
On the Use of Prime Implicates in Conformant Planning∗

Son Thanh To
New Mexico State University

Department of Computer Science
sto@cs.nmsu.edu

Tran Cao Son
New Mexico State University

Department of Computer Science
tson@cs.nmsu.edu

Enrico Pontelli
New Mexico State University

Department of Computer Science
epontell@cs.nmsu.edu

Abstract

The paper presents an investigation of the use of two alterna-
tive forms of CNF formulae—prime implicates and minimal
CNF—to compactly represent belief states in the context of
conformant planning. For each representation, we define a
transition function for computing the successor belief state re-
sulting from the execution of an action in a belief state; results
concerning soundness and completeness are provided. The
paper describes a system (PIP) which dynamically selects
either of these two forms to represent belief states, and an
experimental evaluation of PIP against state-of-the-art con-
formant planners. The results show that PIP has the potential
of scaling up better than other planners in problems rich in
disjunctive information about the initial state.

Introduction and Motivation

Conformant planning (Smith and Weld 1998) is the problem
of planning in presence of incomplete information about the
initial state. One of the most important questions in confor-
mant planning is how to represent the information about the
initial situation, which is often referred as the initial belief
state. In a domain with n propositions, the size of the initial
belief state can be 2n. In the literature, the description of the
initial belief state is often given as a CNF formula with some
additional constructs (as discussed later).

The representation method used to encode belief states
affects the performance of a conformant planner in several
ways. It can quickly increase the memory usage of the plan-
ner, leading to undesirable out-of-memory situations, if the
size of the belief state is large. It also directly affects the time
complexity in computing the successor belief states, since
this task often requires the planner to test for the satisfac-
tion of a conjunction of literals in a belief state, which is a
NP-hard problem.

In the past, several representations have been developed.
An indirect representation of belief states is used in CFF
(Brafman and Hoffmann 2004), while ordered binary de-
cision diagram (OBDD) is employed in POND (Bryce,
Kambhampati, and Smith 2006); approximation states has

∗Partial supported by NSF grants IIS-0812267, CBET-
0754525, and CREST-0420407.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been introduced in CPA (Tran et al. 2009); the work pre-
sented in DNF (To, Pontelli, and Son 2009) relies on explicit
disjunctive formulae. The investigation presented in (To,
Pontelli, and Son 2009) also discusses in more details the
advantages and disadvantages of each of the aforementioned
representations. It is worth mentioning that, regardless of the
representation of belief states, all planners have difficulties
scaling up when the size of the initial belief state is large.
For example, all planners fail to find a solution of a mod-
ified version of the coins-21 problem instance from the
IPC-2006 competition, either because they run out of mem-
ory or the plan computation exceeds reasonable time limit.
The initial belief state of this problem contains 1016 states,
compared to the “easy instances” in the same domain—e.g.,
the coins-20 instance has an initial belief state contain-
ing less than 106 possible states, and can be solved by all
planners in less than two minutes.

The above issues motivated us to investigate alternative
representations of belief states in conformant planning. In-
spired by recent developments in other areas (e.g., the d-
DNNF representation of SAT (Darwiche 2001)) and aware
of the difficulties involved in using OBDD in computing the
successor state, our goal is to identify a belief state repre-
sentation with two desirable properties. First, the size of the
representation should be minimal (as defined later). Sec-
ond, the representation should facilitate a simple and effi-
cient way for determining the satisfaction of a set of literals
given a belief state.

In this paper, we investigate two different CNF-based be-
lief state representations. The first representation employs
prime implicates, called pi-formula. In this representation,
a formula is replaced by its set of prime implicates or its
pi-form. This representation exhibits a number of desirable
properties. The complexity of checking tautological in a pi-
form of a formula is linear for a literal (and polynomial for a
clause) in the number of the propositions. Second, the repre-
sentation is unique among the set of equivalent CNF formu-
lae, making tractable the problem of checking for repetitions
of belief states in a search tree. Third, this representation is,
in many cases, very compact. Finally, the computation of the
successor belief states under this representation can be done
efficiently. The main disadvantage of this representation is
that the size of the pi-form of a formula is sometimes very
large. To this end, we investigate an alternative representa-

1205

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

tion, called minimal CNF, whose size is often significantly
smaller than its equivalent pi-form and can compensate for
the pi-form representation in many cases.

In this paper, we provide a formal description of the two
representations and design a best-first search conformant
planner (PIP) that adopts them. We provide an experimental
comparison of PIP against other planners. Our experiments
show that PIP is comparable in speed with state-of-the-art
planners and scales up better in domains rich in disjunctive
information about the initial belief state.

