
DTPROBLOG: A Decision-Theoretic Probabilistic Prolog

Guy Van den Broeck and Ingo Thon and Martijn van Otterlo and Luc De Raedt

Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
{guy.vandenbroeck, ingo.thon, martijn.vanotterlo, luc.deraedt}@cs.kuleuven.be

Abstract

We introduce DTPROBLOG, a decision-theoretic exten-
sion of Prolog and its probabilistic variant ProbLog. DT-
PROBLOG is a simple but expressive probabilistic program-
ming language that allows the modeling of a wide variety of
domains, such as viral marketing. In DTPROBLOG, the util-
ity of a strategy (a particular choice of actions) is defined as
the expected reward for its execution in the presence of prob-
abilistic effects. The key contribution of this paper is the in-
troduction of exact, as well as approximate, solvers to com-
pute the optimal strategy for a DTPROBLOG program and
the decision problem it represents, by making use of binary
and algebraic decision diagrams. We also report on exper-
imental results that show the effectiveness and the practical
usefulness of the approach.

1 Introduction
Artificial intelligence is often viewed as the study of how to
act rationally (Russell and Norvig 2003). The problem of
acting rationally has been formalized within decision theory
using the notion of a decision problem. In this type of prob-
lem, one has to choose actions from a set of alternatives,
given a utility function. The goal is to select the strategy
(set or sequence of actions) that maximizes the utility func-
tion. While the field of decision theory has devoted a lot of
effort to deal with various forms of knowledge and uncer-
tainty, there are so far only a few approaches that are able
to cope with both uncertainty and rich logical or relational
representations (see (Poole 1997; Nath and Domingos 2009;
Chen and Muggleton 2009)). This is surprising, given the
popularity of such representations in the field of statistical
relational learning (Getoor and Taskar 2007; De Raedt et al.
2008).

To alleviate this situation, we introduce a novel frame-
work combining ProbLog (De Raedt, Kimmig, and Toivo-
nen 2007; Kimmig et al. 2008), a simple probabilistic Pro-
log, with elements of decision theory. The resulting prob-
abilistic programming language DTPROBLOG (Decision-
Theoretic ProbLog) is able to elegantly represent decision
problems in complex relational and uncertain environments.
A DTPROBLOG program consists of a set of definite clauses
(as in Prolog), a set of probabilistic facts (as in ProbLog),

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and, in addition, a set of decision facts, specifying which
decisions are to be made, and a set of utility attributes, spec-
ifying the rewards that can be obtained. Further key con-
tributions of this paper include the introduction of an exact
algorithm for computing the optimal strategy as well as a
scalable approximation algorithm that can tackle large deci-
sion problems. These algorithms adapt the BDD based infer-
ence mechanism of ProbLog. While DTProbLog’s represen-
tation and spirit are related to those of e.g. (Poole 1997) for
ICL, (Chen and Muggleton 2009) for SLPs, and (Nath and
Domingos 2009) for MLNs, its inference mechanism is dis-
tinct in that it employs state-of-the-art techniques using de-
cision diagrams for computing the optimal strategy exactly;
cf. the related work section for a more detailed comparison.

The paper is organized as follows: in Section 2, we intro-
duce DTPROBLOG and its semantics; Section 3 discusses
inference and Section 4 how to find the optimal strategy for
a DTPROBLOG program; Section 5 reports on some exper-
iments and Section 6 describes related work; Finally, we
conclude in Section 7. We assume familiarity with standard
concepts from logic programming (see e.g. Flach (1994)).

2 Decision-Theoretic ProbLog
ProbLog (De Raedt, Kimmig, and Toivonen 2007; Kimmig
et al. 2008) is a recent probabilistic extension of Prolog.
A ProbLog theory T consists of a set of labeled facts F
and a set of definite clauses BK that express the background
knowledge. The facts pi :: fi in F are annotated with a
probability pi stating that fiθ is true with probability pi for
all substitutions θ grounding fi. These random variables are
assumed to be mutually independent. A ProbLog theory
describes a probability distribution over Prolog programs
L = FL ∪ BK where FL ⊆ FΘ and FΘ denotes the set of
all possible ground instances of facts in F .1

P(L|T) =
∏

fi∈FL

pi
∏

fi∈FΘ\FL

(1− pi)

The success probability of a query q is then

P(q|T) =
∑
L

P(q|L) · P(L|T) (1)

1Throughout the paper, we shall assume that FΘ is finite for
notational convenience, but see (Sato 1995) for the infinite case.

