
Decision-Theoretic Control of Crowd-Sourced Workflows

Peng Dai Mausam Daniel S. Weld
Dept of Computer Science and Engineering

University of Washington
Seattle, WA-98195

{daipeng,mausam,weld}@cs.washington.edu

Abstract

Crowd-sourcing is a recent framework in which human in-
telligence tasks are outsourced to a crowd of unknown peo-
ple (”workers”) as an open call (e.g., on Amazon’s Mechan-
ical Turk). Crowd-sourcing has become immensely popular
with hoards of employers (”requesters”), who use it to solve
a wide variety of jobs, such as dictation transcription, content
screening, etc. In order to achieve quality results, requesters
often subdivide a large task into a chain of bite-sized subtasks
that are combined into a complex, iterative workflow in which
workers check and improve each other’s results. This paper
raises an exciting question for AI — could an autonomous
agent control these workflows without human intervention,
yielding better results than today’s state of the art, a fixed
control program?
We describe a planner, TURKONTROL, that formulates work-
flow control as a decision-theoretic optimization problem,
trading off the implicit quality of a solution artifact against
the cost for workers to achieve it. We lay the mathematical
framework to govern the various decisions at each point in a
popular class of workflows. Based on our analysis we imple-
ment the workflow control algorithm and present experiments
demonstrating that TURKONTROL obtains much higher utili-
ties than popular fixed policies.

Introduction
In today’s rapidly accelerating economy an efficient work-
flow for achieving one’s complex business task is of-
ten the key to business competitiveness. Crowd-sourcing,
“the act of taking tasks traditionally performed by an em-
ployee or contractor, and outsourcing them to a group
(crowd) of people or community in the form of an open
call” (Wikipedia 2009), has the potential to revolutionize
information-processing services by quickly coupling hu-
man workers with software automation in productive work-
flows (Hoffmann 2009).

While the phrase ‘crowd-sourcing’ was only termed in
2006, the area has grown rapidly in economic significance
with the growth of general-purpose platforms such as Ama-
zon’s Mechanical Turk (Mechanical Turk 2009) and task-
specific sites for call centers (Liveops 2009), programming
jobs (Topcoder 2009) and more. Recent research has shown
surprising success in solving difficult tasks using the strategy

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A handwriting recognition task (almost) successfully
solved at Mechanical Turk using an iterative workflow. Workers
were shown the text written by a human and in a few iterations
they deduced the message (with errors highlighted). Figure adapted
from (Little et al. 2009).

of incremental improvement in an iterative workflow (Lit-
tle et al. 2009); similar workflows are used commercially
to automate dictation transcription and screening of posted
content. See Figure 1 for a successful example of a com-
plex task solved using Mechanical Turk — this challenging
handwriting was deciphered step by step, with output of one
worker fed as the input to the next. Additional voting jobs
were used to assess whether a worker actually improved the
transcription compared to the prior effort.

From an AI perspective, crowd-sourced workflows offer
a new, exciting and impactful application area for intelli-
gent control. Although there is a vast literature on decision-
theoretic planning and execution (e.g., (Russell and Wefald
1991; Bertsekas 2000; Kaebling, Littman, and Cassandra
1998)), it appears that these techniques have yet to be ap-
plied to control a crowd-sourcing platform. While the hand-
writing example shows the power of collaborative work-
flows, we still do not know answers to many questions: (1)
what is the optimal number of iterations for such a task? (2)
how many ballots should be used for voting? (3) how do
these answers change if the workers are skilled (or very er-
ror prone)?

This paper offers initial answers to these questions by pre-
senting a decision-theoretic planner that dynamically opti-
mizes iterative workflows to achieve the best quality/cost
tradeoff. We make the following contributions:
• We introduce the AI problem of optimization and control

1168

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

of iterative workflows over a crowd-sourcing platform.
• We develop a mathematical theory for optimizing the

quality/cost tradeoff for a popular class of workflows.
• We implement an agent, TURKONTROL, for taking deci-

sions at each step of the workflow based on the expected
utilities of each action.

• We simulate TURKONTROL in a variety of complex sce-
narios and find that it behaves robustly. We also show that
TURKONTROL’s decisions result in a significantly higher
final utility compared to fixed policies and other baselines.