Background: Conformant Planning
A planning problem is a tuple P = 〈F,O, I,G〉, where F
is a set of propositions, O is a set of actions, I describes
the initial state of the world, and G describes the goal. A
literal is either a proposition p ∈ F or its negation ¬p. ℓ̄
denotes the complement of a literal ℓ. For a set of literals
L, L = {ℓ̄ | ℓ ∈ L}. A conjunction of literals is often
represented as the set of its literals.

A set of literals X is consistent if there is no p ∈ F such
that {p,¬p} ⊆ X , and complete if, for each p ∈ F , either
p ∈ X or ¬p ∈ F . A state s is a consistent and complete set
of literals. A belief state is a set of states. We will often use
lowercase (resp. uppercase) letter, possibly with indices, to
represent a state (resp. a belief state).

Each action a in O is associated with a precondition φ
(denoted by pre(a)) and a set of conditional effects of the
form ψ → ℓ (also denoted by a : ψ → ℓ), where φ and ψ
are sets of literals and ℓ is a literal.

A state s satisfies a literal ℓ, denoted by s |= ℓ, if ℓ ∈ s.
s satisfies a conjunction of literals X , denoted by s |= X , if
it satisfies every literal belonging to X . The satisfaction of
a formula in a state is defined in the usual way. Likewise, a
belief state S satisfies a literal ℓ, denoted by S |= ℓ, if s |= ℓ
for every s ∈ S.

Given a state s, an action a is executable in s if s |=
pre(a). The effects of executing a in s is

e(a, s) = {ℓ | ∃(a : ψ → ℓ). s |= ψ}

The transition function, denoted by Φ, in the planning do-
main of P is defined by

Φ(a, s) =

{
s \ e(a, s) ∪ e(a, s) s |= pre(a)
⊥ otherwise

(1)

where ⊥ denotes a failed state.
We can extend the function Φ to define Φ̂, a transition

function which maps sequences of actions and belief states

to belief states. Φ̂ is used to reason about the effects of plans.
Let S be a belief state. We say that an action a is executable
in a belief state S if it is executable in every state belonging
to S. Let [a1, . . . , an] be a sequence of actions:

• If n = 0 then Φ̂([], S) = S;

• If n > 0 then

◦ if Φ̂([a1, . . . , an−1], S) = ⊥ or if an is not executable

in Φ̂([a1, . . . , an−1], S), then Φ̂([a1, . . . , an], S) = ⊥;

◦ if Φ̂([a1, . . . , an−1], S) 6= ⊥ and an is executable in

Φ̂([a1, . . . , an−1], S) then

Φ̂([a1, . . . , an], S) = {Φ(an, s
′) | s

′ ∈ Φ̂([a1, . . . , an−1], S)}.

The initial state of the world (I) is a belief state and is rep-
resented by a formula. In all benchmarks, I consists of a
conjunction of a set of literals, a set of oneof-statements—
representing an exclusive-or of its components—and a set
of or-statements—representing the logical or of its compo-
nents. By SI we denote the set of all states satisfying I . The
goal description G can contain literals and or-clauses.

A sequence of actions [a1, . . . , an] is a solution of P if

Φ̂([a1, . . . , an], SI) satisfies the goal G. In this paper, for
an action a, we will denote with Ca the set of conditional
effects of a.

The function Φ̂ can be used in the implementation of a
best-first search based conformant planner. As we have dis-
cussed earlier, one of the important factors to this effort lies
in the representation of belief states.

CNF Representations for Belief States

In this section, we explore the use of prime implicates in rep-
resenting belief states for the development of a conformant
planner. Observe that the development of a new representa-
tion of belief states needs to come with a set of operations
such as checking for the satisfaction of a condition and/or
updating a belief state with a set of effects.

A clause α is a set of fluent literals. α is tautological
if {f,¬f} ⊆ α for some f ∈ F and it is a unit clause if
|α| = 1. A CNF formula is a set of clauses. A literal l is in a
CNF formulaϕ, denoted by l ∈ ϕ, if there exists α ∈ ϕ such
that l ∈ α. By ϕl (resp. ϕl̄) we denote the set of clauses in
ϕ which contain l (resp. l̄).

A clause α subsumes a clause β (or β is subsumed by α) if
α ⊂ β. Given a CNF formula ϕ, a clause α in ϕ is said to be
trivially redundant for ϕ if it is tautological or it is subsumed
by another clause in ϕ. The technique of simplifying a CNF
formula by removing subsumed clause(s) from that formula
is called subsumption.

