

Planning in Dynamic Environments:

Extending HTNs with Nonlinear Continuous Effects

Matt Molineaux1, Matthew Klenk2, and David W. Aha2
1Knexus Research Corporation; Springfield, VA 22153

2Navy Center for Applied Research in Artificial Intelligence;
Naval Research Laboratory (Code 5514); Washington, DC 20375

matthew.molineaux@knexusresearch.com | {matthew.klenk.ctr,david.aha}@nrl.navy.mil

Abstract

Planning in dynamic continuous environments requires
reasoning about nonlinear continuous effects, which
previous Hierarchical Task Network (HTN) planners do
not support. In this paper, we extend an existing HTN
planner with a new state projection algorithm. To our
knowledge, this is the first HTN planner that can reason
about nonlinear continuous effects. We use a wait action to
instruct this planner to consider continuous effects in a
given state. We also introduce a new planning domain to
demonstrate the benefits of planning with nonlinear
continuous effects. We compare our approach with a linear
continuous effects planner and a discrete effects HTN
planner on a benchmark domain, which reveals that its
additional costs are largely mitigated by domain
knowledge. Finally, we present an initial application of
this algorithm in a practical domain, a Navy training
simulation, illustrating the utility of this approach for
planning in dynamic continuous environments.

1 Introduction
Hierarchical Task Network (HTN) planning is a proven
technique for quickly generating large plans to solve
problems in challenging environments (e.g., strategy
simulations). These planners often represent changes to
the environment as discrete and instantaneous, even
though aspects of these environments change
continuously over time, frequently as the result of
exogenous events. We show that this limiting assumption
can be problematic for HTN planners. Therefore, we
developed SHOP2PDDL+, an extension of SHOP2 (Nau et
al. 2003) that can reason about nonlinear continuous
effects. In particular, it reasons explicitly about fluents,
which are values that change over time (e.g., the amount
of fuel on a ship), processes, which describe when and
how they change, and events, which describe
instantaneous occurrences resulting from fluent changes.
SHOP2PDDL+ uses a novel state projection algorithm to
predict the continuous and discrete state of the
environment at any arbitrary point in the future, and a
wait action to control the passage of time during planning.

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 In addition to extending SHOP2, we also: (1) introduce
a motivating, paradigmatic stunt car planning domain that
requires explicit reasoning about nonlinear continuous
effects; (2) empirically compare (on benchmark tasks) the
performance of SHOP2PDDL+ with SHOP2 and COLIN
(Coles et al. 2009), a planner that can reason about linear
continuous effects; and (3) describe an application of
SHOP2PDDL+ to tasks involving a Navy training
simulation, which demonstrates that our algorithm can be
applied to practical problems.
 We begin by discussing this training simulation and our
planning representation. Next, we introduce the wait
action, the state projection algorithm, and its integration
with SHOP2. Then we empirically assess our
performance on a range of planning problems and close
with a discussion of related and future work.

2 TAO Sandbox and PDDL+
The TAO Sandbox is a strategy simulator used by the US
Navy for training Tactical Action Officers in anti-
submarine warfare (Auslander et al. 2009). Using it,
trainees accomplish their objectives by giving orders to
naval ships, planes, and helicopters. Vessel positions, fuel
levels, heading, and speed are important fluents in this
domain. The actions are orders, which occur
instantaneously. The effects of these orders may be
instantaneous (e.g., launch a helicopter), of fixed duration
(e.g., move to a specific location), or of indefinite
duration (e.g., follow another vessel). Therefore, agents
interacting with the TAO Sandbox must reason about
instantaneous changes and continuous effects.
 The HTN extensions that we present are motivated by
interest in applying a continuous planning (desJardins et
al. 1999) agent in the TAO Sandbox domain. It must
generate plans and monitor their execution for
opportunities and failures. Because the TAO Sandbox is
partially observable, this agent must monitor both the
discrete and continuous state of the environment during
plan execution. Frequently, knowing the value of fluents
at individual time points is insufficient. Consider a
vehicle that should have five gallons of fuel when
reaching its destination. I
changing more rapidly than expected, perhaps due to a

1115

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

leak, then the agent should detect this while the vehicle is
moving and not wait until after the action completes.
 PDDL+ (Fox and Long 2006) was designed to support
representations of mixed discrete-continuous planning
domains. In PDDL+, changes to the discrete state occur as
the result of both actions and events occurring
in the environment. As mentioned in Section 1, processes
describe changes to fluents occurring over time, while
events describe discrete state changes occurring at an
instantaneous point in time. Each PDDL+ planning
domain includes definitions for its processes and events in
terms of their participant types, conditions, and effects. A
process is active for each set of objects that satisfies a

 participant types and conditions at a
given time. All of the effects of processes are continuous
and represented using algebraic functions, which describe
the values of fluents with respect to time. Similarly, an
event occurs when a set of objects satisfy the participant
types and conditions of an event definition. The effects of
an event describe discrete changes to the state; as a result,
the set of active processes may be altered. In Section 3,
we present a method for projecting future states that is
useful for HTN planning in environments described using
PDDL+.

