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Abstract 

Planning in dynamic continuous environments requires 
reasoning about nonlinear continuous effects, which 
previous Hierarchical Task Network (HTN) planners do 
not support. In this paper, we extend an existing HTN 
planner with a new state projection algorithm. To our 
knowledge, this is the first HTN planner that can reason 
about nonlinear continuous effects. We use a wait action to 
instruct this planner to consider continuous effects in a 
given state. We also introduce a new planning domain to 
demonstrate the benefits of planning with nonlinear 
continuous effects. We compare our approach with a linear 
continuous effects planner and a discrete effects HTN 
planner on a benchmark domain, which reveals that its 
additional costs are largely mitigated by domain 
knowledge. Finally, we present an initial application of 
this algorithm in a practical domain, a Navy training 
simulation, illustrating the utility of this approach for 
planning in dynamic continuous environments. 

1 Introduction   
Hierarchical Task Network (HTN) planning is a proven 
technique for quickly generating large plans to solve 
problems in challenging environments (e.g., strategy 
simulations). These planners often represent changes to 
the environment as discrete and instantaneous, even 
though aspects of these environments change 
continuously over time, frequently as the result of 
exogenous events. We show that this limiting assumption 
can be problematic for HTN planners. Therefore, we 
developed SHOP2PDDL+, an extension of SHOP2 (Nau et 
al. 2003) that can reason about nonlinear continuous 
effects. In particular, it reasons explicitly about fluents, 
which are values that change over time (e.g., the amount 
of fuel on a ship), processes, which describe when and 
how they change, and events, which describe 
instantaneous occurrences resulting from fluent changes. 
SHOP2PDDL+ uses a novel state projection algorithm to 
predict the continuous and discrete state of the 
environment at any arbitrary point in the future, and a 
wait action to control the passage of time during planning. 
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 In addition to extending SHOP2, we also: (1) introduce 
a motivating, paradigmatic stunt car planning domain that 
requires explicit reasoning about nonlinear continuous 
effects; (2) empirically compare (on benchmark tasks) the 
performance of SHOP2PDDL+ with SHOP2 and COLIN 
(Coles et al. 2009), a planner that can reason about linear 
continuous effects; and (3) describe an application of 
SHOP2PDDL+ to tasks involving a Navy training 
simulation, which demonstrates that our algorithm can be 
applied to practical problems. 
 We begin by discussing this training simulation and our 
planning representation. Next, we introduce the wait 
action, the state projection algorithm, and its integration 
with SHOP2. Then we empirically assess our 
performance on a range of planning problems and close 
with a discussion of related and future work. 

2 TAO Sandbox and PDDL+ 
The TAO Sandbox is a strategy simulator used by the US 
Navy for training Tactical Action Officers in anti-
submarine warfare (Auslander et al. 2009). Using it, 
trainees accomplish their objectives by giving orders to 
naval ships, planes, and helicopters. Vessel positions, fuel 
levels, heading, and speed are important fluents in this 
domain. The actions are orders, which occur 
instantaneously. The effects of these orders may be 
instantaneous (e.g., launch a helicopter), of fixed duration 
(e.g., move to a specific location), or of indefinite 
duration (e.g., follow another vessel). Therefore, agents 
interacting with the TAO Sandbox must reason about 
instantaneous changes and continuous effects. 
 The HTN extensions that we present are motivated by 
interest in applying a continuous planning (desJardins et 
al. 1999) agent in the TAO Sandbox domain. It must 
generate plans and monitor their execution for 
opportunities and failures. Because the TAO Sandbox is 
partially observable, this agent must monitor both the 
discrete and continuous state of the environment during 
plan execution. Frequently, knowing the value of fluents 
at individual time points is insufficient. Consider a 
vehicle that should have five gallons of fuel when 
reaching its destination. I
changing more rapidly than expected, perhaps due to a 
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leak, then the agent should detect this while the vehicle is 
moving and not wait until after the action completes. 
 PDDL+ (Fox and Long 2006) was designed to support 
representations of mixed discrete-continuous planning 
domains. In PDDL+, changes to the discrete state occur as 
the result of both actions and events occurring 
in the environment. As mentioned in Section 1, processes 
describe changes to fluents occurring over time, while 
events describe discrete state changes occurring at an 
instantaneous point in time. Each PDDL+ planning 
domain includes definitions for its processes and events in 
terms of their participant types, conditions, and effects. A 
process is active for each set of objects that satisfies a 

