptions would cause these guarantees to be of no use in
practice. At the same time, we can prove another important
property of SIXTHSENSE:

Theorem 5. Once a nogood has been discovered and mem-
orized by SIXTHSENSE, SIXTHSENSE will never rediscover
it again.

This fact is a consequence of using only dead ends that are
not recognized by known nogoods to construct the training
sets, as described in the Scheduling subsection, and eras-
ing the training data after each generalization attempt. As
a result, since each nogood candidate is built up iteratively
by sampling literals from a distribution induced by training
dead ends that are represented by the constructed portion of
the candidate, and because no training dead end is repre-
sented by any known nogood, the probability of sampling a
known nogood (lines 5-11) is strictly 0.

Regarding SIXTHSENSE’s speed, the number of common
nogoods in any given problem is rather small, which makes
identifying dead ends by iterating over the nogoods a very
quick procedure. Moreover, a generalization round is poly-
nomial in the training data size, and the training data size is
linear in the size of the problem (due to the length of the dead
ends and basis functions). We point out, however, that ob-
taining the training data theoretically takes exponential time.
Nevertheless, since training dead ends are identified as a part
of the usual planning procedure in most MDP solvers, the
only extra work to be done for SIXTHSENSE is obtaining a
few basis functions. Their required number is so small that
in nearly every probabilistic problem, they can be quickly
obtained by invoking a speedy deterministic planner from
several states. This explains why in practice SIXTHSENSE
is very fast.

Last but not least, we believe that SIXTHSENSE can be in-
corporated into nearly any existing trial-based factored MDP
solver, since, as explained above, the training data SIXTH-
SENSE requires is either available in these solvers and can
be cheaply extracted, or can be obtained independently of
the solver’s operation by invoking a deterministic planner.

Experimental Results

Our goal in the experiments was to explore the benefits
SIXTHSENSE brings to different types of planners, as well
as to gauge effectiveness of nogoods and the amount of com-
putational resources taken to generate them. We used three
IPPC domains as benchmarks: Exploding Blocks World-
08 (EBW-08), Exploding Blocks World-06 (EBW-06), and
Drive-06. IPPC-06 and -08 contained several more domains
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with dead ends, but their structure is similar to that of the
domains we chose. In all experiments, we restricted each
MDP solver to use no more than 2 GB of memory.
Structure of Dead Ends in IPPC Domains. Among the
IPPC benchmarks, we found domains with only two types
of implicit dead ends. In the Drive domain, which exem-
plifies the first of them, the agent’s goal is to stay alive and
reach a destination by driving through a road network with
traffic lights. The agent may die trying but, because of the
domain formulation, this does not necessarily prevent the
car from driving and reaching the destination. Thus, all of
the implicit dead ends in the domain are generalized by the
singleton conjunction (not alive). A few other IPPC do-
mains, e.g., Schedule, resemble Drive in having one or sev-
eral exclusively single-literal nogoods representing all the
dead ends. Such no-goods are typically easy for SIXTH-
SENSE to derive.

EBW-06 and -08’s dead ends are much more complex,
and their structure is unique among the IPPC domains. In
this domain, the objective is to rearrange a number of blocks
from one configuration to another, and each block might ex-
plode in the process. For each goal literal, EBW has two
multiple-literal nogoods explaining when this literal can’t
be achieved. For example, if block b4 needs to be on
block b8 in the goal configuration then any state in which
b4 or b8 explodes before being picked up by the manipula-
tor is a dead end, represented either by nogood (not (no —
destroyed b4)) A (not (holding b4)) A (not (on b4 b8)) or
by (not (no — destroyed b8)) A (not (on b4 b8)). We call
such nogoods immediate and point out that EBW has other
types of nogoods as well. The variety and structural com-
plexity of EBW nogoods makes them challenging to learn.
Planners. As pointed out in the beginning, MDP solvers can
be divided into two groups according to the way they handle
dead ends. Some of them identify dead ends using fast but
unreliable means like heuristics, which miss a lot of dead
ends, causing the planner to waste time and memory explor-
ing useless parts of the state space. We will call such plan-
ners “fast but insensitive” with respect to dead ends. Most
others use more accurate but also more expensive dead-end
identification means. We term these planners “sensitive but
slow” in their treatment of dead ends. The monikers for both
types apply only to the way these solvers handle dead ends
and not to their overall performance. With this in mind, we
demonstrate the effects SIXTHSENSE has on each type.
Benefits to Fast but Insensitive. This group of plan-
ners is represented in our experiments by LRTDP with
the FF heuristic (Bonet and Geffner 2005). Denoting
the FF heuristic as hrpr, we will call this combination
LRTDP+hrp, and LRTDP+hrpr equipped with SIXTH-
SENSE — LRTDP+hpp+6S for short. Implementation-
wise, SIXTHSENSE is incorporated into hr, whereby hpp,
when evaluating a newly encountered state, first consults
the available no-goods; only when the state fails to match
any nogood does hpp resort to its traditional means of esti-
mating the state value. Without SIXTHSENSE, hpp misses
many dead ends, since it ignores actions’ delete effects.