3 Extensions for Continuous Effects
SHOP2PDDL+ extensions to SHOP2 (Nau et al. 2003)
include the addition of a wait action, which allows the
planner to reason about continuous effects, and a state
projection algorithm, which projects the effects of active
processes and occurring events. Section 3.3 presents an
example of this algorithm.

3.1 Wait Action
SHOP2 is a state space planner; at each step in its search,
applicable actions are considered to extend an existing
plan, and a new state is extrapolated. We introduce a
special wait action that, for the purposes of search,
appears to function as any other action. The wait action
takes one argument, wait-time, representing the
duration.1 It is always applicable, and because time passes
during this action, it is necessary to compute the effects of
the active processes and events that occur. All other
actions are instantaneous and added sequentially with any
number of actions occurring between waits. Although this
is similar to a mechanism described by McDermott
(2003), our wait action gives an agent the ability to wait
for any amount of time. However, this freedom requires
the agent to reason about how much time is appropriate to
wait.

3.2 State Projection Algorithm
Changes in the environment during the wait action are
projected using the state projection algorithm summarized

1This could easily be extended to include an arbitrary condition.
In this case, the duration would be until the condition was
satisfied in the environment.

in Figure 1. It takes as inputs: the starting time (tinit) and
ending time (tend = tinit + wait-time) of the wait action, the
current state, and the planning domain. This algorithm has
three steps: building the fluent update table, determining
eligible events, and updating the state until the time of the
next event. This is repeated until no events are left to
occur within the duration of the wait action.
 The fluent update table F describes all continuous
changes occurring after time tinit. To build it, the
algorithm iterates over each process definition p from the
planning domain. For each set of objects that satisfy p
participant types and conditions, an active process pi is
created. For each fluent f that is affected by a continuous
effect of pi, a fluent update function uf(t) is created and
added to F. (If there are multiple fluent update functions
referring to the same fluent, they are combined through
summation into a single function in F.)
 In step 2, for each instantiation ei of each event
definition e, this algorithm inserts ei into the set of eligible
events (i.e., that may occur as a result of the active
processes). Also, it uses F to create an event threshold
function thc(t) for each continuous condition c of each ei,
where thc(t)=0 when c is satisfied at time t.
 Because thc(t) may be defined using other fluents, this
algorithm (recursively) replaces them with their fluent
update functions uf(t) until only constants and the time
variable t remain.
 Step 3 determines when the next event will occur and
updates the state accordingly. It begins by initializing the
earliest potential event time tee to the latest time to be
considered, tend. Then, for each event threshold function
thc(t), it searches for a root (i.e., where thc(t)=0) in the
range [tinit, tee). If one is found, the algorithm updates tee to
the minimum root tminRoot in this range. That is,

Legend: S=State P=Planning domain, ce=continuous effect,
c=continuous condition, f=fluent, uf(t) F=fluent update
functions, thc(t) E=event threshold functions, tee=earliest
event time, tinit=start time, tend=wait end

State ProjectState(tinit, tend, S, P)
//Step 1: Build fluent-update-table F

For each process definition p P
For each pi in instantiations(p)

For each ce in pi, add uf(t) to F
//Step 2: Determine eligible-events
For each event definition e P

For each ei in instantiations(e)
Add ei to eligible-events
Add thc(t) to E for each c in ei

//Step 3: Update state to after next event
do until (ei , occurs(ei) or tee=tend)

For each thc(t) in E, tee=minRoot(tinit ,tend, thc(t)))
For each uf(t) in F, S.f=uf(tee)
For each ei in eligible-events

if(occurs(ei)), S=updateState(ei,S)
if(tee!=tend)
 then ProjectState (tee, tend, S, P)

 else return(S)

