
Efficient Belief Propagation for Utility Maximization and Repeated Inference

Aniruddh Nath and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.
{nath, pedrod}@cs.washington.edu

Abstract
Many problems require repeated inference on proba-
bilistic graphical models, with different values for ev-
idence variables or other changes. Examples of such
problems include utility maximization, MAP inference,
online and interactive inference, parameter and struc-
ture learning, and dynamic inference. Since small
changes to the evidence typically only affect a small re-
gion of the network, repeatedly performing inference
from scratch can be massively redundant. In this pa-
per, we propose expanding frontier belief propagation
(EFBP), an efficient approximate algorithm for proba-
bilistic inference with incremental changes to the ev-
idence (or model). EFBP is an extension of loopy
belief propagation (BP) where each run of inference
reuses results from the previous ones, instead of start-
ing from scratch with the new evidence; messages are
only propagated in regions of the network affected by
the changes. We provide theoretical guarantees bound-
ing the difference in beliefs generated by EFBP and
standard BP, and apply EFBP to the problem of ex-
pected utility maximization in influence diagrams. Ex-
periments on viral marketing and combinatorial auction
problems show that EFBP can converge much faster
than BP without significantly affecting the quality of the
solutions.

Introduction
Most work on approximate probabilistic inference in graph-
ical models focuses on computing the marginal probabili-
ties of a set of variables, or determining their most probable
state, given some fixed evidence and a fixed model. How-
ever, many interesting problems require repeated inference,
with changing evidence or a changing model:
• Utility maximization (Howard and Matheson 2005) in

decision networks involves a search over possible choices
of actions. We can treat each choice of actions as an as-
signment of truth values to evidence variables, and com-
pute the expected utility of that choice by inferring the
expected values of the utility variables.

• Maximum a posteriori (MAP) inference (Park 2002),
i.e., computing the most likely state of a set of query vari-
ables Q given partial evidence e of the variables in the

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complement of Q. We can treat the variables in Q as
changing evidence, and compute the likelihood for each
assignment of values to Q.
• Online inference, where the values of evidence variables

are repeatedly updated (possibly in real time).
• Interactive inference, where the choice of evidence vari-

ables, their values, and the choice of query can change
arbitrarily as dictated by the user.

• Parameter and structure learning (Heckerman, Geiger,
and Chickering 1995; Della Pietra, Della Pietra, and Laf-
ferty 1997) involve repeatedly modifying the model and
recomputing the likelihood.

• Dynamic inference (Murphy 2002) involves sequential
problems, where the query at one time step depends on
evidence and hidden variables at that step and previous
ones.

The obvious way to solve these problems is simply to re-
peatedly perform inference from scratch each time the evi-
dence (or model) changes. However, if the problem remains
largely unchanged between two successive search iterations,
it may be the case that most of the beliefs are not signifi-
cantly altered by the changes. In these situations, it would
be beneficial to reuse as much of the computation as possible
between successive runs of inference.

Delcher et al. (1996) presented an exact online inference
algorithm for tree-structured Bayesian networks. Acar et al.
(2008) refer to the problem of repeated inference on varia-
tions of a model as adaptive inference. They described an
exact algorithm that updates marginals as the dependencies
in the model are updated. However, we are not aware of
any general-purpose approximate inference algorithms that
avoid redundant computation as the evidence changes. In
this paper, we propose expanding frontier belief propaga-
tion (EFBP), an approximate inference algorithm that only
updates the beliefs of variables significantly affected by the
changed evidence. EFBP can be straightforwardly extended
to handle changes to the model. We provide guarantees on
the performance of EFBP relative to BP. These are based on
the fact that, if the potentials in a model are bounded, the
difference in marginal probabilities calculated by EFBP and
traditional loopy BP can be bounded as well.

We apply EFBP to the problem of expected utility maxi-
mization in influence diagrams. Utility maximization can be

1187

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

cast as repeated calculation of the marginals in a graphical
model with changing evidence. Under certain conditions, it
can be shown that the same actions are chosen whether BP or
EFBP is used to calculate the marginals. Experiments in vi-
ral marketing and combinatorial auction domains show that
EFBP can be orders of magnitude faster than BP, without
significantly affecting the quality of the solutions.