A clause α is said to be resolvable with another clause β
if there exists a literal ℓ such that ℓ ∈ α, ℓ̄ ∈ β, and their
resolvent α|β, defined by α|β = (α \ {ℓ}) ∪ (β \ {ℓ̄}), is a
non-tautological clause. In this case, we say that α is resolv-
able with β on ℓ. Observe that, if α and β are two clauses
in a CNF formula ϕ and there exists a clause in ϕ which is
subsumed by α|β then ϕ can be simplified to an equivalent
smaller formula by replacing all the clauses subsumed by
α|β in ϕ with this resolvent. This technique is referred to
as subsumable resolution and α|β is called a subsumable re-
solvent. For example, applying subsumable resolution to the
set {{f, g}, {f, h,¬g}} results in {{f, g}, {f, h}}, whereas
applying this technique to {{f, g}, {f,¬g}, {f, h}} returns
{{f}}. For two sets of clauses ϕ and ψ, we denote with
ϕ|ψ = {α|β | α is resolvable with β ∧ α ∈ ϕ ∧ β ∈ ψ}.

For two CNF formulae ϕ = {α1, . . . , αn} and ψ =
{β1, . . . , βm}, the cross-product of ϕ and ψ, denoted by
ϕ × ψ, is the CNF-formula defined by {αi ∪ βj | αi ∈
ϕ, βj ∈ ψ}. If either ϕ or ψ is empty then ϕ × ψ = ∅. The
reduced-cross-product of ϕ and ψ, denoted by ϕ⊗ ψ, is the
CNF-formula obtained from ϕ⊗ψ by removing all trivially
redundant clauses from ϕ× ψ.

For a set of CNF formulae Ψ = {ϕ1, . . . , ϕn}, ×[Ψ]

1206

(resp. ⊗[Ψ]) denotes ϕ1 × ϕ2 × . . .× ϕn (resp. ϕ1 ⊗ ϕ2 ⊗
. . . ⊗ ϕn). It is easy to see that both ×[Ψ] and ⊗[Ψ] are a
CNF-formula equivalent to

∨n

i=1
ϕi.

A clause α is said to be an implicate of a formulaϕ if ϕ |=
α. It is a prime implicate of ϕ if there is no other implicate
β of ϕ such that β subsumes α. Obviously, if a unit clause
is an implicate of a formula then it is also a prime implicate
of that formula. We denote the set of prime implicates of a
formula ϕ by PI(ϕ). Clearly, a CNF formula ϕ is in prime
implicate form (pi-formula, for short) if ϕ = PI(ϕ). One
can prove the following proposition

Proposition 1. The reduced-cross-product of a set of pi-
formulae is a pi-formula.

Thus, the pi-formula of the disjunction of a small set of
pi-formulae can be computed in polynomial time.

Prime Implicate Representation

Definition 1. A PI-state is a pi-formula. A set of PI-states is
called a PI-belief state.

It is easy to see that if ϕ is a pi-formula, checking whether
a literal ℓ is satisfied by ϕ can be done in linear time in the
size of F (the set of propositions).

We will now specify how the function Φ can be computed
given that a belief state is represented by a PI-state.

Definition 2. Let ϕ be a PI-state and ℓ be a literal. The up-
date of ϕ by ℓ, denoted by updpi(ϕ, ℓ), is defined as follows:

updpi(ϕ, ℓ) = (ϕ \ (ϕℓ ∪ ϕℓ̄)) ∧ ℓ

Intuitively, updpi(ϕ, ℓ) encodes the PI-state after execu-
tion of an action, that causes ℓ to be true, in ϕ. For example,

◦ updpi({{f}, {ℓ̄}}, ℓ) = {{f}, {ℓ}}

◦ updpi({{f}, {h, ℓ}}, ℓ) = {{f}, {ℓ}}

◦ updpi({{g, h}, {g, ℓ̄}, {h, ℓ}}, ℓ) = {{g, h}, {ℓ}}
It is easy to see that the following proposition holds.

Proposition 2. If ϕ is a PI-state and ℓ1, ℓ2 are literals such
that ℓ1 6= ℓ2 and ℓ1 6= ℓ̄2
• updpi(ϕ, ℓ1) is a PI-state; and

• updpi(updpi(ϕ, ℓ1), ℓ2) = updpi(updpi(ϕ, ℓ2), ℓ1).