 participant types and conditions at a 
given time. All of the effects of processes are continuous 
and represented using algebraic functions, which describe 
the values of fluents with respect to time. Similarly, an 
event occurs when a set of objects satisfy the participant 
types and conditions of an event definition. The effects of 
an event describe discrete changes to the state; as a result, 
the set of active processes may be altered. In Section 3, 
we present a method for projecting future states that is 
useful for HTN planning in environments described using 
PDDL+. 

3 Extensions for Continuous Effects 
SHOP2PDDL+ extensions to SHOP2 (Nau et al. 2003) 
include the addition of a wait action, which allows the 
planner to reason about continuous effects, and a state 
projection algorithm, which projects the effects of active 
processes and occurring events. Section 3.3 presents an 
example of this algorithm. 

3.1 Wait Action 
SHOP2 is a state space planner; at each step in its search, 
applicable actions are considered to extend an existing 
plan, and a new state is extrapolated. We introduce a 
special wait action that, for the purposes of search, 
appears to function as any other action. The wait action 
takes one argument, wait-time, representing the 
duration.1 It is always applicable, and because time passes 
during this action, it is necessary to compute the effects of 
the active processes and events that occur. All other 
actions are instantaneous and added sequentially with any 
number of actions occurring between waits. Although this 
is similar to a mechanism described by McDermott 
(2003), our wait action gives an agent the ability to wait 
for any amount of time. However, this freedom requires 
the agent to reason about how much time is appropriate to 
wait.  

3.2 State Projection Algorithm 
Changes in the environment during the wait action are 
projected using the state projection algorithm summarized 
                                                 
1This could easily be extended to include an arbitrary condition. 
In this case, the duration would be until the condition was 
satisfied in the environment. 

in Figure 1. It takes as inputs: the starting time (tinit) and 
ending time (tend = tinit + wait-time) of the wait action, the 
current state, and the planning domain. This algorithm has 
three steps: building the fluent update table, determining 
eligible events, and updating the state until the time of the 
next event. This is repeated until no events are left to 
occur within the duration of the wait action. 
 The fluent update table F describes all continuous 
changes occurring after time tinit. To build it, the 
algorithm iterates over each process definition p from the 
planning domain. For each set of objects that satisfy p
participant types and conditions, an active process pi is 
created. For each fluent f that is affected by a continuous 
effect of pi, a fluent update function uf(t) is created and 
added to F. (If there are multiple fluent update functions 
referring to the same fluent, they are combined through 
summation into a single function in F.) 
 In step 2, for each instantiation ei of each event 
definition e, this algorithm inserts ei into the set of eligible 
events (i.e., that may occur as a result of the active 
processes). Also, it uses F to create an event threshold 
function thc(t) for each continuous condition c of each ei, 
where thc(t)=0 when c is satisfied at time t. 
 Because thc(t) may be defined using other fluents, this 
algorithm (recursively) replaces them with their fluent 
update functions uf(t) until only constants and the time 
variable t remain. 
 Step 3 determines when the next event will occur and 
updates the state accordingly. It begins by initializing the 
earliest potential event time tee to the latest time to be 
considered, tend. Then, for each event threshold function 
thc(t), it searches for a root (i.e., where thc(t)=0) in the 
range [tinit, tee). If one is found, the algorithm updates tee to 
the minimum root tminRoot in this range. That is, 

Legend: S=State P=Planning domain, ce=continuous effect, 
c=continuous condition, f=fluent, uf(t) F=fluent update 
functions, thc(t) E=event threshold functions, tee=earliest 
event time, tinit=start time, tend=wait end 

State ProjectState(tinit, tend, S, P) 
//Step 1: Build fluent-update-table F 

For each process definition p P 
For each pi in instantiations(p) 