Background
While the ideas in our paper are applicable to different work-
flows, for our case study we choose the iterative workflow
introduced by Little et al. (2009) depicted in Figure 2. This
particular workflow is representative of a number of flows
in commercial use today; at the same time, it is moderately
complex, making it ideal for first investigation.

Little’s chosen task is iterative text improvement. There is
an initial job, which presents the worker with an image and
requests an English description of the picture’s contents. A
subsequent iterative process consists of an improvement job
and one or more ballot jobs. In the improvement job, a (dif-
ferent) worker is shown this same image as well as the cur-
rent description and is requested to generate an improved
English description. Next n ≥ 1 ballot jobs are posted
(“Which text best describes the picture?”). Based on a ma-
jority opinion the best description is selected and the loop
continues. Little et al. have shown that this iterative process
generates better descriptions for a fixed amount than allocat-
ing the total reward to a single author.

Little et al. support an open-source toolkit, TurKit, that
provides a high-level mechanism for defining moderately
complex, iterative workflows with voting-controlled condi-
tionals. However, TurKit doesn’t have built-in methods for
monitoring the accuracy of workers; nor does TurKit auto-
matically determine the ideal number of voters or estimate
the appropriate number of iterations before returns dimin-
ish. Our mathematical framework in the next section an-
swers these and other questions.

Decision-Theoretic Optimization
The agent’s control problem for a workflow like iterative text
improvement is defined as follows. As input the agent is
given an initial artifact (or a job description for requesting
one), and the agent is asked to return an artifact which max-
imizes some payoff based on the quality of the submission.
Intuitively, something is high-quality if it is better than most
things of the same type. For engineered artifacts (including
English descriptions) one may say that something is high-
quality if it is difficult to improve. Therefore, we define the
quality of an artifact by q ∈ [0, 1]; an artifact with quality q
means an average dedicated worker has probability 1− q of
improving it. In our initial model, we assume that requesters
will express their utility as a function U from quality to dol-
lars. The quality of an artifact is never exactly known — it
is at best estimated based on domain dynamics and observa-
tions (e.g., how many workers prefer it to another artifact).

Figure 3 summarizes a high-level flow for our planner’s
decisions. At each step we track our belief in qualities (q and

Figure 2: Flowchart for the iterative text improvement task,
reprinted from (Little et al. 2009).

q′) of the previous () and the current artifact (′) respec-
tively. Each decision or observation gives us new informa-
tion, which is reflected in the quality posteriors. These dis-
tributions also depend on the accuracy of workers, which we
also incrementally estimate based on their previous work.

Based on these distributions we estimate expected utilities
for each action. This lets us answer questions like (1) when
to terminate the voting phase (thus switching attention to
artifact improvement), (2) which of the two artifacts is the
best basis for subsequent improvements, and (3) when to
stop the whole iterative process and submit the result to the
requester.

One may view this agent-control problem as a partially-
observable Markov Decision problem (POMDP) (Kaebling,
Littman, and Cassandra 1998). The actual state of the sys-
tem, (q, q′), is only partially observable. The agent’s knowl-
edge of this state can be represented by a belief state com-
prising the joint probability distribution over q and q′. There
are three actions. Requesting a ballot job is a pure ob-
servation action — it changes neither q or q′, but when a
worker says she prefers one artifact, this observation allows
the agent to update the probability distributions for the likely
values. Posting an improvement job changes more than the
agent’s belief, because one artifact, say ′, is replaced with a
modified version of the other; the agent’s belief about q′ also
changes. Submitting whichever artifact is believed to be best
directs the system to a terminal state and produces a reward.
Since qualities are real numbers, the state space underlying
the beliefs is also continuous (Brunskill et al. 2008). These
kind of POMDPs are especially hard to solve. We overcome
this computational bottleneck by performing limited looka-
head search to make planning more tractable.

Below, we present our mathematical analysis in detail. It
is divided into three key stages: quality posteriors after im-
provement or a new ballot, utility computations for the avail-
able actions and finally the decision-making algorithm and
implementation details.
Quality Tracking
Suppose we have an artifact , with an unknown quality q
and a prior1 density function fQ(q). Suppose a worker x
takes an improvement job and submits another artifact ′,
whose quality is denoted by q′. Since ′ is a suggested im-
provement of , q′ depends on the initial quality q. More-
over, a higher accuracy worker x may improve it much more
so it depends on x. We define fQ′ |q,x as the conditional qual-
ity distribution of q′ when worker x improved an artifact of

1We will estimate a quality distribution for the very first artifact
by a limited training data. Later, posteriors of the previous iteration
will become priors of the next.