The above proposition shows that the result of updating
a PI-state ϕ using a consistent set of literals L is indepen-
dent from the order in which the various literals of L are
introduced. For a consistent set of literals L, we define
updpi(ϕ,L) = updpi(updpi(ϕ, ℓ), L \ {ℓ}) for any ℓ ∈ L if

L 6= ∅ and updpi(ϕ, ∅) = ϕ.
Let us now define the transition function ΦPI for PI-

states. Given an action a with the precondition pre(a), its
set of conditional effect Ca, and a PI-state ϕ, we need to
define the successor PI-state ΦPI(a, ϕ). Note that, when
computing ΦPI(a, ϕ), for each ψ → ℓ in Ca there are three
cases that need to be considered:

• ϕ |= ψ

• ϕ |= ¬ψ

• ϕ 6|= ψ and ϕ 6|= ¬ψ
As an example, if ϕ = p∧q and ψ = r, then we haveϕ 6|= ψ
and ϕ 6|= ¬ψ. In order to define ΦPI , we need the following
definition.

Definition 3. Let ϕ be a PI-state and γ a consistent set of
literals. The enabling form of ϕ w.r.t. γ, denoted by ϕ ⊕ γ,
is a PI-belief state defined by

ϕ ⊕ γ =

{
{ϕ} if ϕ |= γ or ϕ |= ¬γ
{PI(ϕ ∧ γ), P I(ϕ ∧ ¬γ)} otherwise

where ¬γ is the clause {ℓ̄ | ℓ ∈ γ}.

It is easy to see that ϕ⊕γ is a set of (at most two) PI-states
such that for every δ ∈ ϕ ⊕ γ, δ |= γ or δ |= ¬γ. We can
prove the following:

Proposition 3. Let ϕ be a PI-state and let γ be a consistent
set of literals. Let σ be the union set of all literals in unit
clauses in ϕ;

• ϕ⊕ γ = ϕ⊕ (γ \ σ);
• If the number of literals in γ is bounded by a constant,

then ϕ⊕ γ can be computed in polynomial time; and
• If the number of literals in γ\σ is bounded by a constant,

then ϕ⊕ γ can be computed in polynomial time.

For a PI-belief state Ψ, let Ψ + γ =
⋃

ϕ∈Ψ
(ϕ⊕ γ).

Proposition 4. Let ϕ (resp. Ψ) be a PI-state (resp. PI-belief
state). If γ is a consistent set of literals, then ϕ ⊕ γ (resp.
Ψ ⊕ γ) is a PI-belief state equivalent to ϕ (resp. Ψ). If γ1

and γ2 are two consistent sets of literals, then
(ϕ⊕ γ1) ⊕ γ2 = (ϕ⊕ γ2) ⊕ γ1.

Definition 4. Let a be an action with the set of conditional
effects Ca. A PI-state ϕ is said to be enabling for a if for
every conditional effect ψ → ℓ in Ca, either ϕ |= ψ or
ϕ |= ¬ψ. A PI-belief state Ψ is enabling for a if every PI-
state in Ψ is enabling for a.

For an action a and a PI-state ϕ, let enbpi(a, ϕ) = ((ϕ ⊕
ψ1) ⊕ . . .) ⊕ ψk where Ca = {ψ1 → ℓ1, . . . , ψk → ℓk}.

Proposition 5. For every PI-state ϕ and action a,
enbpi(a, ϕ) is a PI-belief state which is equivalent to ϕ and
enabling for a.

For an action a and a PI-state ϕ, the effect of a in ϕ, denoted
e(a, ϕ), is defined as follows:

e(a, ϕ) = {ℓ | ψ → ℓ ∈ Ca, ϕ |= ψ}.
We are now ready to define the function ΦPI .

Definition 5. Let ϕ be a PI-state and let a be an action.
ΦPI(a, ϕ) denotes the transition function for PI-states:

ΦPI(a, ϕ)=

⊗[{updpi(φ, e(a, φ)) | φ ∈ enbpi(a, ϕ)}]
if ϕ |= pre(a)

⊥ otherwise

(2)

The computation of ΦPI can be done efficiently under
reasonable assumption, as stated next.

Proposition 6. Let ϕ be a PI-state and let a be an ac-
tion whose conditional effects are Ca = {ψi → ℓi | i =
1, . . . , k}. The computation of ΦPI(a, ϕ) can be done in
polynomial time in the size of ϕ if k and |ψi|, ∀i = 1, . . . , k,
are bounded by a constant.

Observe that, since k and the size of every ψi is usu-
ally small, the assumption can be acceptable and computing

1207

ΦPI(a, ϕ) largely depends on the size of ϕ. ΦPI can be ex-

tended to define Φ̂PI , which allows us to reason about the

effects of sequences of actions, in the same manner Φ̂ is de-

fined. The next theorem shows that Φ̂PI is equivalent to the

complete semantics defined by Φ̂. Thus, any planner using

Φ̂PI in its search for solutions will be sound and complete.