Graphical Models and Decision Theory
Graphical models compactly represent the joint distribution
of a set of variables X = (X1, X2, . . . , Xn) ∈ X as a prod-
uct of factors (Pearl 1988): P (X=x) = 1

Z

∏
k φk(xk),

where each factor φk is a non-negative function of a sub-
set of the variables xk, and Z is a normalization constant.
Under appropriate restrictions, the model is a Bayesian net-
work and Z = 1. A Markov network or Markov ran-
dom field can have arbitrary factors. Graphical models
can also be represented in log-linear form: P (X=x) =
1
Z exp (

∑
i wigi(x)), where the features gi(x) are arbitrary

functions of the state.
A key inference task in graphical models is computing

the marginal probabilities of some variables (the query)
given the values of some others (the evidence). This prob-
lem is #P-complete, but can be solved approximately using
loopy belief propagation (BP) (Yedidia, Freeman, and Weiss
2003). In the simplest form, the Markov network is first con-
verted to an equivalent pairwise network. Belief propagation
then works by repeatedly passing messages between nodes
in this network. The message from node t to node s is:

mts(xs) =
∑
xt

φts(xt, xs)φt(xt)
∏

u∈nb(t)\{s}

mut(xt)

where nb(t) is the set of neighbors of t. The (un-
normalized) belief at node t is given by: Mt(xt) =
φt(xt)

∏
u∈nb(t)mut(xt).

Many message-passing schedules are possible; the most
widely used one is flooding, where all nodes send messages
at each step. In general, belief propagation is not guaranteed
to converge, and it may converge to an incorrect result, but
in practice it often approximates the true probabilities well.

An influence diagram or decision network is a graphical
representation of a decision problem (Howard and Mathe-
son 2005). It consists of a Bayesian network augmented
with two types of nodes: decision or action nodes and utility
nodes. The action nodes represent the agent’s choices; fac-
tors involving these nodes and state nodes in the Bayesian
network represent the (probabilistic) effect of the actions on
the world. Utility nodes represent the agent’s utility func-
tion, and are connected to the state nodes that directly influ-
ence utility.

The fundamental inference problem in decision net-
works is finding the assignment of values to the ac-
tion nodes that maximizes the agent’s expected util-
ity, possibly conditioned on some evidence. If a is a
choice of actions, e is the evidence, x is a state, and
U(x|a, e) is the utility of x given a and e, then the
MEU problem is to compute argmaxaE[U(x|a, e)] =
argmaxa

∑
x P (x|a, e)U(x|a, e).

Expanding Frontier Belief Propagation
The repeated inference problem deals with inference with
changing evidence, changing model parameters or changing
graph structure. For simplicity, we will focus on the case
where the evidence changes and the choice of evidence vari-
ables is fixed, as are the parameters and structure; our for-
mulation can be straightforwardly extended to incorporate
these other kinds of variation.

Let G be a graphical model on the variables in X.
E ⊆ X is the evidence set. We are given a sequence
~e = (e1, . . . , e|~e|), each element of which is an assignment
of values to the variables in E. For each element ek of ~e,
we wish to infer the marginal probabilities of the variables
in X\E, given that E = ek.

Changing the values of a small number of evidence nodes
is unlikely to significantly change the probabilities of most
state nodes in a large network. EFBP takes advantage of
this by only updating regions of the network affected by
the new evidence. The algorithm starts by computing the
marginal probabilities of non-evidence nodes given the ini-
tial evidence values using standard BP (e.g., by flooding).
Then, each time the evidence is changed, it maintains a set
∆ of nodes affected by the changed evidence variables, ini-
tialized to contain only those changed nodes. In each itera-
tion of BP, only the nodes in ∆ send messages. Neighbors of
nodes in ∆ are added to ∆ if the messages they receive differ
by more than a threshold γ from the final messages they re-
ceived when they last participated in BP. (The neighbors of
a node are the nodes that appear in some factor with it, i.e.,
its Markov blanket.) In the worst case, the whole network
may be added to ∆, and we revert to BP. In most domains,
however, the effect of a change usually dies down quickly,
and only influences a small region of the network. In such
situations, EFBP can converge much faster than BP.