1169

Figure 3: Computations needed by TURKONTROL for control of an iterative-improvement workflow.

quality q. This function describes the dynamics of the do-
main. With a known fQ′ |q,x we can easily compute the prior
on q′ from the law of total probability:

fQ′(q′) =
∫ 1

0
fQ′ |q,x(q′) fQ(q)dq. (1)

While we do have priors on the qualities of both the new
and the old artifacts, whether the new artifact is an improve-
ment over the old is not known for sure. The worker may
have done an excellent or a miserable job. Even if the new
artifact is an improvement, one needs to assess how much
better the new artifact actually is. Our workflow at this point
tries to gather evidence to answer these questions by gen-
erating ballots and asking new workers a question: “Is ′ a
better answer than for the original question?”. Say n work-
ers give their votes

−→
bn = b1, . . . , bn, where bi ∈ {1, 0}.

Based on these votes we compute the quality posteriors,
f
Q|
−→
bn and f

Q′ |
−→
bn . These posteriors have three roles to play.

First, more accurate beliefs lead to a higher probability of
keeping the better artifact for subsequent phases. Second,
within the voting phase confident beliefs help decide when
to stop voting. Third, a high-quality belief also helps one
decide when to quit the iterative process and submit. In or-
der to accomplish this we make some assumptions. First, we
assume each worker x is diligent, so she answers all ballots
to the best of her ability. Of course she may still make mis-
takes, so it is useful for the controller to model her accuracy.
Second, we assume that several workers will not collaborate
adversarially to defeat the system.

These assumptions might lead one to believe that the
probability distributions for worker responses (P(bi)) are in-
dependent of each other. Unfortunately, this independence
is violated due to a subtlety — even though different work-
ers are not collaborating, a mistake by one worker changes
the error probability of others. This happens because one
worker’s mistake provides evidence that the question may
be intrinsically hard — which increases the chance that
other workers may err as well. To get around this prob-
lem we introduce the intrinsic difficulty (d) of our question
(d ∈ [0, 1]). It depends on whether the two qualities are
very close or not. Closer the two artifacts the more difficult
it is to judge whether one is better or not. We define the
relationship between the difficulty and qualities as

d(q, q′) = 1− |q− q′|M (2)

We can safely assume that given d the probability distribu-
tions will be independent of each other.

Moreover, each worker’s accuracy will vary with the
problem’s difficulty. We define ax(d) as the accuracy of
the worker x on a question of difficulty d. One will ex-
pect everyone’s accuracy to be monotonically decreasing in
d. It will approach random behavior as questions get re-
ally hard, i.e., ax(d) → 0.5 as d → 1. Similarly, as
d → 0, ax(d) → 1. We use a group of polynomial func-
tions 1

2 [1 + (1 − d) x] for x > 0 to model ax(d) under
these constraints. It is easy to check that this polynomial
function satisfies all the conditions when d ∈ [0, 1]. Note
that smaller the x the more concave the accuracy curve,
and thus greater the expected accuracy for a fixed d.

Note that given knowledge of d one can compute the like-
lihood of a worker answering “Yes”. If the ith worker xi has
accuracy axi (d), we calculate P(bi = 1 | q, q′) as:

If q′ > q P(bi = 1|q, q′) = axi (d(q, q′)), (3)

If q′ ≤ q P(bi = 1|q, q′) = 1− axi (d(q, q′)).

We first derive the posterior distribution given one more
ballot bn+1, f

Q|
−−→
bn+1

(q) based on existing distributions

f
Q|
−→
bn (q) and f

Q′ |
−→
bn (q). Abusing notation slightly, we use

−−→
bn+1 to symbolically denote that n ballots are known and
another ballot (value currently unknown) will be received in
the future. By applying the Bayes rule one gets

f
Q|
−−→
bn+1

(q) P(bn+1 | q,
−→
bn) f

Q|
−→
bn (q) (4)

= P(bn+1 | q) f
Q|
−→
bn (q) (5)

Equation 5 is based on the independence of workers. Now
we apply the law of total probability on P(bn+1 | q) :

P(bn+1 | q) =
∫ 1

0
P(bn+1 | q, q′) f

Q′ |
−→
bn (q′)dq′ (6)