1217

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

where P(q|L) = 1 if there exists a θ such that L |= qθ.
Observe also that ProbLog defines a probability distribu-

tion Pw over possible worlds, that is, Herbrand interpreta-
tions. Indeed, each atomic choice, or each FL ⊆ FΘ, can
be extended into a possible world by computing the least
Herbrand model of L = FL ∪ BK. This possible world is
assigned the probability Pw = P(L|T).

In addition to the background knowledge BK and
the probabilistic facts F with their probabilities, a DT-
PROBLOG program consists of a set of decision facts D and
utility attributes U , which we will now define.

Decisions and Strategies
Decision variables are represented by facts, and so, by anal-
ogy with the set of probabilistic facts F , we introduce D,
the set of decision facts of the form ? :: d. Each such d is an
atom and the label ? indicates that d is a decision fact. Note
that decision facts can be non-ground.

A strategy σ is then a function D → [0, 1], mapping a
decision fact to the probability that the agent assigns to it.
Observe that there is one probability assigned to each deci-
sion fact. All instances – these are the groundings – of the
same decision fact are assigned the same probability, real-
izing parameter tying at the level of decisions. For a set of
decision facts D we denote with σ(D) the set of probabilis-
tic facts obtained by labeling each decision fact (? :: d) ∈ D
as σ(d) :: d. Taking into account the decision facts D and
the strategy σ, the success probability can be defined as:

P(q|F ∪ σ(D), BK),

which, after the mapping σ(D), is a standard ProbLog query.
Abusing notation we will use σ(DT) to denote ProbLog
program σ(D) ∪ F with the background knowledge BK.
Example 1. As a running example we will use the following
problem of dressing for unpredictable weather:

D = {? :: umbrella,

? :: raincoat}
F = {0.3 :: rainy,

0.5 :: windy}

BK= broken umbrella :- umbrella, rainy, windy.
dry :- rainy, umbrella, not(broken umbrella).

dry :- rainy, raincoat.
dry :- not(rainy).

There are two decisions to be made: whether to bring an um-
brella and whether to wear a raincoat. Furthermore, rainy
and windy are probabilistic facts. The background knowl-
edge describes when one gets wet and when one breaks the
umbrella due to heavy wind. The probability of dry for the
strategy {umbrella 7→ 1, raincoat 7→ 1} is 1.0.

Rewards and Expected Utility
The set U consists of utility attributes of the form ui → ri,
where ui is a literal and ri a reward for achieving ui. The
semantics is that whenever the query ui succeeds, this yields
a reward of ri. Thus, utility attributes play a role analog to
queries in Pro(b)log. The reward is given only once, regard-
less for how many substitutions it succeeds.

For a Prolog program L, defining a possible world
through its least Herbrand model, we define the utility of
ui to be the reward due to ui. The utility attributes have to
be additive such that

Util(L) =
∑

(ui→ri)∈U

ri · P(ui|L).

Because a ProbLog theory T defines a probability distribu-
tion over Prolog programs, this gives a total expected utility
of

Util(T) =
∑

(ui→ri)∈U

ri · P(ui|T)

where P (ui|T) is defined in Equation 1.
Example 2. We extend Example 1 with utilities:

umbrella→ −2
raincoat→ −20

dry→ 60

broken umbrella→ −40
Bringing an umbrella, breaking the umbrella or wearing a
raincoat incurs a cost. Staying dry gives a reward.

Given these definitions, the semantics of a DTPROBLOG
theory is defined in terms of the utility of a strategy σ. The
expected utility of a single utility attribute ai=(ui → ri) is

Util(ai|σ,DT) = ri · P (ui|σ(DT)) (2)

and the total utility is

Util(σ,DT) =
∑
ai∈U

Util(ai|σ(DT)) = Util(σ(DT)). (3)

Thus, the total utility is the sum of the utilities of each util-
ity attribute and the expected utility for a single attribute is
proportionate to its success probability.