For each ce in pi, add uf(t) to F  
//Step 2: Determine eligible-events 
For each event definition e P 

For each ei in instantiations(e) 
Add ei to eligible-events 
Add thc(t) to E for each c in ei 

//Step 3: Update state to after next event 
do until ( ei , occurs(ei ) or tee=tend) 

For each thc(t) in E, tee=minRoot(tinit ,tend, thc(t))) 
For each uf(t) in F, S.f=uf(tee) 
For each ei in eligible-events  

if(occurs(ei)), S=updateState(ei,S) 
if(tee!=tend) 
   then ProjectState (tee, tend, S, P) 

      else return(S) 

Figure 1: State projection algorithm 
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thc(tminRoot)=0 and t thc(t)=0, t tminRoot. Thus, tminRoot is 
the next time point at which event ei may potentially 
occur. To find the minimum root of thc(t), recursive 
searches are made for extrema (i.e., maxima and minima) 
using golden section search and roots using bisection 
(Press et al. 2007). When a root is found at time troot, 
search continues for the smaller range [tinit, troot) until all 
extrema in the search range are either all negative or all 
positive. This procedure will find the first root in the 
range provided the function is continuous and smooth 
over [tinit, tee).At this point, we know tminRoot=troot for thc(t). 
After iterating through each event threshold function, the 
resulting tee is the next time point at which any event may 
occur. 
 Next, the algorithm updates the continuous state and 
determines if any events occur. For each fluent update 
function uf(t), the algorithm updates fluent f to uf(tee). 
Then, if the conditions of any of the eligible events ei are 
satisfied, the discrete state is updated accordingly. 
Otherwise, Step 3 is repeated. However, if an event did 
occur, then the set of active processes may have changed. 
Therefore, the entire procedure is repeated until no event 
occurs prior to tend, at which time all fluents are updated to 
uf(tend). We next present an example to illustrate this. 

3.3 Example 
Table 1: Process for projecting  position, where #t is a 

special variable that denotes time in PDDL+ 
Process Name ShipMovement 

Participants ?ship type = NavalShip 
Conditions 
(Discrete Only) 

(movingTo ?ship ?x ?y) 
(speedOf ?ship ?speed) 

Effects 
(Continuous Only) 

(increase (atX ?ship)  
   (* (cos (headingOf ?ship)) 
      ?speed #t))  
(increase (atY ?ship)  
   (* (sin (headingOf ?ship)) 
      ?speed #t))  

 
Consider the following example of a ship moving in the 
TAO Sandbox environment. To represent a ship s motion, 
we define the ship movement process shown in Table 1. 
This process has one participant of type NavalShip 
representing the moving ship. Its conditions include the 

destination and speed. The continuous effects 
define functions that update the ship  with 
respect to time. The update functions are defined in terms 
of the fluent headingOf, which could vary continuously at 
the same time as a result of another active process. 

When the ship reaches its destination, its new position 
will trigger the end of movement event defined in Table 
2. Like the ShipMovement process definition, the 
EndOfMovement event definition has one participant of 
type NavalShip. It has two discrete conditions and one 
continuous condition relating the fluents representing the 

effect of this 
event is that the ship is no longer moving toward its 
destination. 
 

Table 2: Event definition for the end of a ship's movement 

Consider a situation in which the agent has just taken 
the action of ordering a ship, Ship1, to move to location 
(5.6, 7.8). Figure 2 shows the current state. The 
continuous state includes fluents describing the location 
and heading of the ship and the discrete state includes the 

speed and its current orders. 
 From this state, the planner applies the wait(2) action. 
To determine the state after 2 time units, the planner uses 
the state prediction algorithm with the above event and 
process definitions. There is only one possible set of 
participants for the ShipMovement process definition: 

?ship = Ship1. The conditions are satisfied for this 
binding, resulting in one active process with two fluent 
update functions: 
(atX Ship1) , uf(#t) =  
   (+ 3.4 (*(cos (headingOf Ship1)) 20 #t)) 
(atY Ship1) , uf(#t) =  
   (+ 2.3 (*(sin (headingOf Ship1)) 20 #t)) 