The same sequence of steps can be used to compute the
posterior of ′.

f
Q′ |
−−→
bn+1

(q′) P(bn+1 | q′,
−→
bn) f

Q′ |
−→
bn (q′) (7)

= P(bn+1 | q′) f
Q′ |
−→
bn (q′) (8)

=
[∫ 1

0
P(bn+1|q, q′) f

Q|
−→
bn (q)dq

]
fQ′(q′)

Discussion: Why should our belief in the quality of the pre-
vious artifact change (posterior of) based on ballots com-
paring it with the new artifact? This is a subtle, but im-
portant point. If the improvement worker (who has a good

1170

accuracy) was unable to create a much better ′ in the im-
provement phase that must be because already has a high
quality and is no longer easily improvable. Under such evi-
dence we should increase quality of , which is reflected by
the posterior of , f

Q|
−→b . Similarly, if all voting workers

unanimously thought that ′ is much better than , it means
the ballot was very easy, i.e., ′ incorporates significant im-
provements over and the qualities should reflect that.

This computation helps us determine the prior quality
for the artifact in the next iteration. It will be either f

Q|
−→b

or f
Q′ |
−→b (Equations 5 and 8), depending on whether we

decide to keep or ′.

Utility Estimations
We now discuss how to estimate the utility of an additional
ballot. At this point, say, one has already received n ballots
(
−→
bn) and the posteriors of the two artifacts f

Q|
−→
bn and f

Q′ |
−→
bn

are available. We use U−→
bn to denote the expected utility of

stopping now, i.e., without another ballot and U−−→
bn+1

to de-

note the utility after another ballot. U−→
bn can be easily com-

puted as the maximum expected utility from the two artifacts
and ′:

U−→
bn = max{E[U(Q|−→bn)], E[U(Q′|−→bn)]}, where (9)

E[U(Q|−→bn)] =
∫ 1

0
U(q) f

Q|
−→
bn (q)dq (10)

E[U(Q′|−→bn)] =
∫ 1

0
U(q′) f

Q′ |
−→
bn (q′)dq′ (11)

Using U−→
bn we need to compute the utility of taking

an additional ballot, U−−→
bn+1

. The n + 1th ballot, bn+1,

could be either “Yes” or “No”. The probability distribution
P(bn+1 | q, q′) governs this, which also depends on the ac-
curacy of the worker (see Equation 3). However, since we
do not know which worker will take our ballot job, we as-
sume anonymity and expect an average worker x with the
accuracy function ax(d). Recall from Equation 2 that diffi-
culty, d, is a function of similarity in qualities. Because q
and q′ are not exactly known, probability of getting the next
ballot is computed by applying the law of total probability
to the joint probability fQ,Q′(q, q′):

P(bn+1) =
∫ 1

0

[∫ 1

0
P(bn+1|q, q′) f

Q′ |
−→
bn (q′)dq′

]
f
Q|
−→
bn (q)dq.

These allow us to compute U−−→
bn+1

as follows (cb is the

cost of a ballot):

U−−→
bn+1

= max{E[U(Q|−−→bn+1)], E[U(Q′ | −−→bn+1)]} − cb

E[U(Q | −−→bn+1)] =
∫ 1

0

(
bn+1

U(q) f
Q|
−−→
bn+1

(q)P(bn+1)

)
dq

We can write a similar equation for E[U(Q′ | −−→bn+1)].

Similarly, we can compute the utility of an improvement
step. Based on the current beliefs on the qualities of
and ′ and Equation 9 we can choose or ′ as the better
artifact. The belief of the chosen artifact acts as fQ for
Equation 1 and we can estimate a new prior fQ′ after an
improvement step. Expected utility of improvement will be
max

(∫ 1
0 U(q) fQ(q)d(q),

∫ 1
0 U(q′) fQ′(q′)d(q′)

)
− cimp.

Here cimp is the cost an improvement job.

Decision Making and Other Updates
Decision Making: At any step one can either choose to
do an additional vote, choose the better artifact and attempt
another improvement or submit the artifact. We already de-
scribed computations for utilities for each option. For a
greedy 1-step lookahead policy we can simply pick the best
of the three options.

