
Efficient Lifting for Online Probabilistic Inference

Aniruddh Nath and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.
{nath, pedrod}@cs.washington.edu

Abstract

Lifting can greatly reduce the cost of inference on first-
order probabilistic graphical models, but constructing
the lifted network can itself be quite costly. In online
applications (e.g., video segmentation) repeatedly con-
structing the lifted network for each new inference can
be extremely wasteful, because the evidence typically
changes little from one inference to the next. The same
is true in many other problems that require repeated in-
ference, like utility maximization, MAP inference, in-
teractive inference, parameter and structure learning,
etc. In this paper, we propose an efficient algorithm for
updating the structure of an existing lifted network with
incremental changes to the evidence. This allows us to
construct the lifted network once for the initial infer-
ence problem, and amortize the cost over the subsequent
problems. Experiments on video segmentation and viral
marketing problems show that the algorithm greatly re-
duces the cost of inference without affecting the quality
of the solutions.

Intelligent agents must be able to handle the complexity
and uncertainty of the real world. First-order logic is use-
ful for the first, and probabilistic graphical models for the
second. Combining the two has been the focus of much re-
cent research in the emerging field of statistical relational
learning (Getoor and Taskar, 2007). A variety of languages
have been proposed that combine the desirable features of
both these representations. The first inference algorithms
for these languages worked by propositionalizing all atoms
and clauses, and then running standard probabilistic infer-
ence algorithms on the ground model.

More recently, several algorithms have been proposed for
lifted inference, which deals with groups of indistinguish-
able variables, rather than individual ground atoms. Algo-
rithms for identifying sets of indistinguishable variables in-
clude lifted network construction (LNC; Singla and Domin-
gos 2008) and shattering (de Salvo Braz, Amir, and Roth
2005). Since the first-order representation is often much
smaller than the fully ground model, lifted inference is po-
tentially much more efficient than propositionalized infer-
ence. The first lifted probabilistic inference algorithm was
first-order variable elimination, proposed by Poole (2003)

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and extended by de Salvo Braz, Amir, and Roth (2005).
Singla and Domingos (2008) proposed the first lifted ap-
proximate inference algorithm, a first-order version of loopy
belief propagation (BP). However, constructing the lifted
model can itself be quite costly; sometimes more so than the
actual probabilistic inference. This is particularly problem-
atic in online applications, where the lifted network must
be constructed for each new set of observations. This can
be extremely wasteful, since the evidence typically changes
little from one set of observations to the next. The same
is true in many other problems that require repeated infer-
ence, such as utility maximization, MAP inference (finding
the most probable state of a subset of the variables while
summing out others), interactive inference, parameter and
structure learning, etc.

Another problem with standard lifted inference algo-
rithms is they often yield a model very close to the fully
propositionalized network. In these situations, the expen-
sive process of lifted network construction yields little or
no speedup. This can be averted through approximate lifted
network construction (e.g., de Salvo Braz et al. 2009), which
groups together variables that behave similarly, but are not
completely identical. The lifted belief propagation (LBP)
algorithm by Singla and Domingos can also be straightfor-
wardly approximated, by terminating LNC early (Singla,
Nath, and Domingos 2010). Approximate lifting can yield a
much smaller model, and therefore a greater speedup.

In this paper, we propose ∆LNC, an efficient algorithm
for updating the structure of an existing lifted network with
incremental changes to the evidence. This allows us to con-
struct the lifted network once for the initial inference prob-
lem, and amortize the cost over the subsequent problems.
∆LNC can also be used to efficiently update an approximate
lifted network. Experiments on video segmentation and vi-
ral marketing problems show that approximate ∆LNC pro-
vides great speedups over both ground belief propagation
and standard LNC, without significantly affecting the qual-
ity of the solutions.

Background
Graphical Models
Graphical models compactly represent the joint distribution
of a set of variables X = (X1, X2, . . . , Xn) ∈ X as a prod-

1193

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



uct of factors (Pearl 1988): P (X=x) = 1
Z

∏
k φk(xk),

where each factor φk is a non-negative function of a sub-
set of the variables xk, and Z is a normalization constant.
Under appropriate restrictions, the model is a Bayesian net-
work and Z = 1. A Markov network or Markov ran-
dom field can have arbitrary factors. Graphical models
can also be represented in log-linear form: P (X=x) =
1
Z exp (

∑
i wigi(x)), where the features gi(x) are arbitrary

functions of the state. A factor graph (Kschischang, Frey,
and Loeliger 2001) is a bipartite undirected graph with a
node for each variable and factor in the model. Variables
are connected to the factors they appear in.