Theorem 1. Let ϕ be a PI-state and [a1, . . . , an] be

an action sequence. Then, Φ̂PI([a1, . . . , an], ϕ) ≡

Φ̂([a1, . . . , an], BS(ϕ)) where BS(ϕ) denotes the set of
states satisfying ϕ.

The prime implicate representation has nice properties,
e.g., checking entailment of a set of literals or a clause can
be done efficiently and the reduced-cross-product of a set of
PI-states will result in a PI-state. Moreover, since the PI-
state equivalent to a given CNF formula is unique, it is easy
to ensure that no PI-state is explored more than once in an
implementation.

The critical problem with this representation lies in the
fact that the complexity of the function ΦPI depends on the
size of the PI-state which, unfortunately, can be much larger
than the size of an equivalent CNF formula. For example, for
ϕ = {{f,¬g}, {g,¬h}, {¬f, h}}, we have that PI(ϕ) =
{{f,¬g}, {g,¬h}, {¬f, h}, {f,¬h}, {¬f, g}, {¬g, h}}
which is twice as big as ϕ. For this reason, we investigate
the second CNF-representation.

Minimal CNF Representation

Definition 6. A CNF formula ϕ is minimal if

• ϕ does not contain a trivially redundant clause; and

• ϕ does not contain two clauses γ and δ such that γ is
resolvable with δ and γ|δ subsumes a clause in ϕ.

A CNF-state is a minimal CNF formula. A set of CNF-
states is called a CNF-belief state.

Intuitively, a CNF-state ϕ is minimal in the sense that it
does not contain trivially redundant clauses and it cannot be
simplified by subsumable resolution. Observe that a PI-state
is also a CNF-state, but the converse is not necessarily true.
Furthermore, for one CNF formula ϕ, the PI-state equiva-
lent to ϕ is unique but there can be more than one CNF-state
equivalent to ϕ. In the following, we write min(·) to de-
note an idempotent function that converts an arbitrary CNF
formula ϕ to an equivalent CNF-state. For CNF-states, up-
dating a state with a literal is defined as follows.

Definition 7. Let ϕ be a CNF-state and l be a literal. The
update of ϕ by l, denoted by upd(ϕ, l), is defined as follows:

upd(ϕ, l) = min((ϕ \ (ϕl ∪ ϕl̄)) ∧ l ∧ ϕl|ϕl̄)

Similar to Proposition 2, we can extend upd to define the
updating of a CNF-state by a consistent set of literals by
upd(ϕ,L) = upd(upd(ϕ, l), L \ {l}) for some l ∈ L. Us-
ing this definition, most of the operations on CNF-states and
CNF-belief states can be defined similarly to the operations
on PI-states and PI-belief states (Definitions 3-5). Due to
lack of space, we omit their precise formulations which are
similar to those defined for reduced-CNF representation (To,
Son, and Pontelli 2010), a preliminary version of minimal

CNF form. Let us note that this allows us to define a func-
tion, Φ̂CNF , for computing the result of a sequence of ac-
tions applied on a CNF-state. Furthermore, this function is

equivalent to Φ̂PI .

PIP—a Conformant Planner with Dynamic

Representation Selection
In this section, we describe a conformant planner, called
PIP, that employs both the PI-state and the CNF-state in its
repesentation of belief states. PIP is a heuristic best-first
search, progression-based planner. We develop PIP from
the source code of DNF (To, Pontelli, and Son 2009).

Since preprocessing a CNF formula to a compact CNF
form makes the computation of its prime implicates more
efficient, first we start computing the minimal CNF formula
encoding I using a fixed-point algorithm of subsumption,
subsumable resolution, and unit propagation (Piette et al.
2008) whose running time is polynomial in the size of the
formula. The resulting CNF-state is fed to a test phase which
decides whether the CNF-state representation or the PI-state
representation should be used as follows.

• The minimal CNF representation will be selected if the
computation of the initial PI-state takes too long. More
precisely, if it is greater than |F |3 ∗ TI , where F is the
set of propositions and TI is the time spent for computing
CNF-state from the CNF-formula encoding I .

• The minimal CNF representation will be used if, within
the exploration of a small number of belief states (N)
(in our experiment, we set N = min(10, |F |)), a pilot
search using PI representation takes longer time than that
using CNF representation. In addition, if the total size of
the PI-states generated by the pilot search using PI repre-
sentation is not smaller than twice of the total size of the
CNF-states generated by the other pilot search then the
minimal CNF representation is used.

• Otherwise, the PI-state representation will be chosen.