3 Inference
The first problem that we will tackle is how to perform in-
ference in DTPROBLOG, that is, how to compute the utility
Util(σ,DT) of a particular strategy σ in a DTPROBLOG
program DT . This is realized by first computing the suc-
cess probability of all utility literals ui occurring in U us-
ing the standard ProbLog inference mechanism. The over-
all utility Util(σ,DT) can then be computed using Eq. 3.
Let us therefore sketch how ProbLog answers the queries
P(q|σ(DT)). This is realized in two steps; cf. (De Raedt,
Kimmig, and Toivonen 2007; Kimmig et al. 2008) .

First, all different proofs for the query q are found using
SLD-resolution in the ProbLog program σ(DT). The prob-
abilistic facts and decisions that are used in these proofs are
gathered in a DNF formula. Each proof relies on the con-
junction of probabilistic facts that needs to be true to prove
q and, hence, the DNF formula represents the disjunction of
these conditions. This reduces the problem of computing the
probability of the query q to that of computing the probabil-
ity of the DNF formula. However, because the conjunctions
in the different proofs are not mutually exclusive, one cannot
compute the probability of the DNF formula as the sum of
the probabilities of the different conjunctions as this would
lead to values larger than one. Therefore, the second step

1218

Algorithm 1 Calculating the probability of a BDD

function PROB(BDD-node n)
if n is the 1-terminal then return 1
if n is the 0-terminal then return 0
let h and l be the high and low children of n
return pn · PROB(h) + (1− pn) · PROB(l)

solves this disjoint-sum problem by constructing a Binary
Decision Diagram (BDD) (Bryant 1986) that represents the
DNF formula. A BDD is an efficient graphical representa-
tion for boolean formulas. Example BDDs are shown in Fig-
ure 1. The BDD can be seen as a decision tree. To determine
whether a boolean variable assignment satisfies the formula
represented by the BDD, one starts at the root of the BDD
and depending on the value of the top proposition, takes the
dashed/low/false or solid/high/true branch. The procedure
is called recursively on the resulting node until a terminal is
reached. Because in a BDD each variable occurs only once
on a path, it can be used to compute the probability of the
DNF formula with Algorithm 1.
Example 3. Using Algorithm 1 and Figure 1a, it is easy
to see that for the strategy of bringing an umbrella and
not wearing a raincoat, the success probability of staying
dry is P(dry|σ(DT)) = 0.7 + 0.3 · 0.5 = 0.85 and that
Util(dry|σ,DT) = 60 · 0.85 = 51. Using the BDD
for broken umbrella, we can calculate Util(σ,DT) =
51 + (0.15 · (−40)) + (−2) = 43.

raincoat

rainy

umbrella

windy

1 0

(a) dry

rainy

10

windy

umbrella

(b) broken umbrella

Figure 1: BDDs for dry and broken umbrella.

4 Solving Decision Problems
When faced with a decision problem, one is interested in
computing the optimal strategy, that is, according to the
maximum expected utility principle, finding σ∗:

σ∗ = argmaxσ(Util(σ,DT)).
This strategy is the solution to the decision problem. We
will first introduce an exact algorithm for finding determin-
istic solutions and then outline two ways to approximate the
optimal strategy.

Exact Algorithm
Our exact algorithm makes use of Algebraic Decision Dia-
grams (ADD) (Bahar et al. 1997) to efficiently represent the

Algorithm 2 Finding the exact solution for DT
function EXACTSOLUTION(Theory DT)

ADDutil
tot(σ)← a 0-terminal

for each (u→ r) ∈ U do
BDDu(DT)← BINARYDD(u)
ADDu(σ)← PROBABILITYDD(BDDu(DT))
ADDutil

u (σ)← r ·ADDu(σ)
ADDutil

tot(σ)← ADDutil
tot(σ)⊕ADDutil

u (σ)
let tmax be the terminal node of ADDu

tot(σ) with the
highest utility
let p be a path from tmax to the root of ADDu

tot(σ)
return the boolean decisions made on p

function PROBABILITYDD(BDD-node n)
if n is the 1-terminal then return a 1-terminal
if n is the 0-terminal then return a 0-terminal
let h and l be the high and low children of n
ADDh ← PROBABILITYDD(h)
ADDl ← PROBABILITYDD(l)
if n represents a decision d then