The fluent update table F, consisting of these two 
functions, determines ocation until the next 
event. To project the state forward, we generate a set of 
eligible events. In this situation, there is only one set of 
objects that satisfies the EndOfMovement event
discrete conditions: {?ship = Ship1}. This event has one 
continuous condition: 
(<= (dist (atX Ship1) (atY Ship1) 5.6 7.8) 
     0.5) 

From this, the algorithm creates the following event 
threshold function: 
 thc(#t)=  
    (- (dist (+ 3.4 (* (cos 68.2) 20 #t))  
             (+ 2.3 (* (sin 68.2) 20 #t)) 
             5.6 7.8) 
       0.5) 

Step 3 of the state projection algorithm begins by finding 
the minimum root for thc(#t).  In this case, thc(#t) = 0 
when #t = .271. To determine if any events occur at this 
point, the algorithm updates each fluent f F to the value 
given by uf(.271). In this case, the values for (atX Ship1) 
and (atY Ship1) are found to be 5.41 and 7.34, 
respectively. These satisfy the continuous condition for 

Event Name EndOfMovement 

Participants ?ship type = NavalShip 
Conditions 
(Discrete and 
 Continuous) 

(movingTo ?ship ?x ?y) 
(speedOf ?ship ?speed) 
(<=(dist(atX ?ship)(atY ?ship) 
        ?x ?y) 
    0.5) 

Effects 
(Discrete and 
 Continuous) 

(not (movingTo ?ship ?x ?y)) 
(not (speedOf ?ship ?speed)) 
(speedOf ?ship 0) 

(atX Ship1) = 3.4 (Continuous) 
(atY Ship1) = 2.3 (Continuous) 
(headingOf Ship1) = 68.2 (Continuous) 
(speedOf Ship1 20) (Discrete) 
(isa Ship1 NavalShip) (Discrete) 
(movingTo Ship1 5.6 7.8) (Discrete) 

Figure 2: Initial TAO Sandbox state (simplified for clarity) 
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the eligible EndOfMovement event. Therefore, this event 
occurs, which updates the discrete state by deleting the 
movement statement, (movingTo Ship1 5.6 7.8), and 

(speedOf Ship1 0). No other 
events are eligible to occur. Because .271 is less than 2, 
another iteration of the algorithm is performed. No 
processes are now active, as no set of objects satisfies the 
ShipMovement process definition conditions. Therefore, 
the state remains the same until wait action ends. 
3.4 Incorporation into HTN planning 

Our agent uses the SHOP2 (Nau et al. 2003) planner. 
SHOP2 takes as input a task to be performed and 
produces a sequence of actions. The task is decomposed 
into subtasks and actions using methods. We use this 
hierarchical structure to determine when to apply a wait 
action and for how long. Consider the ship movement 
example above. The method and action in Figure 3 
decompose the movingShipAndWait method into a move 
action, which issues a move order to a single ship, and a 
wait action, which allows the movement process to update 
the state over time. The durationOfMovement 
precondition determines the predicted amount of time 
required for the ship to reach its destination. Therefore, 
the planner 
and continue planning.  

4 Evaluation 
To evaluate the utility of our approach, we performed a 
series of case studies with the following objectives: 

Illustrate the class of problems for which our method 
is capable of generating plans 
Determine the comparative costs of our approach vs. 
existing methods on benchmark problems 
Ascertain its applicability in strategy simulations 

4.1 Illustrative Domains 
First, we tested SHOP2PDDL+ on 
(2003) generator problem, which has linear continuous 
effects. This problem requires a generator to run for 100 
time units. Its fuel tank has a 90 unit capacity, and it 
consumes one unit of fuel per unit of time. A refill action 
is available that adds two units of fuel per unit of time. 
We added an HTN method to the planning domain that 
determines when, after the generator starts running, to 
begin the refueling process. Our state prediction 

algorithm accurately projects the continuous effects of the 
refueling process, and the planner creates a successful 
plan. 
  To illustrate the importance of reasoning about 
nonlinear continuous effects, we introduce a stunt car 
domain inspired by Hollywood action movies. This 
domain includes a stunt car and a wall. Its two processes, 

velocity and position using the following continuous 
effects:  