Algorithm 1 Search(F,O,I,G)

1: Input: Problem 〈F,O, I,G〉
2: Output: A plan if exists
3: Compute CNF-state ϕI from I
4: Create an empty queue Q and let PI be a boolean vari-

able and P be a plan variable
5: Set (P,Q, PI) = TestPhase(F,O, ϕI , G)
6: if P 6= NULL then
7: return P
8: end if
9: if PI = true then

10: return SearchPI(F,O,Q,G)
11: else
12: return SearchCNF (F,O,Q,G)
13: end if

PIP will commit to a representation based on the result
of the test phase, then will use the corresponding transi-
tion function to search for a plan. The overall algorithm
is given in Algorithm 1 where SearchPI(F,O,Q,G) and
SearchCNF (F,O,Q,G) implement the best-first search
engine using the PI-state and the CNF-state representations.

1208

For computing the PI-states, we use an incremental algo-
rithm for computing prime implicates, called IPIA (de Kleer
1992).

To reduce the cost of computing the PI-state from a dis-
junction of PI-states, we use the following proposition

Proposition 7. Given two PI-statesϕ andψ and two clauses
c1 and c2 such that c1 ∈ ϕ and c2 ∈ ψ, it holds that:

• If c1 ⊆ c2 then c2 is a prime implicate of ϕ⊗ ψ.

• If c1 is a unit clause, c1 ∪ c2 is not tautological, and c2
does not belong to the previous case then c1∪c2 is a prime
implicate of ϕ⊗ ψ.

Proposition 7 allows us to reduce subsumption checking
and avoid the creation of redundant clauses.