Figure 1 shows the time and memory savings due to
SIXTHSENSE across three domains as the percentage of
the resources LRTDP+hpr took to solve the correspond-
ing problems (the higher the curves are, the bigger the sav-
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Figure 2: Resource savings from SIXTHSENSE for LRTDP+GOTH (representing the “Sensitive but Slow” type of planners).

ings). No data points for some problems indicate that nei-
ther LRTDP+hppr nor LRTDP+A g r+6S could solve them
with only 2GB of RAM. There are a few large problems that
could only be solved by LRTDP+h rz+6S. Their data points
are marked with a x and savings for them are set at 100%
(e.g., on problem 14 of EBW-06) as a matter of visualization,
because we don’t know how much resources LRTDP+h
would need to solve them. Additionally, we point out that
as a general trend, problems grow in complexity within each
domain with the increasing ordinal. However, the increase
in difficulty is not guaranteed for any two adjacent prob-
lems, especially in domains with a rich structure, causing
the jaggedness of graphs for EBW-06 and -08.

As the graphs demonstrate, the memory savings on av-
erage grow very gradually but can reach a staggering
90% on the largest problems. In fact, on the problems
marked with a x, they enable LRTDP+A pp+6S to do what
LRTDP+hpp can’t. The crucial qualitative distinction of
LRTDP+hpp+6S from LRTDP+hp explaining this is that
since nogoods help the former recognize more states as dead
ends it doesn’t explore (and hence memorize) their descen-
dants. Notably, the time savings are lagging for the small-
est and some medium-sized problems (approximately 1-7).
However, each of them takes only a few seconds to solve,
so the overhead of SIXTHSENSE may be slightly noticeable.
On large problems, SIXTHSENSE fully comes into its ele-
ment and saves 30% or more of the planning time.

Benefits to Sensitive but Slow. Planners of this type in-
clude top IPPC performers RFF and HMDPP, as well as Re-
TrASE and others. Most of them use a deterministic plan-
ner, e.g., FF, on a domain determinization to find a plan
from the given state to the goal and use such plans in var-
ious ways to construct a policy. Whenever the determinis-
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tic planner can prove nonexistence of a path to the goal or
fails to simply find one within a certain time, these MDP
solvers know the state from which the planner was launched
to be a dead end. Due to the properties of classical planners,
this method of dead-end identification is reliable but expen-
sive. To model it, we employed LRTDP with the GOTH
heuristic (Kolobov, Mausam, and Weld 2010). GOTH eval-
uates states with classical planners, so incorporating SIXTH-
SENSE into GOTH allows for simulating the effects SIXTH-
SENSE has on the above algorithms. Figure 2 illustrates
LRTDP+GOTH+6S’s behavior. Qualitatively, the results
look similar to LRTDP+h g r+6S but in fact there is a crit-
ical difference — the time savings in the latter case grow
faster. This is a manifestation of the fundamental distinc-
tion of SIXTHSENSE in the two settings. For the “Sensitive
but Slow”, SIXTHSENSE helps recognize implicit dead ends
faster (and obviates memoizing them). For the “Fast but In-
sensitive”, it also obviates exploring many of the implicit
dead ends’ descendants, causing a faster savings growth
with problem size.