Of course, a greedy policy may be much worse than the
optimal. One can compute a better policy by an l-step looka-
head algorithm that 1) evaluates all sequences of l decisions,
2) finds the sequencewith the highest expected utility, 3) ex-
ecutes the first action of the sequence, and 4) repeats. As
an arbitrarily good policy might have a sub-optimal l-step
prefix, one cannot bound the deviation from optimality pro-
duced by any finite-step lookahead algorithm. However, the
l-step lookahead works well in simulations (as shown in the
next section).
Updating Difficulty and Worker Accuracy: The agent
updates its estimated d before each decision point based on
its estimates of qualities as follows:

d∗ =
∫ 1

0

∫ 1

0
d(q, q′) fQ(q) fQ′(q′)dqdq′

=
∫ 1

0

∫ 1

0
(1− |q, q′|M) fQ(q) fQ′(q′)dqdq′ (12)

After completing each iteration we have access to esti-
mates for d∗ and the believed answer. We can use this infor-
mation to update our record on the quality of each worker.
In particular, if someone answered a question correctly then
she is a good worker (and her x should decrease) and if
someone made an error in a question her x should increase.
Moreover the increase/decrease amounts should depend on
the difficulty of the question. The following simple update
strategy may work:

1. If a worker answered a question of difficulty d correctly
then x ← x − d .

2. If a worker made an error when answering a question then
x ← x + (1− d) .

We use to represent the learning rate, which could be
slowly reduced over time so that the accuracy of a worker
approaches an asymptotic distribution.
Implementation: In a general model such as ours main-
taining a closed form representation for all these continuous
functions may not be possible. Uniform discretization is the
simplest way to approximate these general functions. How-
ever, for efficient storage and computation TURKONTROL
could employ piecewise constant/piecewise linear value
function representations or use particle filters. Even though

1171

approximate both these techniques are very popular in the
literature for efficiently maintaining continuous distributions
(Mausam et al. 2005; Doucet, De Freitas, and Gordon 2001)
and can provide arbitrarily close approximations. Because
some of our equations require double integrals and can be
time consuming (e.g., Equation 12) these compact represen-
tations help in overall efficiency of the implementation.

Experiments
This section aims to empirically answer the following ques-
tions: 1) How deep should an agent’s lookahead be to best
tradeoff between computation time and utility? 2) Does
TURKONTROL make better decisions compared to fixed
policies such as TurKit’s or other better informed ones? 3)
How does TURKONTROL compare to other sophisticated
planning algorithms such as POMDP solvers?

Experimental Setup
We set the maximum utility to be 1000 and use a convex
utility function U(q) = 1000 eq−1

e−1 with U(0) = 0 and
U(1) = 1000. We assume the quality of the initial artifact
follows a Beta distribution Beta(1, 9), which implies that the
mean quality of the first artifact is 0.1. Suppose the quality
of the current artifact is q, we assume the conditional distri-
bution fQ′ |q,x is Beta distributed, with mean Q′ |q,x where:

Q′ |q,x = q + 0.5[(1− q)× (ax(q)− 0.5)

+q× (ax(q)− 1)]. (13)

and the conditional distribution is Beta(10 Q′ |q,x, 10(1 −
Q′ |q,x)). We know a higher quality means it’s less likely the

artifact can be improved. We model results of an improve-
ment task, in a manner akin to ballot tasks; the resulting dis-
tribution of qualities is influenced by the worker’s accuracy
and the improvement difficulty, d = q.

We fix the ratio of the costs of improvements and ballots,
cimp/cb = 3, because ballots take less time. We set the diffi-
culty constantM = 0.5. In each of the simulation runs, we
build a pool of 1000 workers, whose error coefficients, x,
follow a bell shaped distribution with a fixed mean . We
also distinguish the accuracies of performing an improve-
ment and answering a ballot by using one half of x when
worker x is answering a ballot, since answering a ballot is
an easier task, and therefore a worker should have higher
accuracy.

Picking the Best Lookahead Depth
We first run 10,000 simulation trials with average error co-
efficient =1 on three pairs of improvement and ballot costs
— (30,10), (3,1), and (0.3,0.1) — trying to find the best
lookahead depth l for TURKONTROL. Figure 4 shows the
average net utility, the utility of the submitted artifact mi-
nus the payment to the workers, of TURKONTROL with dif-
ferent lookahead depths, denoted by TurKontrol(l). Note
that there is always a performance gap between TurKon-
trol(1) and TurKontrol(2), but the curves of TurKontrol(3)
and TurKontrol(4) generally overlap. We also observe that

Figure 4: Average net utility of TURKONTROL with various
lookahead depths calculated using 10,000 simulation trials on three
sets of (improvement, ballot) costs: (30,10), (3,1), and (0.3,0.1).
Longer lookahead produces better results, but 2-step lookahead is
good enough when costs are relatively high: (30,10).