Pseudocode for EFBP is shown in Algorithm 1. m̂k,i
ts is

the message from node t to node s in iteration i of infer-
ence run k. m̂k,ck

ts is the final message sent from t to s in
inference run k. (If s was not in ∆ in inference run k, then
m̂k,ck

ts = m̂
k−1,ck−1
ts .) To handle changes to the model from

one iteration to the next, we simply add to ∆ variables di-
rectly affected by that change (e.g., the child variable of a
new edge when learning a Bayesian network).

EFBP is based on a similar principle to residual belief
propagation (RBP) (Elidan, McGraw, and Koller 2006): fo-
cus effort on the regions of the graph that are furthest from
convergence. However, while RBP is used to schedule mes-
sage updates in a single run of belief propagation, the pur-
pose of EFBP is to minimize redundant computation when
repeatedly running BP on the same network, with varying
settings of some of the variables. One could run EFBP us-
ing RBP to schedule messages, to speed up convergence.

If the potentials are bounded, EFBP’s marginal probabil-
ity estimates provide bounds on BP’s. We can show this
by viewing the difference between the beliefs generated by
EFBP and those generated by BP as multiplicative error in
the messages passed by EFBP:

m̂k,i
ts (xs) = m̃k,i

ts (xs)ẽi
ts(xs)

1188

Algorithm 1 EFBP(variables X, graphical model G, evi-
dence ~e, threshold γ)

for all t, s: m̂1,1
ts ← 1

Perform standard BP on X and G with evidence e1.
for k ← 2 to |~e| do

for all t, s: m̂k,1
ts ← m̂

k−1,ck−1
ts

∆← set of evidence nodes that change
between ek and ek−1

converged← False
i← 1
while converged = False do

Send messages from all nodes in ∆,
given evidence ek

converged← True
for all nodes s that receive messages do

if |m̂k,i
ts −m̂

k−1,ck−1
ts | > γ for any t ∈ nb(s) then

Insert s into ∆
end if
if s ∈ ∆ and |m̂k,i

ts − m̂
k,i−1
ts | > γ

for any t ∈ nb(s) then
converged← False

end if
end for
i← i+ 1

end while
end for

where m̂k,i
ts (xs) is the message sent by EFBP in iteration i

of inference run k (i.e., nodes not in ∆ effectively resend the
same messages as in i− 1); m̃k,i

ts (xs) is the message sent if
all nodes recalculate their messages in iteration i, as in BP;
and ẽi

ts(xs) is the multiplicative error introduced in iteration
i of EFBP.

This allows us to bound the difference in marginal prob-
abilities calculated by BP and EFBP. For simplicitly, we
prove this for the special case of binary nodes. The proof
uses a measure called the dynamic range of a function, de-
fined as follows (Ihler, Fisher, and Willsky 2005):

d(f) = sup
x,y

√
f(x)/f(y)

Theorem 1. For binary node xt, the probability estimated
by BP at convergence (pt) can be bounded as follows in
terms of the probability estimated by EFBP (p̂t) after n iter-
ations:

pt ≥ 1
(ζn

t)2[(1/p̂t)− 1] + 1
= lb(pt)

pt ≤ 1
(1/ζn

t)2[(1/p̂t)− 1] + 1
= ub(pt)

where log ζn
t =

∑
u∈nb(t) log νn

ut, ν
1
ts = δ(ẽ1ts)d(φts)2, and

νi
ut is given by:

log νi+1
ts = log

d(φts)2εi
ts + 1

d(φts)2 + εi
ts

+ log δ(ẽi
ts)

log εi
ts =

∑
u∈nb(t)\s

log νi
ut

δ(ẽi
ts) = sup

xs,ys

√√√√√1 + γ/
(
m̃k,i

ts (xs)
)

1− γ/
(
m̃k,i

ts (ys)
)