return ITE(d,ADDh,ADDl)
if n represents a fact with probability p then

return (pn ·ADDh)⊕ ((1− pn) ·ADDl)

utility function Util(σ,DT). ADDs generalize BDDs such
that leaves may take on any value and can be used to rep-
resent any function from booleans to the reals [0, 1]n → R.
Operations on ADDs relevant for this paper are the scalar
multiplication c·g of an ADD g with the constant c, the addi-
tion f⊕g of two ADDs, and the if-then-else test ITE(b, f, g).

Using these primitive operations we construct:
1. BDDu(DT) representing DT |= u as a function of the

probabilistic and decision facts in DT .
2. ADDu(σ) representing P(u|σ,DT) as function of σ.

3. ADDutil
u (σ) representing Util(u|σ,DT) as function of σ

4. ADDutil
tot(σ) representing Util(σ,DT) as function of σ

These four diagrams map to the steps in the for-loop of Al-
gorithm 2. The first step builds the BDD for the query ui as
described in Section 3. The difference is that the nodes rep-
resenting decisions get marked as such, instead of getting
a 0/1-probability assigned. In the second step, this BDD
is transformed into an ADD using Algorithm 2, an adapta-
tion of Algorithm 1. The resulting ADD contains as internal
nodes only decision nodes and the probabilities are propa-
gated into the leafs. The third step scales ADDu(σ) by the
reward for u as in Equation 2.
Example 4. Figure 2 shows the ADDdry(σ) and
ADDbroken umbrella(σ), constructed using Algorithm 2
from the BDDs in Figure 1. The former confirms that
P(dry|σ(DT)) = 0.85 for the strategy given in Example 3.
The transformation to ADDutil

u (σ) is done by replacing the
terminals by their dashed alternatives.

Finally, in the fourth step, this ADD is added to the global
sum ADDutil

tot(σ) according to Equation 3, modeling the ex-

1219

raincoat

umbrella

raincoat

0.85

51

1

60

0.7

42

(a) dry

0

0

0.15

-6

umbrella

(b) broken umbrella

Figure 2: ADDdry(σ) and ADDbroken umbrella(σ). The al-
ternative, dashed terminals belong to ADDutil

u (σ).

pected utility of the entire DTPROBLOG theory. From the
final ADD, the globally optimal strategy σ∗ is extracted by
following a path from the leaf with the highest value to the
root of the ADD. Because ADDs provide a compressed rep-
resentation and efficient operations, the exact solution algo-
rithm is able to solve more problems in an exact manner than
could be done by naively enumerating all possible strategies.

Example 5. Figure 3 shows ADDutil
tot(σ). It confirms that

the expected utility of the strategy from Example 3 is 43.
It turns out that this is the optimal strategy. For wearing a
raincoat, the increased probability of staying dry does not
outweigh the cost. For bringing an umbrella, it does.

raincoat

umbrella

raincoat

4332 4240

Figure 3: ADDutil
tot(σ) for Util(σ,DT)

Sound Pruning
Algorithm 2 can be further improved by avoiding unneces-
sary computations. The algorithm not only finds the best
strategy, but also represents the utility of all possible strate-
gies. Since we are not interested in those values, they can be
removed from the ADDs when they become irrelevant for
finding the optimal value. The idea is to keep track of the
maximal utility that can be achieved by the utility attributes
not yet added to the ADD. While adding further ADDs, all
nodes of the intermediate ADD that can not yield a value
higher than the current maximum can be pruned. For this,
we define the maximal impact of a utility attribute to be

Im(ui) = max(ADDutil
ui

(σ))−min(ADDutil
ui

(σ)),

where max and min are the maximal and minimal terminals.
Before adding ADDutil

ui
(σ) to the intermediate ADDutil

tot(σ),
we merge all terminals from ADDutil

tot(σ) with a value below

max(ADDutil
tot(σ))−

∑
j≥i

Im(uj)

by setting their value to minus infinity. These values are
so low that even in the best case, they will never yield the

maximal value in the final ADD. By sorting the utility at-
tributes by decreasing values of Im(u), even more nodes are
removed from the ADD. This improvement still guarantees
that an optimal solution is found. In the following sections,
we will show two improvements which will not have this
guarantee, but are much faster. The two improvements can
be used together or independently.