Figure 1: State projection algorithm

1116

thc(tminRoot)=0 and t thc(t)=0, t tminRoot. Thus, tminRoot is
the next time point at which event ei may potentially
occur. To find the minimum root of thc(t), recursive
searches are made for extrema (i.e., maxima and minima)
using golden section search and roots using bisection
(Press et al. 2007). When a root is found at time troot,
search continues for the smaller range [tinit, troot) until all
extrema in the search range are either all negative or all
positive. This procedure will find the first root in the
range provided the function is continuous and smooth
over [tinit, tee).At this point, we know tminRoot=troot for thc(t).
After iterating through each event threshold function, the
resulting tee is the next time point at which any event may
occur.
 Next, the algorithm updates the continuous state and
determines if any events occur. For each fluent update
function uf(t), the algorithm updates fluent f to uf(tee).
Then, if the conditions of any of the eligible events ei are
satisfied, the discrete state is updated accordingly.
Otherwise, Step 3 is repeated. However, if an event did
occur, then the set of active processes may have changed.
Therefore, the entire procedure is repeated until no event
occurs prior to tend, at which time all fluents are updated to
uf(tend). We next present an example to illustrate this.

3.3 Example
Table 1: Process for projecting position, where #t is a

special variable that denotes time in PDDL+
Process Name ShipMovement

Participants ?ship type = NavalShip
Conditions
(Discrete Only)

(movingTo ?ship ?x ?y)
(speedOf ?ship ?speed)

Effects
(Continuous Only)

(increase (atX ?ship)
 (* (cos (headingOf ?ship))
 ?speed #t))
(increase (atY ?ship)
 (* (sin (headingOf ?ship))
 ?speed #t))

Consider the following example of a ship moving in the
TAO Sandbox environment. To represent a ship s motion,
we define the ship movement process shown in Table 1.
This process has one participant of type NavalShip
representing the moving ship. Its conditions include the

destination and speed. The continuous effects
define functions that update the ship with
respect to time. The update functions are defined in terms
of the fluent headingOf, which could vary continuously at
the same time as a result of another active process.

When the ship reaches its destination, its new position
will trigger the end of movement event defined in Table
2. Like the ShipMovement process definition, the
EndOfMovement event definition has one participant of
type NavalShip. It has two discrete conditions and one
continuous condition relating the fluents representing the

effect of this
event is that the ship is no longer moving toward its
destination.

Table 2: Event definition for the end of a ship's movement

Consider a situation in which the agent has just taken
the action of ordering a ship, Ship1, to move to location
(5.6, 7.8). Figure 2 shows the current state. The
continuous state includes fluents describing the location
and heading of the ship and the discrete state includes the

speed and its current orders.
 From this state, the planner applies the wait(2) action.
To determine the state after 2 time units, the planner uses
the state prediction algorithm with the above event and
process definitions. There is only one possible set of
participants for the ShipMovement process definition:

?ship = Ship1. The conditions are satisfied for this
binding, resulting in one active process with two fluent
update functions:
(atX Ship1) , uf(#t) =
 (+ 3.4 (*(cos (headingOf Ship1)) 20 #t))
(atY Ship1) , uf(#t) =
 (+ 2.3 (*(sin (headingOf Ship1)) 20 #t))

The fluent update table F, consisting of these two
functions, determines ocation until the next
event. To project the state forward, we generate a set of
eligible events. In this situation, there is only one set of
objects that satisfies the EndOfMovement event
discrete conditions: {?ship = Ship1}. This event has one
continuous condition:
(<= (dist (atX Ship1) (atY Ship1) 5.6 7.8)
 0.5)

From this, the algorithm creates the following event
threshold function:
 thc(#t)=
 (- (dist (+ 3.4 (* (cos 68.2) 20 #t))
 (+ 2.3 (* (sin 68.2) 20 #t))
 5.6 7.8)
 0.5)

Step 3 of the state projection algorithm begins by finding
the minimum root for thc(#t). In this case, thc(#t) = 0
when #t = .271. To determine if any events occur at this
point, the algorithm updates each fluent f F to the value
given by uf(.271). In this case, the values for (atX Ship1)
and (atY Ship1) are found to be 5.41 and 7.34,
respectively. These satisfy the continuous condition for

Event Name EndOfMovement

Participants ?ship type = NavalShip
Conditions
(Discrete and
 Continuous)

(movingTo ?ship ?x ?y)
(speedOf ?ship ?speed)
(<=(dist(atX ?ship)(atY ?ship)
 ?x ?y)
 0.5)

Effects
(Discrete and
 Continuous)