Proof.
Since EFBP recalculates messages when |m̂k,i

ts − m̃
k,i
ts | > γ,

m̃k,i
ts (xs)− γ ≤ m̃k,i

ts (xs)ẽi
ts(xs) ≤ m̃k,i

ts (xs) + γ

1− γ/m̃k,i
ts (xs) ≤ ẽi

ts(xs) ≤ 1 + γ/m̃k,i
ts (xs)

This allows us to bound the dynamic range of ẽi
ts:

d(ẽi
ts) ≤ sup

xs,ys

√√√√√1 + γ/
(
m̃k,i

ts (xs)
)

1− γ/
(
m̃k,i

ts (ys)
) = δ(ẽi

ts)

Theorem 15 of Ihler et al. (2005) implies that, for any fixed
point beliefs {Mt} found by belief propagation, after n ≥ 1
iterations of EFBP resulting in beliefs {M̂n

t } we have

log d(Mt/M̂
n
t) ≤

∑
u∈nb(t)

log νn
ut = log ζn

t

It follows that d(Mt/M̂
n
t) ≤ ζn

t , and therefore
Mt(1)/M̂n

t (1)

Mt(0)/M̂n
t (0)
≤ (ζn

t)2 and (1− p̂t)/p̂t ≤ (ζn
t)2(1− pt)/pt,

where pt and p̂t are obtained by normalizing Mt and M̂t.
The upper bound follows, and the lower bound can be ob-
tained similarly.

Intuitively, νi
ut can be thought of as a measure of the ac-

cumulated error in the incoming message from u to t in it-
eration i. It can be computed iteratively using a message-
passing algorithm similar to BP.

Maximizing Expected Utility
The MEU problem in influence diagrams can be cast as a se-
ries of marginal probability computations with changing ev-
idence. If ui(xi) and pi(xi|a, e) are respectively the utility
and marginal probability of utility node i’s parents Xi tak-
ing values xi, then the expected utility of an action choice
is:

E[U(a|e)] =
∑
x

P (x|a, e)U(x|a, e)

=
∑
x

P (x|a, e)
∑

i

∑
xi

1{Xi = xi}ui(xi)

=
∑

i

∑
xi

ui(xi)
∑
x

1{Xi = xi}P (x|a, e)

=
∑

i

∑
xi

ui(xi)pi(xi|a, e)

Given a choice of actions, we can treat action nodes as ev-
idence. To calculate the expected utility, we simply need to
calculate the marginal probabilities of all values of all utility
nodes. Different action choices can be thought of as differ-
ent evidence.

In principle, the MEU action choice can be found by
searching exhaustively over all action choices, computing

1189

the expected utility of each using any inference method.
However, this will be infeasible in all but the smallest do-
mains. An obvious alternative, particularly in very large
domains, is greedy search: starting from a random action
choice, consider flipping each action in turn, do so if it in-
creases expected utility, and stop when a complete cycle pro-
duces no improvements. This is guaranteed to converge to a
local optimum of the expected utility, and is the method we
use in our experiments.

Lemma 2. The expected utility Ebp[U] of an action choice
estimated by BP can be bounded as follows:

Ebp[U] ≥
∑

i

∑
xi

ui(xi)
[
1{ui(xi) > 0}lb(pi(xi|a, e))

+ 1{ui(xi) < 0}ub(pi(xi|a, e))
]

Ebp[U] ≤
∑

i

∑
xi

ui(xi)
[
1{ui(xi) > 0}ub(pi(xi|a, e))

+ 1{ui(xi) < 0}lb(pi(xi|a, e))
]

Proof. The lemma follows immediately from Theorem 1
and the definition of expected utility.

Based on this lemma, we can design a variant of EFBP
that is guaranteed to produce the same action choice as BP
when used with greedy search. Let Ai denote the set of
action choices considered in the ith step of greedy search. If
EFBP picks action choice a ∈ Ai, BP is guaranteed to make
the same choice if the following condition holds:

lb(E[U(a)]) > max
a′∈Ai

ub(E[U(a′)]) (1)

When the condition does not hold, we revert the messages
of all nodes to their values after the initial BP run, insert all
changed actions into ∆, and rerun EFBP. If condition 1 still
does not hold, we halve γ and repeat. (If γ becomes smaller
than the BP convergence threshold, we run standard BP.) We
call this algorithm EFBP∗.