(increase (vel ?obj) (* (accel ?obj) #t)) 
(increase (pos ?car) (* (vel ?car) #t)) 

As a result, the position of the car is a nonlinear function 
of time. This domain  only action is to apply the brake, 
which begins the acceleration process with an 
acceleration of -14m/s2. In this domain, a crash, described 
by an event definition, occurs when the positions for the 
car and wall are the same. If the crash occurs at over 
13m/s, the driver dies. If the crash occurs below 9m/s, the 
crash is not spectacular enough. If the crash occurs 
between 9m/s and 13m/s, then there is spectacular crash 
and the driver survives, accomplishing the goal. In our 
simple test problem, the stunt car begins 100m away from 
the wall, traveling at a speed of 44m/s. Using an HTN 
method, SHOP2PDDL+ is able to generate a successful 
plan, indicating that it can reason about nonlinear 
continuous effects. 

4.2 Empirical Comparison: Rover Domain 
To assess the additional costs of SHOP2PDDL+, we 
compared its performance on a modified single rover 
domain2 that was used to test COLIN (Coles et al. 2009), 
a linear continuous planner. Specifically, we compare 
SHOP2PDDL+ plan generation times on 20 planning 
problems from this domain to COLIN  previously 
reported plan generation times. These problems were 
generated using the IPC3 parameters permitting a 
comparison in the competition 
(Long and Fox 2003). Given that the nature of these 
comparisons (i.e., domain-independent versus HTN 
planners running on different hardware) prevents a 
quantitative analysis, we focus on a qualitative 
assessment of the additional costs of SHOP2PDDL+. 

 

                                                 
2PDDL domain and planning files were downloaded from 
the COLIN website at: 
personal.cis.strath.ac.uk/~amanda/ContinuousPlanning/ 

(defMethod  
  (movingShipAndWait ?ship ?to-x ?to-y) 
 :preconditions 
 (durationOfMovement ?ship ?to-x ?to-y  
          ?duration) 
 :subtasks 
 (move ?ship ?to-x ?to-y) 
 (wait ?duration)) 
 
(defAction (move ?unit ?x ?y) 
  :preconditions  
  (not (movingTo ?unit ?x ?y)) 
  :effects (movingTo ?unit ?x ?y)) 

Figure 3: HTN method and action for moving a ship 
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The results, shown in Figure 4, compare the average 
planning time of SHOP2PDDL+ to the other two planners. 
To better illustrate scaling issues, we group the problems 
by their difficulty as determined by the IPC3 parameters. 
Both SHOP2 and SHOP2PDDL+ solved all the planning 
problems, while COLIN failed on three of the 
challenging  and one of the medium  problems.  

Our analysis of these results identifies two key 
observations. First, the expected large performance gains 
of HTN planning vs. domain-independent approaches 
occur. Second, our comparison with SHOP2 indicates that 
there is significant overhead in projecting all continuous 
values through all states. An important aspect of future 
work is to explore dynamic programming methods for 
improving efficiency, but this result establishes a baseline 
performance for an HTN planner reasoning about 
continuous effects. 

4.3 Application to the TAO Sandbox 
In the TAO Sandbox, our planner can generate plans for 6 
distinct scenarios. Our domain model contains 7 process 
definitions and 30 event definitions. We tested it in 
scenarios containing up to 12 distinct moving vessels. 
Typically, SHOP2PDDL+ generates solution plans of 50+ 
actions in about 1 second. Our future work will explore 
the quality of the generated plans and the utility of state 
projection by assessing results of plan execution in this 
environment. 

4.4 General Discussion 
The generator and stunt car problems demonstrate that 
our planner can reason about domains with linear and 
non-linear continuous effects. Furthermore, results on the 
rover domains indicate that, while there is a significant 
cost in plan generation time, it is largely mitigated by 
domain knowledge required for HTN planning. The 
results from the rover domain and TAO Sandbox indicate 
that the overhead of our approach for planning with 
nonlinear continuous effects is sufficiently low to 

encourage its further application to strategy simulation 
tasks. 