(not (movingTo ?ship ?x ?y))
(not (speedOf ?ship ?speed))
(speedOf ?ship 0)

(atX Ship1) = 3.4 (Continuous)
(atY Ship1) = 2.3 (Continuous)
(headingOf Ship1) = 68.2 (Continuous)
(speedOf Ship1 20) (Discrete)
(isa Ship1 NavalShip) (Discrete)
(movingTo Ship1 5.6 7.8) (Discrete)

Figure 2: Initial TAO Sandbox state (simplified for clarity)

1117

the eligible EndOfMovement event. Therefore, this event
occurs, which updates the discrete state by deleting the
movement statement, (movingTo Ship1 5.6 7.8), and

(speedOf Ship1 0). No other
events are eligible to occur. Because .271 is less than 2,
another iteration of the algorithm is performed. No
processes are now active, as no set of objects satisfies the
ShipMovement process definition conditions. Therefore,
the state remains the same until wait action ends.
3.4 Incorporation into HTN planning

Our agent uses the SHOP2 (Nau et al. 2003) planner.
SHOP2 takes as input a task to be performed and
produces a sequence of actions. The task is decomposed
into subtasks and actions using methods. We use this
hierarchical structure to determine when to apply a wait
action and for how long. Consider the ship movement
example above. The method and action in Figure 3
decompose the movingShipAndWait method into a move
action, which issues a move order to a single ship, and a
wait action, which allows the movement process to update
the state over time. The durationOfMovement
precondition determines the predicted amount of time
required for the ship to reach its destination. Therefore,
the planner
and continue planning.

4 Evaluation
To evaluate the utility of our approach, we performed a
series of case studies with the following objectives:

Illustrate the class of problems for which our method
is capable of generating plans
Determine the comparative costs of our approach vs.
existing methods on benchmark problems
Ascertain its applicability in strategy simulations

4.1 Illustrative Domains
First, we tested SHOP2PDDL+ on
(2003) generator problem, which has linear continuous
effects. This problem requires a generator to run for 100
time units. Its fuel tank has a 90 unit capacity, and it
consumes one unit of fuel per unit of time. A refill action
is available that adds two units of fuel per unit of time.
We added an HTN method to the planning domain that
determines when, after the generator starts running, to
begin the refueling process. Our state prediction

algorithm accurately projects the continuous effects of the
refueling process, and the planner creates a successful
plan.
 To illustrate the importance of reasoning about
nonlinear continuous effects, we introduce a stunt car
domain inspired by Hollywood action movies. This
domain includes a stunt car and a wall. Its two processes,

velocity and position using the following continuous
effects:

(increase (vel ?obj) (* (accel ?obj) #t))
(increase (pos ?car) (* (vel ?car) #t))

As a result, the position of the car is a nonlinear function
of time. This domain only action is to apply the brake,
which begins the acceleration process with an
acceleration of -14m/s2. In this domain, a crash, described
by an event definition, occurs when the positions for the
car and wall are the same. If the crash occurs at over
13m/s, the driver dies. If the crash occurs below 9m/s, the
crash is not spectacular enough. If the crash occurs
between 9m/s and 13m/s, then there is spectacular crash
and the driver survives, accomplishing the goal. In our
simple test problem, the stunt car begins 100m away from
the wall, traveling at a speed of 44m/s. Using an HTN
method, SHOP2PDDL+ is able to generate a successful
plan, indicating that it can reason about nonlinear
continuous effects.

4.2 Empirical Comparison: Rover Domain
To assess the additional costs of SHOP2PDDL+, we
compared its performance on a modified single rover
domain2 that was used to test COLIN (Coles et al. 2009),
a linear continuous planner. Specifically, we compare
SHOP2PDDL+ plan generation times on 20 planning
problems from this domain to COLIN previously
reported plan generation times. These problems were
generated using the IPC3 parameters permitting a
comparison in the competition
(Long and Fox 2003). Given that the nature of these
comparisons (i.e., domain-independent versus HTN
planners running on different hardware) prevents a
quantitative analysis, we focus on a qualitative
assessment of the additional costs of SHOP2PDDL+.