Note that using the above bound for search requires a
slight modification to the calculation of ν1

ts, since EFBP
and BP result in different message initializations for the
first BP iteration at every search step. If BP initializes all
messages to 1 before every search step, the error function
ẽ1ts(xs) = m̂k,1

ts (xs). If BP initializes its messages with
their values from end of the previous search iteration, then
ν1

ts can also be similarly initialized. The calculations of νi
ts

for i 6= 1 are not altered.
Let Greedy(I) denote greedy search using inference

algorithm I to compute expected utilities.

Theorem 3. Greedy(EFBP∗) outputs the same action
choice as Greedy(BP).

Proof. Condition 1 guarantees that EFBP makes the same
action choice as BP. Since EFBP∗ guarantees that the con-
dition holds in every iteration of the final run of EFBP, it
guarantees that the action choice produced is the same.

In practice, EFBP∗ is unlikely to provide large speedups
over BP, since the bound in Theorem 1 must be repeatedly
recalculated even for nodes outside ∆. Empirically, running
EFBP with a fixed threshold not much higher than BP’s con-
vergence threshold seems to yield an action choice of very
similar utility to BP’s in a fraction of the time.

Experiments
We evaluated the performance of EFBP on two domains: vi-
ral marketing and combinatorial auctions. We implemented
EFBP as an extension of the Alchemy system (Kok et al.
2008). The experiments were run on 2.33 GHz processors
with 2 GB of RAM. We used a convergence threshold of
10−4 for flooding, including the initial BP run for EFBP,
and a threshold of γ = 10−3 for the remaining iterations
of EFBP. We evaluated the utility of the actions chosen by
EFBP using a second run of full BP, with a threshold of
10−4. As is usually done, both algorithms were run for a
few (10) iterations after the convergence criterion was met.

Viral Marketing
Viral marketing is based on the premise that members of a
social network influence each other’s purchasing decisions.
The goal is then to select the best set of people to market
to, such that the overall profit is maximized by propagation
of influence through the network. Originally formalized by
Domingos and Richardson (2001), this problem has since
received much attention, including both empirical and theo-
retical results.

A standard dataset in this area is the Epinions web of
trust (Richardson and Domingos 2002). Epinions.com is a
knowledge-sharing Web site that allows users to post and
read reviews of products. The “web of trust” is formed by
allowing users to maintain a list of peers whose opinions
they trust. We used this network, containing 75,888 users
and over 500,000 directed edges, in our experiments. With
over 75,000 action nodes, this is a very large decision prob-
lem, and no general-purpose MEU algorithms have previ-
ously been applied to it (only domain-specific implementa-
tions).

We used a model very similar to that of Domingos and
Richardson (2001). We represent this problem as a log-
linear model with one binary state variable bi representing
the purchasing decision of each user i (i.e., whether or not
they buy the product). The model also has one binary action
variablemi for each user, representing the choice of whether
or not to market to that person. The prior belief about each
user’s purchasing decision is represented by introducing a
singleton feature for that user. The value is 1 if the user buys
the product, and 0 otherwise. In our experiments, this fea-
ture had a weight of −2. The effect of the marketing actions
on the users’ purchasing decisions is captured by a second
set of features. For each user, we introduce a feature whose
value is 1 when the formula mi ⇒ bi is true, and 0 other-
wise (i.e., when the user is marketed to but does not buy the
product). All these features are given the same weight, w1.

The web of trust is encoded as a set of pairwise features
over the state variables. For each pair of users (i, j) such that

1190

Figure 1: Influence diagram for viral marketing.

i trusts j, the value of the feature is 1 when the formula bj ⇒
bi is true, and 0 otherwise (i.e., j buys the product but i does
not.) These features represent the fact that if j purchases the
product, i is more likely to do so as well. These features all
have weight w2.