Local Search
Solving a DTPROBLOG program is essentially a function
optimization problem for Util(σ,DT) and can be formal-
ized as a search problem in the strategy space. We apply a
standard greedy hill climbing algorithm that searches for a
locally optimal strategy. This way, we avoid the construction
of the ADDs in steps 2-4 of Algorithm 2. The search starts
with a random strategy and iterates repeatedly over the deci-
sions. It tries to flip a decision, forming σ′. If Util(σ′,DT)
improves on the previous utility, σ′ is kept as the current
best strategy. The utility value can be computed using
Equations (3) and (2). To efficiently calculate Util(σ′,DT),
we use the BDDs generated by the BINARYDD function
of Algorithm 2. During the search, the BDDs can be
kept fixed. Only the probability values for those BDDs
that are effected by the changed decision have to be updated.

Approximative Utility Evaluation
The second optimization is concerned with the first step of
Algorithm 2 that finds all proofs for the utility attributes.
In large decision problems this quickly becomes intractable.
A number of approximative inference methods exist for
ProbLog (Kimmig et al. 2008), among which is the k-best
approximation. The idea behind it is that, while there are
many proofs, only a few contribute significantly to the to-
tal probability. It incorporates only those k proofs where
the product of the random variables that make up the proof
is highest, computing a lower bound on the success proba-
bility of the query. The required proofs are found using a
branch-and-bound algorithm. Similarly, we use the k-best
proofs for the utility attributes to build the BDDs and ADDs
in the strategy solution algorithms. This reduces the runtime
and the complexity of the diagrams. For sufficiently high
values of k, the solution strategy found will be optimal.

5 Experiments
The experiments were set up to answer the questions:
(Q1) Does the exact algorithm perform better than naively
calculating the utility for all possible strategies? (Q2) How
does local search compare to the exact algorithm in terms
of runtime and solution quality? (Q3) What is the trade off
between runtime and solution quality for different values of
k, using the k-best proofs approximation? (Q4) Do the al-
gorithms scale to large, real world problems?

To answer these questions we tested the algorithms on the
viral marketing problem, a prime example of relational non-
sequential decision making. The viral marketing problem
was formulated by Domingos and Richardson (2001) and

1220

Figure 4: Runtime of solving viral marketing in random
graphs of increasing size. The values are averaged over three
runs on four different graphs of the same size. Methods dif-
fer in the search algorithm and the number of proofs used.

used in experiments with Markov Logic (Nath and Domin-
gos 2009). Given a social network structure consisting of
trusts(a, b) relations, the decisions are whether or not to
market to individuals in the network. A reward is given for
people buying the product and marketing to an individual
has a cost. People that are marketed or that trust some-
one that bought the product may buy the product. In DT-
PROBLOG, this problem can be modeled as:

? :: market(P) :- person(P).

0.4 :: viral(P , Q).

0.3 :: from marketing(P).

market(P)→ −2 :- person(P).

buys(P)→ 5 :- person(P).

buys(P) :- market(P), from marketing(P).

buys(P) :- trusts(P, Q), buys(Q), viral(P, Q).

The example shows the use of syntactic sugar in the form of
templates for decisions and utility attributes. It is allowed
to make decision facts and utility attributes conditional on a
body of literals. For every substitution for which the body
succeeds, a corresponding decision fact or utility attribute
is constructed. We impose the restriction that these bodies
can only depend on deterministic facts. For instance, in the
example, there is one market decision for each person.

We tested the algorithms2 on the viral marketing problem
using a set of synthetic power law random graphs, known
to resemble social networks (Barabasi and Bonabeau 2003).
The average number of edges or trust relations per person
was chosen to be 2. Figure 4 shows the runtime for different
solution algorithms on graphs with increasing node count.
For reproducibility, we start the local search algorithm from
a zero-vector for σ and flip decision in a fixed order.