2PDDL domain and planning files were downloaded from
the COLIN website at:
personal.cis.strath.ac.uk/~amanda/ContinuousPlanning/

(defMethod
 (movingShipAndWait ?ship ?to-x ?to-y)
 :preconditions
 (durationOfMovement ?ship ?to-x ?to-y
 ?duration)
 :subtasks
 (move ?ship ?to-x ?to-y)
 (wait ?duration))

(defAction (move ?unit ?x ?y)
 :preconditions
 (not (movingTo ?unit ?x ?y))
 :effects (movingTo ?unit ?x ?y))

Figure 3: HTN method and action for moving a ship

1118

The results, shown in Figure 4, compare the average
planning time of SHOP2PDDL+ to the other two planners.
To better illustrate scaling issues, we group the problems
by their difficulty as determined by the IPC3 parameters.
Both SHOP2 and SHOP2PDDL+ solved all the planning
problems, while COLIN failed on three of the
challenging and one of the medium problems.

Our analysis of these results identifies two key
observations. First, the expected large performance gains
of HTN planning vs. domain-independent approaches
occur. Second, our comparison with SHOP2 indicates that
there is significant overhead in projecting all continuous
values through all states. An important aspect of future
work is to explore dynamic programming methods for
improving efficiency, but this result establishes a baseline
performance for an HTN planner reasoning about
continuous effects.

4.3 Application to the TAO Sandbox
In the TAO Sandbox, our planner can generate plans for 6
distinct scenarios. Our domain model contains 7 process
definitions and 30 event definitions. We tested it in
scenarios containing up to 12 distinct moving vessels.
Typically, SHOP2PDDL+ generates solution plans of 50+
actions in about 1 second. Our future work will explore
the quality of the generated plans and the utility of state
projection by assessing results of plan execution in this
environment.

4.4 General Discussion
The generator and stunt car problems demonstrate that
our planner can reason about domains with linear and
non-linear continuous effects. Furthermore, results on the
rover domains indicate that, while there is a significant
cost in plan generation time, it is largely mitigated by
domain knowledge required for HTN planning. The
results from the rover domain and TAO Sandbox indicate
that the overhead of our approach for planning with
nonlinear continuous effects is sufficiently low to

encourage its further application to strategy simulation
tasks.

5 Related work
Within the HTN planning community, several efforts
have focused on reasoning about temporal domains. The
majority of this work focused on using the structure of
HTNs to propagate temporal constraints (e.g., Yorke-
Smith 2005, Castillo et al. 2006). We are not aware of
any HTN planner that reasons about the (linear or
nonlinear) continuous effects of actions or exogenous
events.
 Work exploring planning with continuous processes
began with Zeno (Penberthy and Weld 1994), which
modeled processes using differential equations. While an
important first step, Zeno cannot reason about multiple
processes that affect a single fluent.
 More recently, a common approach to temporal
planning problems has been to sidestep continuous
reasoning by transforming each temporal action into an
instantaneous action (Cushing et al. 2007).
Unfortunately, this approach is insufficient for domains
with rich temporal interactions between actions,
processes, and events (e.g., domains in which concurrent
actions are required to achieve a solution).

Recognizing this limitation, several planners have been
developed for temporal reasoning about continuous
effects. The Optop estimated-regression planner
(McDermott 2003) uses a similar strategy to ours for
temporally projecting the continuous state at the time of a
wait action. Unlike our approach, it requires the planner
to plan after the next event occurs instead of from an
arbitrary point in the future. As indicated previously,
COLIN can represent the continuous effects of durative
actions (Coles et al. 2009). While useful in some
environments, representations using durative actions,
rather than processes, do not allow a planner to reason
about the long-term consequences of exogenous events.
 COLIN and Optop both focus solely on linear changes
to fluents. SHOP2PDDL+ instead reasons about processes
whose effects contain arbitrary continuous functions.
Similar to our work, Kongming (Li and Williams 2008)
can project nonlinear continuous effects of durative
actions using flowtubes. It encodes undersea navigation
problems in a mixed logic linear/non-linear program
solvable using standard techniques. While a promising
approach, there is considerable difficulty in extending

 approach to reason about actions with
variable durations. However, actions with variable
duration are common in strategy simulations (e.g.,
consider the ship-moving process for the TAO Sandbox).
VAL (Howey et al. 2004) addresses polynomial
continuous effects for plan validation and repair in mixed-
initiative planning with application to another practical
domain (i.e., space missions). In contrast, our focus is on
arbitrary continuous effects in the context of automated
planning.

Figure 4: Comparison of plan generation times for
SHOP2PDDL+, SHOP2, and COLIN on rover problems,
sorted by problem difficulty

1119

 Baral et al. (2002) define a similar state projection
algorithm using an alternative formalization for planning
with continuous effects. By using the PDDL+
formalization, our approach considers exogenous changes
in the environment.