For each user, we also introduce two utility nodes. The
first represents the cost of marketing to the user, and the
second represents the profit from each purchase. The first
utility node is connected to the action node corresponding
to the user, and the second is connected to the state node
representing the user’s purchasing decision. We set the cost
of marketing to each user to −1, and the profit from each
purchase to 20.

Note that since this model is not locally normalized, it is
not a traditional influence diagram. However, it is equivalent
to an influence diagram with four nodes (see Figure 1):

• An action node M whose state space is the set of possible
marketing choices over all users.

• A corresponding utility node UM, representing the cost
of each marketing choice.

• A state node B, representing the set of possible purchas-
ing decisions by the users.

• A corresponding utility node UB, representing the profit
from each possible purchasing decision.

The log-linear model described above can be thought of as
a compact representation of the conditional probability dis-
tributions and utility functions for this four-node influence
diagram.

We ran greedy search with BP and EFBP directly on this
model. The initial action choice was to market to no one.
All results are averages of five runs. Fixing w1 at 0.8 for
all users, inference times varied as shown in Figure 2(a) as
we changed w2. Running utility maximization with BP until
convergence was not feasible; instead, we extrapolated from
the number of actions considered during the first 24 hours,
assuming that search with BP would consider the same num-
ber of actions as search with EFBP. Figure 2(b) plots the re-
sult of a similar experiment, withw2 fixed at 0.6 and varying
w1. In both cases, EFBP was consistently orders of magni-
tude faster than BP.

We can also compare the utility obtained by BP and EFBP
given a fixed running time of 24 hours. EFBP consistently
achieves about 40% higher utility than BP when varying the
influence weight, with higher advantage for lower weights.

(a)

(b)

Figure 2: Convergence times for viral marketing.

For a marketing weight of 1.0, EFBP achieves about 80%
higher utility than BP; this advantage decreases gradually to
zero as the weight is reduced (reflecting the fact that fewer
and fewer customers buy).

Richardson and Domingos (2002) tested various specially
designed algorithms on the same network. They estimated
that inference using the model and algorithm of Domingos
and Richardson (2001), which are the most directly com-
parable to ours, would have taken hundreds of hours to con-
verge (100 per pass). (This was reduced to 10-15 minutes us-
ing additional problem-specific approximations, and a much
simpler linear model that did not require search was even
faster.) Although these convergence times cannot be directly
compared with our own (due to the different hardware, pa-
rameters, etc., used), it is noteworthy that EFBP converges
much faster than the most general of their methods.

Probabilistic Combinatorial Auctions
Combinatorial auctions can be used to solve a wide vari-
ety of resource allocation problems (Cramton, Shoham, and
Steinberg 2006). An auction consists of a set of bids, each
of which is a set of requested products and an offered re-
ward. The seller determines which bids to assign each prod-
uct to. When all requested products are assigned to a bid,
the bid is said to be satisfied, and the seller collects the re-
ward. The seller’s goal is to choose an assignment of prod-
ucts to bids that maximizes the sum of the rewards of sat-
isfied bids; this is an NP-hard problem. While there has
been much research on combinatorial auctions, it generally
assumes that the world is deterministic (with a few excep-
tions, e.g., Golovin (2007)). In practice, however, both the
supply and demand for products are subject to many sources

1191

Figure 3: Convergence times for combinatorial auctions.

of uncertainty. (For example, supply of one product may
make supply of another less likely because they compete for
resources.)

We model uncertainty in combinatorial auctions by al-
lowing product assignments to fail, resulting in the loss of
reward from the corresponding bids. The model contains
one multi-valued action for each product, with one possi-
ble value for each bid. Each product also has a binary state
variable, to model the success or failure of the action corre-
sponding to that product.

To model competition between pairs of products, we in-
troduce a set of pairwise features. The features have value 1
when one or both of the product assignments fail. In other
words, the success of one increases the failure probability of
the other. These features create a network of dependencies
between product failures.

The model also contains one binary utility node for each
bid. Note that, as in the viral marketing experiment, this
model does not yield a traditional influence diagram. How-
ever, it can similarly be converted to an equivalent influence
diagram with a small number of high-dimensional nodes.