Figure 5: Net utility of three control policies averaged over 10,000
simulation trials, varying mean error coefficient, . TurKontrol(2)
produces the best policy in every cases.

when the costs are high, such that the process usually fin-
ishes in a few iterations, the performance difference be-
tween TurKontrol(2) and deeper step lookaheads is negli-
gible. Since each additional step of lookahead increases the
computational overhead by an order of magnitude, we limit
TURKONTROL’ lookahead to depth 2 in subsequent experi-
ments.

Comparing to Fixed Policies
The Effect of Poor Workers We now consider the ef-
fect of worker accuracy on the effectiveness of agent control
policies. Using fixed costs of (30,10), we compare the aver-
age net utility of three control policies. The first is TurKon-
trol(2). The second, TurKit, is a fixed policy from the lit-
erature (Little et al. 2009); it performs as many iterations
as possible until its fixed allowance (400 in our experiment)
is depleted and on each iteration it does at least two bal-
lots, invoking a third only if the first two disagree. Our third
policy, TurKontrol(fixed), combines elements from decision
theory with a fixed policy. After simulating the behavior of
TurKontrol(2), we compute the integer mean number of iter-
ations, imp and mean number of ballots, b, and use these
values to drive a fixed control policy (imp iterations each
with b ballots), whose parameters are tuned to worker fees
and accuracies.

Figure 5 shows that both decision-theoretic methods work
better than the TurKit policy, partly because TurKit runs
more iterations than needed. A Student’s t-test shows all
differences are statistically significant (p < 0.01). We
also note that the performance of TurKontrol(fixed) is very
similar to that of TurKontrol(2), when workers are very

1172

inaccurate, =4. Indeed, in this case TurKontrol(2) exe-
cutes a nearly fixed policy itself. In all other cases, how-
ever, TurKontrol(fixed) consistently underperforms TurKon-
trol(2). A Student’s t-test results confirm the differences are
all statistically significant for < 4. We attribute this differ-
ence to the fact that the dynamic policy makes better use of
ballots, e.g., it requests more ballots in late iterations, when
the (harder) improvement tasks are more error-prone. The
biggest performance gap between the two policies manifests
when =2, where TurKontrol(2) generates 19.7% more util-
ity than TurKontrol(fixed).

Robustness in the Face of Bad Voters As a final study,
we considered the sensitivity of the previous three policies
to increasingly noisy voters. Specifically, we repeated the
previous experiment using the same error coefficient, x,
for each worker’s improvement and ballot behavior. (Re-
call, that we previously set the error coefficient for ballots
to one half x to model the fact that voting is easier.) The
resulting graph (not shown) has the same shape as that of
Figure 5 but with lower overall utility. Once again, TurKon-
trol(2) continues to achieve the highest average net utility
across all settings. Interestingly, the utility gap between
the two TURKONTROL variants and TurKit is consistently
bigger for all than in the previous experiment. In addi-
tion, when =1, TurKontrol(2) generates 25% more utility
than TurKontrol(fixed) — a bigger gap seen in the previ-
ous experiment. A Student’s t-test shows all that the dif-
ferences between TurKontrol(2) and TurKontrol(fixed) are
significant when < 2 and the differences between both
TURKONTROL variants and TurKit are significant at all set-
tings.

Comparing to Other Algorithms
In addition to our limited lookahead search, we implement
two additional algorithms to improve planning quality – an
approximate continuous POMDP solver and a UCT-based
algorithm. Overall we find that TURKONTROL outperforms
both of these.