6 Conclusions
We presented a novel state projection algorithm for use in
continuous temporal environments and illustrated its
implementation in SHOP2PDDL+, an HTN planner. Unlike
previous approaches, our algorithm allows for continuous
effects to contain arbitrary continuous functions, and our
wait operator allows the planner to consider future actions
at any time.
 Our focus is on the projection of fluents within
individual states with respect to time. Therefore,
SHOP2PDDL+ needs to predict the duration of actions and
their continuous effects. This is necessary for planning, as
shown above, and for plan-monitoring agents.
SHOP2PDDL+ was developed in the context of a
continuous planning agent, which reasons about its goals
while performing tasks in the TAO Sandbox simulation
(Molineaux et al. 2010).
 In future work, we intend to empirically evaluate
SHOP2PDDL+ to determine the scalability and
effectiveness of its state projection algorithm across a
variety of challenging tasks. We expect this algorithm to
allow agents to generate plans for these scenarios and
quickly identify potential problems and opportunities. We
believe that continuous planning will improve the
performance of intelligent agents in these strategy
simulations, resulting in more flexible opponents and
intelligent teammates.

Acknowledgements
This research was supported by DARPA IPTO (MIPRs
09-Y213 and 09-Y214). Matthew Klenk is supported by
an NRC postdoctoral fellowship.

References
Auslander, B., Molineaux, M., Aha, D.W., Munro, A., &
Pizzini, Q. (2009). Towards research on goal reasoning with the
TAO Sandbox (Technical Report AIC-09-155). Washington,
DC: Naval Research Laboratory, Navy Center for Applied
Research on AI.

Baral, C., Son, T., and Tuan, L. (2002). A transition function
based characterization of actions with delayed and continuous
effects. In Proceedings of KR-02. p. 291-302

Castillo, L.; Fdez-Olivares, J.; Garc a-Perez, O.; and Palao, F.
(2006). Efficiently handling temporal knowledge in an HTN
planner. In Sixteenth International Conference on Automated
Planning and Scheduling.

Coles, A., Coles, A., Fox, M., and Long, D. (2009). Temporal
planning in domains with linear processes. In Proceedings of the
International Joint Conference on Artificial Intelligence
(IJCAI). Pasadena, CA.

Cushing, W., Kambhampati, S., Mausam, and Weld, D. (2007).
When is temporal planning really temporal planning. In
Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). p. 1852-1859. Hyderabad, India.

desJardins, M., Durfee, E., Ortiz, C., & Wolverton, M. (1999).
A survey of research in distributed, continual planning. AI
Magazine, 20(4), 13 22.

Fox, M. & Long, D. (2006). Modelling mixed discrete-
continuous domains for planning. Journal of Artificial
Intelligence Research, 27:235-297.

R. Howey and D. Long. (2003). Validating plans with
continuous effects. In Proc. of the 22nd Workshop of the UK
Planning and Scheduling Special Interest Group.

Howey, R., Long, D., and Fox., M. (2004). VAL: Automatic
Plan Validation, Continuous Effects and Mixed Initiative
Planning using PDDL. The 16th IEEE International Conference
on Tools with Artificial Intelligence. pp. 294-301.

Li, H. & Williams, B. (2008). Generative systems for hybrid
planning based on flowtubes. In Proceedings of the 18th
International Conference on Automated Planning and
Scheduling (ICAPS).

Long, D. & Fox, M. (2003). The 3rd International Planning
Competition: Results and analysis. Journal of Artificial
Intelligence Research. 20: 1-59.

McDermott, D. (2003). Reasoning about autonomous processes
in an estimated regression planner. In Proceedings of the 13th
International Conference on Automated Planning and
Scheduling (ICAPS).

Molineaux, M., Klenk, M. & Aha, D. (2010). Goal-driven
autonomy in a navy strategy simulation. In Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-10). Atlanta,
Georgia.

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu,
D., & Yaman, F. (2003). SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research. 20:379 404.

Penberthy, J. & Weld, D. (1994). Temporal Planning with
Continuous Change. Proceedings of AAAI-94. Seattle, WA.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B.
(2007). Numerical Recipes 3rd Edition: the Art of Scientific
Computing. Cambridge University Press.

Yorke-Smith, N. (2005). Exploiting the structure of hierarchical
plans in temporal constraint propagation. In Proceedings of the
20th National Conference on Artificial Intelligence. pp. 1223-
1228. Pittsburgh, PA.

1120