Problem PIP DNF CPA T0 CFF POND

block-1 0.58/7* 0.67/7 0.68/4 0.08/5 0.02/6 0.01/6

block-2 0.83/18* 0.72/38 0.76/14 0.2/23 TO 0.06/34

block-3 TO* 216.1/331 OM 48/80 TO 3.9/80

bomb-50-10 1.24/90 1.28/90 21/58 F 1.16/90 OM

bomb-100-10 2.48/190 2.69/190 110/110 F 34/190 OM

bomb-100-20 4.65/180 5.15/180 244/118 F 28/180 OM

cc-40-20 1.11/175 7.79/535 F 87/918 TO TO

cc-64-32 1.53/283 21.24/872 F F TO TO

cc-87-43 2.19/387 40.4/1249 F F TO TO

coins-15 1.29/97* 1.07/67 7/362 0.12/79 2.6/89 10/124

coins-20 2.46/146* 1.44/99 17/105 0.15/107 16/143 105/153

coins-21 OM* OM OM F TO TO

ds-6-5 26.8/464 13/570 235/1971 98.5/347 TO TO

ds-8-5 211/1110 65/878 2152/541 F TO OM

ds-10-3 509/2102 193/680 4694/648 2388/1360 TO OM

1d-4-2 9.8/110* 2.18/64 2.24/52 12.44/72 TO OM

1d-5-2 81.6/312* 5.85/122 11.24/88 188/126 TO OM

1d-6-2 434/492* 15.4/186 33.7/124 F TO OM

1d-6-3 OM* 506/186 OM F TO OM

gripper-50 3.9/298 8.71/234 106.7/106 52.1/198 3.2/294 TO

gripper-60 5.28/358 13.7/278 189.3/286 91.6/238 6.4/354 TO

gripper-70 7.17/418 16.51/316 278.6/580 151/278 11/414 TO

gripper-80 10.36/478 22.58/350 432/166 234/318 18/474 TO

lng-4-3-3 2.73/4 3.53/4 4.48/4 F TO OM

lng-5-3-3 10.9/14 13.9/6 20/6 F TO OM

lng-6-3-3 46/6 52/6 82/6 F TO OM

lng-7-3-3 171/52 178/14 OM F TO OM

push-5-6 23.6/312 24.1/783 TO F TO TO

push-6-5 51/216 58/1346 OM F TO TO

push-7-5 163/956 130/1767 OM F TO TO

push-7-7 391/774 494/2565 OM F TO TO

raok-2 1.65/27* 0.57/26 1.1/32 0.04/21 0.07/34 F

raok-3 2.7/177* 1.68/153 3.8/152 0.25/66 12/102 F

raok-4 TO* TO TO F TO F

sortnet-5 1.2/15* 0.94/15 0.94/12 0.26/15 NA 0/12

sortnet-10 22.1/55* 1.85/54 3.18/39 OM NA 0.03/38

sortnet-15 255/119* 35.9/118 244/65 F NA 0.14/65

sortnum-5 1.58/10* 2.57/10 OM 1.92/10 2.9/10 0.49/10

sortnum-6 22.9/15* 397/15 OM 18.1/15 TO 19.4/15

sortnum-7 537/21* OM OM 91/21 TO 1077/21

sortnum-8 6970/28* OM OM F TO TO

uts-c-3 4.22/3* 0.54/3 1.19/3 0.15/3 NA F

uts-c-4 TO* 0.56/6 18.3/6 0.47/7 NA F

uts-c-5 TO* 0.73/10 OM 1.8/10 NA F

Table 1: Benchmarks from Literature

Heuristic

PIP uses two search heuristics: the number of satisfied sub-
goals and the size of the CNF-state, i.e., the sum of the size
of all clauses in the CNF formula. This heuristic may seem
naive, nevertheless it is very close to that of DNF, a plan-
ner similar to PIP except for the belief state representation.
This choice allows us to use DNF in our comparisons. The
comparison of PIP with other planners is for proving that
pi-formulae can be used to build a competitive conformant
planner.

Experimental Evaluation

We compare PIP with the following conformant planners:
DNF (To, Pontelli, and Son 2009), CPA (Tran et al. 2009),
CFF (Brafman and Hoffmann 2004), POND (Bryce, Kamb-
hampati, and Smith 2006), and t0 (Palacios and Geffner
2007) using conformant planning benchmarks from litera-
ture. To the best of our knowledge, these planners currently
yield the best performance in these domains. We also use a
set of new benchmarks modified from those in literature by
replacing oneof-clause(s) with or-clause(s) in the initial state
description, to generate cases that are rich in disjunctive in-
formation. All the experiments have been carried out using
a dedicated Intel Core 2 Dual 9400 2.66GHz 4GB Linux
workstation. The time-out limit is set to 2 hours. The ex-
perimental results are reported in tables 1 and 2. We report
the time and plan length for each planner. ‘OM’, ‘TO’, and
‘F’ denote out-of-memory, time-out, and abnormal termina-
tion of the planner. Due to space limitation, we only report
the results of our experiments in a few large instances of
each benchmark. In the following, we discuss each table
and evaluate the strengths and weaknesses of PIP against
other planners.

Benchmarks From Literature

Table 1 contains the results obtained from experiments on
the domains block, dispose (ds-n-m), raokeys (raok-n), and
uts-cycle (uts-c-n) used in IPC-2008, coins and sortnet are
from IPC-2006, and bomb and gripper are from the au-
thors of CFF. The remaining problems, including corner-
cube (cc-n-m), 1dispose (1d-n-m), look-and-grab (lng-n-m-
k), push (push-n-m), and sort-number (sortnum-n) are in-
cluded in the package of t0.

The results show that PIP is the best in five (bomb,
corner-cube, gripper, look-and-grab, and push) out of thir-
teen domains. DNF outperforms the others in three do-
mains (dispose, 1dispose, and uts-cycle). The overall perfor-
mance of PIP is comparable to that of DNF for the bench-
marks. Note that, DNF and CPA take advantage of the oneof-
combination technique, aimed at reducing the disjunctive
form of the initial belief state. Without this technique, these
planners would have trouble dealing with several bench-
marks, such as coins, dispose, 1dispose, look-and-grab, and
push. Although this technique does not harm the sound-
ness and completeness of the planners, the initial data is not
equivalent to the original. Thus, it is somewhat “unfair” to
compare the effectiveness of the belief state representations
under these conditions.

1209

Our experiments reveal that the search trees of PIP and
DNF for the instance problems of bomb and the first three
instance problems of look-and-grab are the same but PIP
performs better. Hence, we can conclude that the prime im-
plicate representation is better than the DNF representation
for these cases. For sort-number, t0 is the best on most in-
stances but only PIP is able to deal with the largest instance.
t0 is also the best on coins and raokey. POND outperforms
the others on block and sortnet but its performance is poor
on the other domains. Note that, on the PIP column, “*”
indicates that the minimal CNF representation has been se-
lected . Observe that most of the best solutions are found by
PIP using prime implicate representation.

Challenging Problems

In this subsection, we introduce a new set of problems aimed
at demonstrating situations where PIP can show its full po-
tential. They are variants of problems in Table 1, obtained by
replacing oneof statements with or statements of the same
set of literals. This modification is carried out only for the
problems whose descriptions remain consistent. These vari-
ants are renamed by adding the prefix “or-” to their origi-
nal name and they are shown in table 2. Due to the large
size of the disjunctive normal form formulae representing
belief states in these problems, a DNF belief state repre-
sentation based planner, e.g., DNF and CPA, provide much
poorer performance compared to that on the original prob-
lems. Moreover, in these problems, the oneof-combination
technique is not applicable, making the performance of DNF

and CPA even worse. On the contrary, due to the capability
of maintaining a compact size of CNF formulae representing
belief states, PIP outperforms impressively not only DNF
belief state representation based planners, but also all other
competitive state-of-the-art conformant planners. It is worth
mentioning that there is no significant difference between
the performance of any other planner on these problems in
comparison with that on the original problems.