We generated bids according to the decay distribution de-
scribed by Sandholm (2002), with α = 0.75, and randomly
generated 1000 competition features from a uniform distri-
bution over product pairs. Figure 3 plots the inference time
for a 1000-product, 1000-bid auction, varying the weight
of the competition features. The results are averages of ten
runs. As in the viral marketing experiment, EFBP converges
much faster than BP. Since in this case both algorithms can
be run until convergence, the expected utilities of the chosen
product assignments are extremely similar.

Conclusion
In this paper, we presented expanding frontier belief prop-
agation, an efficient approximate algorithm for probabilis-
tic inference with incremental changes to the evidence or
model. EFBP only updates portions of the graph signifi-
cantly affected by the changes, thus avoiding massive com-
putational redundancy. We applied this algorithm to utility
maximization problems, and provided theoretical bounds on
the quality of the solutions.

Directions for future work include extending the “expand-
ing frontier” idea to other kinds of inference algorithms
(e.g., MCMC), applying it to other problems besides util-

ity maximization (e.g., online inference, learning, etc.), and
applying it to other domains.

Acknowledgements
This research was partly funded by ARO grant W911NF-
08-1-0242, AFRL contract FA8750-09-C-0181, DARPA con-
tracts FA8750-05-2-0283, FA8750-07-D-0185, HR0011-06-C-
0025, HR0011-07-C-0060 and NBCH-D030010, NSF grants IIS-
0534881 and IIS-0803481, and ONR grant N00014-08-1-0670.
The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of ARO,
DARPA, NSF, ONR, or the United States Government.

References
Acar, U. A.; Ihler, A. T.; Mettu, R. R.; and S̈umer, O. 2008. Adap-
tive inference on general graphical models. In Proc. of UAI-08.
Cramton, P.; Shoham, Y.; and Steinberg, R. 2006. Combinatorial
Auctions. MIT Press.
Delcher, A. L.; Grove, A. J.; Kasif, S.; and Pearl, J. 1996.
Logarithmic-time updates and queries in probabilistic networks.
Journal of Artificial Intelligence Research 4:37–59.
Della Pietra, S.; Della Pietra, V.; and Lafferty, J. 1997. Inducing
features of random fields. IEEE Transactions on Pattern Analysis
and Machine Intelligence 19:380–392.
Domingos, P., and Richardson, M. 2001. Mining the network value
of customers. In Proc. of KDD-01.
Elidan, G.; McGraw, I.; and Koller, D. 2006. Residual belief prop-
agation: Informed scheduling for asynchronous message passing.
In Proc. of UAI-06.
Golovin, D. 2007. Stochastic packing-market planning. In Proc.
of EC-07.
Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995. Learning
Bayesian networks: The combination of knowledge and statistical
data. Machine Learning 20:197–243.
Howard, R. A., and Matheson, J. E. 2005. Influence diagrams.
Decision Analysis 2(3):127–143.
Ihler, A. T.; Fisher, J. W.; and Willsky, A. S. 2005. Loopy belief
propagation: Convergence and effects of message errors. Journal
of Machine Learning Research 6:905–936.
Kok, S.; Sumner, M.; Richardson, M.; Singla, P.; Poon, H.; Lowd,
D.; Wang, J.; and Domingos, P. 2008. The Alchemy system for sta-
tistical relational AI. Technical report, University of Washington.
http://alchemy.cs.washington.edu.
Murphy, K. P. 2002. Dynamic Bayesian Networks: Representation,
Inference and Learning. Ph.D. Dissertation, University of Califor-
nia, Berkeley.
Park, J. 2002. MAP Complexity Results and Approximation Meth-
ods. In Proc. of UAI-02.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.
Richardson, M., and Domingos, P. 2002. Mining knowledge-
sharing sites for viral marketing. In Proc. of KDD-02.
Sandholm, T. 2002. Algorithm for optimal winner determination
in combinatorial auctions. Artificial Intelligence 135:1–54.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2003. Understanding
belief propagation and its generalizations. In Exploring Artificial
Intelligence in the New Millenium. Science and Technology Books.

1192