2Implemented in YAP 6 http://www.dcc.fc.up.
pt/˜vsc/Yap/ for the Prolog part and simpleCUDD
2.0.0 http://www.cs.kuleuven.be/˜theo/tools/
simplecudd.html for the decision diagrams.

This allows us to answer the first three questions:
(Q1) While the exact algorithm is fast for small problems
and guaranteed to find the optimal strategy, it becomes un-
feasible on networks with more than 30 nodes. The 10-node
problem is the final one solvable by the naive approach and
takes over an hour to compute. Solving the 30-node graph
in a naive manner would require over a billion inference
steps, which is intractable. The exact algorithm clearly out-
performs a naive approach. (Q2) Local search solves up to
55-node problems when it takes all proofs into account and
was able to find the globally optimal solution for those prob-
lems where the exact algorithm found a solution. This is not
necessarily the case for other decision problems with more
deterministic dependencies. (Q3) After the 55-node point,
the BDDs had to be approximated by the k-best proofs. For
higher values of k, search becomes slower but is more likely
to find a better strategy. For k larger than 20 the utility was
within 2% of the best found policy for all problem sizes.
To answer (Q4), we experimented on a real world dataset
of trust relations extracted from the Epinions3 social net-
work website (Richardson and Domingos 2002). The net-
work contains 75888 people that each trust 6 other people
on average. Local search using the 17-best proofs finds a
locally optimal strategy for this problem in 16 hours.

6 Related Work
Several AI-subfields are related to DTPROBLOG, either be-
cause they focus on the same problem setting or because
they use compact data-structures for decision problems.
Closely related is the independent choice logic (ICL) (Poole
1997), which shares its distribution semantics (Sato 1995)
with ProbLog, and which can represent the same kind of de-
cision problems as DTPROBLOG. Similar to DTPROBLOG
being an extension of an existing language ProbLog, so
have two related system been extended towards utilities re-
cently. Nath and Domingos (2009) introduce Markov logic
decision networks (MLDN) based on Markov logic net-
works and Chen and Muggleton (2009) extend stochastic
logic programs (SLP) towards decision-theoretic logic pro-
grams (DTLP). The DTLP approach is close to the syn-
tax and semantics of DTPROBLOG, although some restric-
tions are put on the use of decisions in probabilistic clauses.
Chen and Muggleton also devise a parameter learning al-
gorithm derived from SLPs. Nath and Domingos (2009)
introduce Markov logic decision networks (MLDN) based
on Markov logic networks. Many differences between
MLNs and ProbLog exist and these are carried over to DT-
PROBLOG. Yet we are able to test on the same problems,
as described earlier. Whereas DTPROBLOG’s inference and
search can be done both exact and approximative, MLDN’s
methods only compute approximate solutions. Some other
formalisms too can model decision problems e.g. IBAL (Pf-
effer 2001), and relational decision networks (Hsu and Joe-
hanes 2004)). Unlike DTPROBLOG, DTLPs, ICL and re-
lational decision networks currently provide no implemen-
tation based on efficient data structures tailored towards de-
cision problems and hence, no results are reported on a large

3http://www.epinions.com/

1221

problem such as the Epinions dataset. IBAL has difficul-
ties to represent situations in which properties of different
objects are mutually dependent, like in the viral marketing
example.

DTPROBLOG is also related to various works on Markov
decision processes. In contrast to DTProbLog, these are
concerned with sequential decision problems. Nevertheless,
they are related in the kind of techniques they employ. For
instance, for factored Markov decision processes (FMDPs),
SPUDD (Hoey et al. 1999) also uses ADDs to represent
utility functions, though it cannot represent relational de-
cision problems and is not a programming language. On
the other hand, there exist also first-order (or, relational)
Markov decision processes (FOMDP), see (van Otterlo
2009). Techniques for FOMDPs have often been devel-
oped by upgrading corresponding algorithms for FMDPs to
the relational case, including the development of compact
first-order decision diagrams by Wang, Joshi, and Khardon
(2008) and Sanner and Boutilier (2009). While first-order
decision diagrams are very attractive, they are not yet as
well understood and well developed as their propositional
counterparts. A unique feature of DTPROBLOG (and the
underlying ProbLog system) is that it solves relational deci-
sion problems by making use of efficient propositional tech-
niques and data structures.