We implement a continuous POMDP solver that approxi-
mates and discretizes the belief space into a finite-state MDP
and later solves the MDP with value iteration. We call it the
ADBS method, short for approximation and discretization
of belief space. Our method approximates a general distri-
bution by two values – its mean and standard deviation. This
transforms the belief space to a four-tuple (, , ′, ′), one
pair each for quality distributions of current and new artifact.
We then discretize the four variables into small, equal-sized
intervals. As quality is a real number in [0,1], ∈ [0, 1] and
∈ [0, 1]. With discretization and the known bounds the

belief space becomes finite. To generate the MDP, ADBS
uses breadth-first search. We try different resolutions of dis-
cretization, i.e. various interval lengths, and run with aver-
age error coefficient =1 on three pairs of improvement and
ballot costs — (30,10), (3,1), and (0.3,0.1). Results (not dis-
played) show that TurKontrol(2) outperforms ADBS in all
settings. We also find that with more refined discretization,
the reachable state space grows very quickly (approximately
an order of magnitude per double refined interval), yet the

Figure 6: Net utility of the UCT algorithm after different num-
ber of trials averaged over 10,000 simulation trials compared to
TurKontrol(3) and (2), which do not use trials and hence appear as
horizontal lines. Improvement and ballot costs are set to (3,1), but
results are similar for other cost settings. Note that TurKontrol(3)
returns the best results.

performance of ADBS improves very slowly. In the future
we plan to try other more sophisticated POMDP algorithms
such as (Brunskill et al. 2008).

Recently a general Monte-Carlo simulation algorithm
named UCT (short for “Upper Confidence bounds applied
on Trees”) (Kocsis and Szepesvári 2006) was proposed to
solve planning problems that are too large to be solved op-
timally. Its efficacy has been demonstrated on challenging
problems such as Go (Gelly and Wang 2006) and realtime
strategy games (Balla and Fern 2009). We apply the UCT
algorithm on the an approximated belief space MDP where
every worker is assumed anonymous with average accuracy
ax(d).

Figure 6 plots the mean net utility of UCT as a function of
the number of completed trails (10,000 to 500,000) when the
costs are (3,1). We also tried other costs, and got very simi-
lar results. The horizontal lines stand for the net utilities of
TurKontrol(3) (upper) and TurKontrol(2) (lower) (data used
in Figure 4). We note that the performance of UCT improves
with the number of completed trials. We also observe that
TurKontrol(3) outperforms UCT, though the performance of
UCT is quite good (better than for TurKontrol(2) even af-
ter just 10,000 trials). This experiment suggests that UCT is
useful for quickly finding a good sub-optimal policy but has
limited power in finding a close to optimal policy in the long
run.

Related Work
Automatically controlling a crowd-sourcing system may
be viewed as an agent-control problem where the crowd-
sourcing platform embodies the agent’s environment. In
this sense, previous work on the control of software agents,
such as the Internet Softbot (Etzioni and Weld 1994) and
CALO (Peintner et al. 2009) is relevant. However, in
contrast to previous systems, our situation is more circum-
scribed; hence, a narrower form of decision-theoretic con-
trol suffices. In particular, there are a small number of pa-
rameters for the agent to control when interacting with the
environment.

A related problem is the scheduling of a dynamic pro-
cessing system given time constraints. Progressive process-
ing (Zilberstein and Mouaddib 2000) is one way to solve it,

1173

however, its model uncertainty lies in action durations, and
the states are fully observable.

Several researchers are studying crowd-sourcing systems
from different perspectives. Ensuring accurate results is one
essential challenge in any crowd-sourcing system. Snow
et al. (Snow et al. 2008) observe that for five linguistics
tasks, the quality of results obtained by voting a small num-
ber inexperienced workers can exceed that of a single expert,
depending on task, but they provide no general method for
determining the number of voters a priori.

Several tools are being developed to facilitate parts of
this crowd-sourcing process. For example, TurKit (Little
et al. 2009), Crowdflower.com’s CrowdControl, and
Smartsheet.com’s Smartsourcing provide simple mech-
anisms for generating iterative workflows, and integrating
crowd-sourced results into an overall workflow. All these
tools provide operational conveniences rather than any deci-
sion support.

Crowd-sourcing can be understood as a form of human
computation, where the primary incentive is economical.
Other incentive schemes include fun, altruism, reciprocity,
reputation, etc. In projects such as Wikipedia and open-
source software development, community-related motiva-
tions are extremely important (Kuznetsov 2006). Von Ahn
and others have investigated games with a purpose (GWAP),
designing fun experiences that produce useful results such as
image segmentation, optical character recognition (von Ahn
2006). Crowdflower has integrated Mechanical Turk job
streams into games (Dolores 2009) and developed a mech-
anism whereby workers can donate their earnings to double
the effective wage of crowd-workers in impoverished coun-
tries — thus illustrating the potential to combine multiple
incentive structures.