5 Related work 
Within the HTN planning community, several efforts 
have focused on reasoning about temporal domains. The 
majority of this work focused on using the structure of 
HTNs to propagate temporal constraints (e.g., Yorke-
Smith 2005, Castillo et al. 2006). We are not aware of 
any HTN planner that reasons about the (linear or 
nonlinear) continuous effects of actions or exogenous 
events. 
 Work exploring planning with continuous processes 
began with Zeno (Penberthy and Weld 1994), which 
modeled processes using differential equations. While an 
important first step, Zeno cannot reason about multiple 
processes that affect a single fluent. 
 More recently, a common approach to temporal 
planning problems has been to sidestep continuous 
reasoning by transforming each temporal action into an 
instantaneous action (Cushing et al. 2007).  
Unfortunately, this approach is insufficient for domains 
with rich temporal interactions between actions, 
processes, and events (e.g., domains in which concurrent 
actions are required to achieve a solution). 

Recognizing this limitation, several planners have been 
developed for temporal reasoning about continuous 
effects. The Optop estimated-regression planner 
(McDermott 2003) uses a similar strategy to ours for 
temporally projecting the continuous state at the time of a 
wait action. Unlike our approach, it requires the planner 
to plan after the next event occurs instead of from an 
arbitrary point in the future. As indicated previously, 
COLIN can represent the continuous effects of durative 
actions (Coles et al. 2009). While useful in some 
environments, representations using durative actions, 
rather than processes, do not allow a planner to reason 
about the long-term consequences of exogenous events.  
 COLIN and Optop both focus solely on linear changes 
to fluents. SHOP2PDDL+ instead reasons about processes 
whose effects contain arbitrary continuous functions. 
Similar to our work, Kongming (Li and Williams 2008) 
can project nonlinear continuous effects of durative 
actions using flowtubes. It encodes undersea navigation 
problems in a mixed logic linear/non-linear program 
solvable using standard techniques. While a promising 
approach, there is considerable difficulty in extending 

 approach to reason about actions with 
variable durations. However, actions with variable 
duration are common in strategy simulations (e.g., 
consider the ship-moving process for the TAO Sandbox). 
VAL (Howey et al. 2004) addresses polynomial 
continuous effects for plan validation and repair in mixed-
initiative planning with application to another practical 
domain (i.e., space missions). In contrast, our focus is on 
arbitrary continuous effects in the context of automated 
planning. 

Figure 4: Comparison of plan generation times for 
SHOP2PDDL+, SHOP2, and COLIN on rover problems, 
sorted by problem difficulty 
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 Baral et al. (2002) define a similar state projection 
algorithm using an alternative formalization for planning 
with continuous effects. By using the PDDL+ 
formalization, our approach considers exogenous changes 
in the environment. 

6 Conclusions 
We presented a novel state projection algorithm for use in 
continuous temporal environments and illustrated its 
implementation in SHOP2PDDL+, an HTN planner. Unlike 
previous approaches, our algorithm allows for continuous 
effects to contain arbitrary continuous functions, and our 
wait operator allows the planner to consider future actions 
at any time. 
 Our focus is on the projection of fluents within 
individual states with respect to time. Therefore, 
SHOP2PDDL+ needs to predict the duration of actions and 
their continuous effects. This is necessary for planning, as 
shown above, and for plan-monitoring agents. 
SHOP2PDDL+ was developed in the context of a 
continuous planning agent, which reasons about its goals 
while performing tasks in the TAO Sandbox simulation 
(Molineaux et al. 2010). 
 In future work, we intend to empirically evaluate 
SHOP2PDDL+ to determine the scalability and 
effectiveness of its state projection algorithm across a 
variety of challenging tasks. We expect this algorithm to 
allow agents to generate plans for these scenarios and 
quickly identify potential problems and opportunities. We 
believe that continuous planning will improve the 
performance of intelligent agents in these strategy 
simulations, resulting in more flexible opponents and 
intelligent teammates. 
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