A key inference task in graphical models is computing the
marginal probabilities of some variables (the query) given
the values of some others (the evidence). This problem is
#P-complete, but can be solved approximately using loopy
belief propagation, which works by passing messages from
variable nodes to factor nodes and vice versa. The message
from a variable to a factor is:

µxf (x) =
∏

h∈nb(x)\{f}

µhx(x)

where nb(x) is the set of factors it appears in. (Evidence
variables send 1 for the evidence value, and 0 for others.)
The message from a factor to a variable is:

µfx(x) =
∑
∼{x}

f(x)
∏

y∈nb(f)\{x}

µyf (y)


where nb(f) are the arguments of f , and the sum is over all
of these except x. The (unnormalized) marginal of variable
x is given by:

∏
h∈nb(x) µhx(x). Many message-passing

schedules are possible; the most widely used one is flood-
ing, where all nodes send messages at each step. In general,
belief propagation is not guaranteed to converge, and it may
converge to an incorrect result, but in practice it often ap-
proximates the true probabilities well.

A related task is to infer the most probable values of all
variables. The max-product algorithm does this by replac-
ing summation with maximization in the factor-to-variable
messages.

Lifted Inference
Markov logic (Domingos and Lowd 2009) is a probabilistic
extension of first-order logic. Formulas in first-order logic
are constructed from logical connectives, predicates, con-
stants, variables and functions. A grounding of a predicate
(or ground atom) is a replacement of all its arguments by
constants (or, more generally, ground terms). Similarly, a
grounding of a formula is a replacement of all its variables
by constants. A possible world is an assignment of truth
values to all possible groundings of predicates.

A Markov logic network (MLN) is a set of weighted first-
order formulas. Together with a set of constants, it defines
a Markov network with one node per ground atom and one
feature per ground formula. The weight of a feature is the
weight of the first-order formula that originated it. The prob-
ability distribution over possible worlds x specified by the

MLN and constants is thus P (x) = 1
Z exp(

∑
i wini(x)),

where wi is the weight of the ith formula and ni(x) its num-
ber of true groundings in x.

Inference in an MLN can be carried out by creating the
corresponding ground Markov network and applying stan-
dard BP to it. A more efficient alternative is lifted belief
propagation, which avoids grounding the network as much
as possible (Singla and Domingos 2008). Lifted BP con-
structs a lifted network composed of supernodes and super-
features, and and applies BP to it. A supernode is a set
of atoms that send and receive exactly the same messages
throughout BP, and a superfeature is a set of ground clauses
that send and receive the same messages. A supernode and
a superfeature are connected iff some atom in the supernode
occurs in some ground clause in the superfeature.

The lifted network is constructed by starting with an ex-
tremely coarse network, and then refining it essentially by
simulating BP and keeping track of which nodes send the
same messages. Initially, one supernode is created for each
possible value of each predicate (true, false and unknown).
All groundings of each value are inserted into the corre-
sponding supernode. This is the initial set of supernodes;
in any given supernode, every atom would send the same
message in the first iteration of BP.

The next stage of LNC involves creating a set of superfea-
tures corresponding to each clause. For a clause containing
predicates P1, . . . , Pk, perform a join on each tuple of su-
pernodes (X1, . . . , Xk) (i.e. take the Cartesian product of
the relations, and select the tuples whose corresponding ar-
guments agree with each other). The result of each join is
a new superfeature, consisting of ground clauses that would
receive the same messages in the first BP step.

These superfeatures can be used to refine the supernodes,
by projecting each feature down to the arguments it shares
with each predicate. Atoms with the same projection counts
are indistinguishable, since they would have received the
same number of identical messages. These can be split off
into new, finer supernodes (“children”). Thus, the network
is refined by alternating between these two steps:

1. Refine superfeatures by performing joins on supernodes.
2. Refine supernodes by projecting superfeatures down to

their predicates, and merging atoms with the same pro-
jection counts.

Pseudo-code for this algorithm is given in Algorithm 1.
The count n(s, F ) is the number of identical messages

atom s would receive in message passing from the features
in F . (As in Singla and Domingos (2008), we assume for
simplicity that each predicate occurs at most once in each
clause. This assumption can be easily relaxed by maintain-
ing a separate count for each occurrence.) Belief propaga-
tion must be altered slightly to take these counts into ac-
count. Since all the atoms in a supernode have the same
counts, we can set n(X,F ) = n(s, F ), where s is an arbi-
trary atom in X . The message from N to F becomes:

µXF (x) = µFX(x)n(F,X)−1
∏

H∈nb(X)\F

µHX(x)n(H,X)

The marginal becomes
∏

H∈nb(X) µHX(x)n(H,X).