Last but not least, we found that SIXTHSENSE al-
most never takes more than 10% of LRTDP+hrr+6S’s or
LRTDP+GOTH+6S’s running time. For LRTDP+h p+6S,
this fraction includes the time spent on deterministic plan-
ner invocations to obtain the basis functions, whereas in
LRTDP+GOTH+6S, the classical plans are available to
SIXTHSENSE for free. In fact, as the problem size grows,
SIXTHSENSE eventually gets to occupy less than 0.5% of
the total planning time. As an illustration of SIXTHSENSE’s
operation, we found out that it always finds the single no-
good in the Drive domain after using just 10 dead ends for
training, and manages to acquire most of the statistically sig-
nificant immediate dead ends in EBW. In the available EBW



problems, their number is always less than a few several
dozens, which, considering the space savings they bring, at-
tests to nogoods’ high efficiency.

Discussion

Although our preliminary experiments clearly indicate the
benefits of nogoods and SIXTHSENSE, we believe that
SIXTHSENSE’s effectiveness in some settings will increase
if the algorithm is extended to generate nogoods in first-
order logic. This capability would be helpful, for example,
in the EBW domain, where, besides the immediate nogoods,
there are others of the form “block b is not in its goal position
and has an exploded block somewhere in the stack above
it”. Indeed, to move b one would first need to remove all
blocks, including the exploded one, above it in the stack, but
in EBW exploded blocks can’t be relocated. Expressed in
first-order logic, this statement would clearly capture many
dead ends. In propositional logic, however, it would trans-
late to a disjunction of many ground conjunctions, each of
which is a nogood. Each such ground nogood separately ac-
counts for a small fraction of dead ends in the domain and
is thus almost statistically unnoticeable, preventing SIXTH-
SENSE from discovering it. Granted, our experiments imply
that first-order nogoods are not numerically significant in the
benchmark EBW problems. However, one can construct in-
stances where this would not be true.

Related Work

To our knowledge, there have been no explicit previous
attempts to handle identification of dead ends in MDPs.
The “Sensitive but Slow” and “Fast but Insensitive” mecha-
nisms weren’t actually designed specifically for this purpose
and are unsatisfactory in many ways described in the Ex-
periments section. The general approach of SIXTHSENSE
somewhat resembles work on explanation-based learning
(EBL) (C. Knoblock and Etzioni 1991). In EBL, the planner
would try to derive control rules for action selection by ana-
lyzing its own execution traces. Besides EBL, SIXTHSENSE
can also be viewed as a machine learning algorithm for rule
induction, similar in purpose, for example, to CN2 (Clark
and Niblett 1989). While this analogy is valid, SIXTH-
SENSE operates under different requirements than most such
algorithms, because we demand that SIXTHSENSE-derived
rules (nogoods) have zero false-positive rate. Last but not
least, our term “nogood” shares its name with a concept
from the area of constraint satisfaction problems (CSPs).
However, the semantics of nogoods is CSPs is different,
and the methodology for finding them, largely summarized
in (Dechter 2003), has nothing in common with ours. The
idea of leveraging basis functions was inspired by their use
in (Gretton and Thiebaux 2004) and ReTrASE, as well as
the evidence provided by solvers like FFReplan and RFF
that many deterministic plans that we derive basis functions
from can be computed very quickly in quantities.

Conclusion

We have identified recognition of implicit dead ends in
MDPs as a source of time and memory savings for proba-
bilistic planners. To materialize these benefits, we proposed
SIXTHSENSE, a machine learning algorithm that uncovers
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the few concise “explanations” of implicit deads inherent in
most real-life and artificial scenarios requiring planning un-
der uncertainty. The explanations (nogoods) help the plan-
ner recognize most dead ends in a problem quickly and reli-
ably, removing the need for a separate analysis of each such
state and expensive methods to do it. We feel that in the
future SIXTHSENSE could be improved further by being ex-
tended to handle first-order logic expressions, which may
be useful in domains like EBW. We empirically illustrate
SIXTHSENSE’s operation and show how, even as it is, it can
help a wide range of existing planners save a large fraction
of resources on problems with dead ends. Moreover, these
gains are achieved with very little overhead.
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