Perhaps the most important question for further research
is whether and how DTPROBLOG and its inference algo-
rithms can be adapted for use in sequential decision prob-
lems and FOMDPs. DTPROBLOG is, in principle, expres-
sive enough to model such problems because it is a pro-
gramming language, allowing the use of structured terms
such as lists or natural numbers to represent sequences and
time. However, while DTPROBLOG can essentially repre-
sent such problems, a computational investigation of the ef-
fectiveness of its algorithms for this type of problem still
needs to be performed and may actually motivate further
modifications or extensions of DTPROBLOG’s engine, such
as tabling (currently under development for ProbLog) or the
use of first order decision diagrams.

7 Conclusions
A new decision-theoretic probabilistic logic programming
language, called DTPROBLOG, has been introduced. It is
a simple but elegant extension of the probabilistic Prolog
ProbLog. Several algorithms for performing inference and
computing the optimal strategy for a DTPROBLOG program
have been introduced. This includes an exact algorithm to
compute the optimal strategy using binary and algebraic de-
cisions diagrams as well as two approximation algorithms.
The resulting algorithms have been evaluated in experiments
and shown to work on a real life application.

Acknowledgments This work was supported in part by
the Research Foundation-Flanders (FWO-Vlaanderen) and
the GOA project 2008/08 Probabilistic Logic Learning.

References
Bahar, R.; Frohm, E.; Gaona, C.; Hachtel, G.; Macii, E.;
Pardo, A.; and Somenzi, F. 1997. Algebraic Decision Di-

agrams and Their Applications. Formal Methods in System
Design 10:171–206.
Barabasi, A., and Bonabeau, E. 2003. Scale-free networks.
Scientific American 288(5):50–59.
Bryant, R. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on computers
35(8):677–691.
Chen, J., and Muggleton, S. 2009. Decision-Theoretic Logic
Programs. In Proceedings of ILP.
De Raedt, L.; Frasconi, P.; Kersting, K.; and Muggleton, S.,
eds. 2008. Probabilistic Inductive Logic Programming -
Theory and Applications, volume 4911 of Lecture Notes in
Computer Science. Springer.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007.
ProbLog: A probabilistic Prolog and its application in link
discovery. In Proceedings of IJCAI, 2462–2467.
Domingos, P., and Richardson, M. 2001. Mining the net-
work value of customers. In Proceedings of KDD, 57–66.
Flach, P. 1994. Simply Logical: Intelligent Reasoning by
Example.
Getoor, L., and Taskar, B. 2007. Introduction to statistical
relational learning. MIT Press.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. Pro-
ceedings of UAI 279–288.
Hsu, W., and Joehanes, R. 2004. Relational Decision Net-
works. In Proceedings of the ICML Workshop on Statistical
Relational Learning.
Kimmig, A.; Santos Costa, V.; Rocha, R.; Demoen, B.; and
De Raedt, L. 2008. On the efficient execution of ProbLog
programs. In Proceedings of ICLP.
Nath, A., and Domingos, P. 2009. A Language for Rela-
tional Decision Theory. In Proceedings of SRL.
Pfeffer, A. 2001. IBAL: A probabilistic rational program-
ming language. In Proceedings of IJCAI, volume 17, 733–
740.
Poole, D. 1997. The independent choice logic for mod-
elling multiple agents under uncertainty. Artificial Intelli-
gence 94(1-2):7–56.
Richardson, M., and Domingos, P. 2002. Mining
knowledge-sharing sites for viral marketing. In Proceedings
of KDD, 61.
Russell, S., and Norvig, P. 2003. Artificial intelligence: A
modern approach. Prentice Hall.
Sanner, S., and Boutilier, C. 2009. Practical solution tech-
niques for first-order MDPs. Artificial Intelligence 173(5-
6):748–788.
Sato, T. 1995. A statistical learning method for logic pro-
grams with distribution semantics. In Proceedings of ICLP,
715–729.
van Otterlo, M. 2009. The logic of adaptive behavior. IOS
Press, Amsterdam.
Wang, C.; Joshi, S.; and Khardon, R. 2008. First order
decision diagrams for relational MDPs. Journal of Artificial
Intelligence Research 31(1):431–472.

1222