Conclusion and Future Work
In the paper, we showed that prime implicate formulae have
the potential of offering highly desirable properties in the
representation of belief states for conformant planning. We
developed an effective complete transition function for com-
puting successor belief states using the prime implicate rep-
resentation. We also proposed an alternative compact CNF
form, minimal CNF, for representing belief states in the case
the prime implicate form is not suitable for them. Another
complete transition function for this representation has also
been provided. A planner that uses alternative representa-
tions, like PIP, appears to be a valid approach which com-
bines strengths of different representations and reduces their
disadvantages. This has been validated by the experimental
results. We also identified a set of problems where a planner
based on conjunctive representations of belief states offers
better results. The theoretical results shown in Propositions
1 and 7 may also be very useful in solving other problems
which require computation of prime implicates.

Using different types of formulae to represent belief states
in a conformant planner and identifying a suitable represen-

Problem PIP DNF CPA T0 CFF POND

or-coins-15 0.91/81* OM OM 0.112/79 2.36/89 10.6/124

or-coins-21 1478/7321* OM OM F TO TO

or-coins-23 407.9/3185* OM OM F TO TO

or-coins-26 448.2/7321* OM OM F TO TO

or-coins-29 999.1/5368* OM OM F TO TO

or-coins-30 7026/11213* OM OM F TO TO

or-ds-6-5 4.83/358 OM OM 208.6/347 TO OM

or-ds-8-3 27.85/392 OM OM 278/761 TO OM

or-ds-8-5 30.84/537 OM OM F TO OM

or-ds-10-5 171.1/2486 OM OM F TO OM

or-ds-10-9 198/2485 OM OM F TO OM

or-1d-5-2 4.56/344 34.1/94 OM F TO OM

or-1d-5-4 14.45/312* OM OM F TO OM

or-1d-6-2 10.41/492* 190.1/150 OM F TO OM

or-1d-6-4 33.24/492* OM OM F TO OM

or-1d-10-4 667.12/3806* OM OM F TO OM

or-push-4-4 1.23/132 OM OM 15.45/210 TO TO

or-push-5-6 3.42/312 OM OM TO TO TO

or-push-6-5 6.16/216 OM OM TO TO TO

or-push-10-5 203.7/841 OM OM TO TO TO

or-push-10-8 255.3/1218 OM OM TO TO TO

Table 2: Challenging Domains

tation for an arbitrary problem are a promising research di-
rection. Finally, an improved heuristic is also desirable.

References

Brafman, R., and Hoffmann, J. 2004. Conformant planning
via heuristic forward search: A new approach. In Koenig,
S.; Zilberstein, S.; and Koehler, J., eds., Proceedings of the
14th International Conference on Automated Planning and
Scheduling (ICAPS-04), 355–364. Whistler, Canada: Mor-
gan Kaufmann.

Bryce, D.; Kambhampati, S.; and Smith, D. 2006. Plan-
ning Graph Heuristics for Belief Space Search. Journal of
Artificial Intelligence Research 26:35–99.

Darwiche, A. 2001. Decomposable negation normal form.
Journal of the ACM 48(4):608–647.

de Kleer, J. 1992. An improved incremental algorithm for
computing prime implicates. In AAAI, 780–785.

Palacios, H., and Geffner, H. 2007. From Conformant into
Classical Planning: Efficient Translations that may be Com-
plete Too. In ICAPS.

Piette, C.; Hamadi, Y.; ; and Saiuml, L. 2008. Vivifying
Propositional Clausal Formulae. In ECAI, 525–529.

Smith, D., and Weld, D. 1998. Conformant graphplan. In
AAAI, 889–896.

To, S. T.; Pontelli, E.; and Son, T. C. 2009. A Conformant
Planner with Explicit Disjunctive Representation of Belief
States. In ICAPS.

To, S. T.; and Son, T. C.; Pontelli, E. 2010. A New Approach
to Conformant Planning using CNF. To Appear In ICAPS.

Tran, D.-V.; Nguyen, H.-K.; Pontelli, E.; and Son, T. C.
2009. Improving performance of conformant planners:
Static analysis of declarative planning domain specifica-
tions. In PADL, LNCS 5418, 239–253. Springer.

1210