Conclusions

We introduce an exciting new application for artificial intel-
ligence — control of crowd-sourced workflows. Complex
workflows have become commonplace in crowd-sourcing
and are regularly employed for high-quality output. We use
decision theory to model a popular class of iterative work-
flows and define equations that govern the various steps of
the process. Our agent, TURKONTROL, implements our
mathematical framework and uses it to optimize and control
the workflow. Our simulations show that TURKONTROL is
robust in a variety of scenarios and parameter settings, and
results in higher utilities than previous, fixed policies.

We believe that AI has the potential to impact the growing
thousands of requesters who use crowd-sourcing by making
their processes more efficient. To realize our mission we
plan to perform three important, next steps. First, we need
to develop schemes to quickly and cheaply learn the many
parameters required by our decision-theoretic model. Sec-
ondly, we need to move beyond simulations, validating our
approach on actual MTurk workflows. Finally, we plan to
release a user-friendly toolkit that implements our decision-
theoretic control regime and which can be used by requesters
on MTurk and other crowd-sourcing platforms.

Acknowledgments
This work was supported by Office of Naval Research grant
N00014-06-1-0147 and the WRF / TJ Cable Professorship.
We thank James Fogarty and Greg Little for helpful discus-
sions and Greg Little for providing the TurKit code. We ben-
efitted from data provided by Smartsheet.com. Comments
from Andrey Kolobov, Jieling Han, Yingyi Bu and anony-
mous reviewers significantly improved the paper.

References
Balla, R.-K., and Fern, A. 2009. UCT for tactical assault planning
in real-time strategy games. In IJCAI, 40–45.
Bertsekas, D. 2000. Dynamic Programming and Optimal Control,
Vol 1, 2nd ed. Athena Scientific.
Brunskill, E.; L.Kaelbling; T.Lozano-Perez; and Roy, N. 2008.
Continuous-state POMDPs with hybrid dynamics. In ISAIM’08.
2009. Getting the gold farmers to do useful work.
http://blog.doloreslabs.com/.
Doucet, A.; De Freitas, N.; and Gordon, N. 2001. Sequential
Monte Carlo Methods in Practice. Springer.
Etzioni, O., and Weld, D. 1994. A softbot-based interface to the
Internet. C. ACM 37(7):72–6.
Gelly, S., and Wang, Y. 2006. Exploration exploitation in go: UCT
for monte-carlo go. In NIPS On-line trading of Exploration and
Exploitation Workshop.
Hoffmann, L. 2009. Crowd control. C. ACM 52(3):16–17.
Kaebling, L.; Littman, M.; and Cassandra, T. 1998. Planning
and acting in partially observable stochastic domains. Artificial
Intelligence 101(1–2):99–134.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-carlo
planning. In ECML, 282–293.
Kuznetsov, S. 2006. Motivations of contributors to Wikipedia.
ACM SIGCAS Computers and Society 36(2).
Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C. 2009.
TurKit: Tools for Iterative Tasks on Mechanical Turk. In Human
Computation Workshop (HComp2009).
2009. Contact center in the cloud. http://liveops.com.
Mausam; Benazera, E.; Brafman, R.; Meuleau, N.; and Hansen, E.
2005. Planning with continuous resources in stochastic domains.
In IJCAI’05.
2009. Mechanical turk is a marketplace for work.
http://www.mturk.com/mturk/welcome.
Peintner, B.; Dinger, J.; Rodriguez, A.; and Myers, K. 2009.
Task assistant: Personalized task management for military envi-
ronments. In Press, A., ed., IAAI-09.
Russell, S., and Wefald, E. 1991. Do the Right Thing. Cambridge,
MA: MIT Press.
Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. 2008. Cheap
and fast — but is it good? evaluating non-expert annotations for
natural language tasks. In EMNLP’08.
2009. Topcoder. http://topcoder.com.
von Ahn, L. 2006. Games with a purpose. Computer 39(6):92–94.
2009. http://en.wikipedia.org/wiki/Crowdsourcing.
Zilberstein, S., and Mouaddib, A.-I. 2000. Optimal scheduling of
progressive processing tasks. International Journal of Approximate
Reasoning 25(3):169–186.

1174