1194



Algorithm 1 LNC(MLN M, constants C, evidence E)
for all predicates P do

for all truth values v do
Form a supernode with all groundings of P with

value v
end for

end for
for all clauses involving predicates (P1, . . . , Pk) do

for all tuples of supernodes (X1, . . . , Xk),
where Xi is a Pi supernode do
Form a new superfeature by joining (X1, . . . , Xk)

end for
end for
repeat

for all supernodes X of predicate P do
for all superfeatures F connected to X do

for all tuples s in X do
n(s, F )← num of F ’s tuples that project to s

end for
end for
Form a new supernode from each set of tuples in X

with same n(s, F ) counts for all F
end for
for all superfeatures F involving (P1, . . . , Pk) do

for all tuples of supernodes (X1, . . . , Xk),
where Xi is a Pi supernode connected to F do
Form a new superfeature by joining (X1, . . . , Xk)

end for
end for

until convergence
return Lifted network L, containing all current

supernodes and superfeatures

Approximate Lifted Belief Propagation
The LNC algorithm described in the previous section is
guaranteed to create the minimal lifted network (Singla and
Domingos 2008). Running BP on this network is equiva-
lent to BP on the fully propositionalized network, but poten-
tially much faster. However, in many problems, the mini-
mal exact lifted network is very close in size to the propo-
sitionalized network. Running LNC to convergence may
also be prohibitively expensive. Both of these problems
can be alleviated with approximate lifting. The simplest
way to make LNC approximate is to terminate LNC after
some fixed number of iterations; i.e., only refine the supern-
odes and superfactors k − 1 times each (Singla, Nath, and
Domingos 2010), thus creating k lifted networks L1, . . . ,Lk

at increasing levels of refinement. The superfeature counts
n(X,F ) in the last iteration are averaged over all atoms X .

Each resulting supernode contains nodes that send the
same messages during the first k iterations of BP. By stop-
ping LNC after k − 1 iterations, we are in effect pretending
that nodes with identical behavior up to this point will con-
tinue to behave identically. This is a reasonable approxima-
tion, since for two nodes to be placed in the same supernode,
all evidence and network topology within a distance of k−1
links must be identical. If the nodes would have been sepa-

rated in exact LNC, this would have been the result of some
difference at a distance greater than k − 1. In BP, the ef-
fects of evidence typically die down within a short distance.
Therefore, two nodes with similar neighborhoods would be
expected to behave similarly for the duration of BP.

The error induced by stopping early can be bounded by
calculating the additional error introduced at each BP step
as a result of the approximation. The bound can be calcu-
lated using a message passing algorithm similar to BP (Ih-
ler, Fisher, and Willsky 2005). Details of the approximation
bound are described in Singla, Nath, and Domingos (2010).

Lifted Online Inference
Even with the above approximation, LNC can be expen-
sive. This is particularly problematic in applications involv-
ing several queries on a single network, with different values
for evidence variables. We refer to this setting as online in-
ference. Various algorithms exist for online inference and re-
lated problems on graphical models (e.g., Acar et al. (2008),
Delcher et al. (1996)), but to our knowledge, no algorithms
exist for lifted online probabilistic inference.

In the online setting, it can be extremely wasteful to con-
struct the lifted network from scratch for each new set of
observations. Particularly if the changes are small, the struc-
ture of the minimal network may not change much from one
set of observations to the next. To take advantage of this,
we propose an algorithm called ∆LNC. ∆LNC efficiently
updates an existing lifted network, given a set of changes to
the values of evidence variables.

Given a set ∆ of changed atoms, ∆LNC works by retrac-
ing the steps these nodes would have taken over the course of
LNC. As the network is updated, we must also keep track of
which other atoms were indirectly affected by the changes,
and retrace their paths as well. At the start of ∆LNC, each
changed node x is placed in the initial supernode corre-
sponding to its new value (true, false, unknown), and re-
moved from its previous starting supernode. The next step
is to update the superfeatures connected to the starting su-
pernodes. The tuples containing x must be removed from
the superfeatures connected to x’s original starting supern-
ode. These tuples are then added to matching superfeatures
connected to the newly assigned supernode, creating a new
superfeature if no match is found.

At the next step, we must also consider the nodes that
would have received messages from the factors that changed
in the first iteration of BP. These nodes are added to ∆. Now,
for each node x ∈ ∆, we start by removing it from its level
two supernode, and then locate a new supernode to insert it
into. This is done by calculating the number of tuple pro-
jections to x from each of the superfeatures connected to its
level one supernode. If the projection counts match any of
the children of x’s initial supernode, x is added to that child.
If not, a new child supernode is created for x.

∆LNC thus closely mirrors standard LNC, alternately re-
fining the supernodes and the superfeatures. The only dif-
ference is that the finer supernodes and superfeatures do not
need to be constructed from scratch; only the changed tu-
ples need to be moved. Let snk(x) be the supernode con-
taining node x at level k. Pseudocode for ∆LNC is given in

1195



Algorithm 2 ∆LNC(changed nodes ∆, lifted networks
(L1, . . . ,Lk))

for all nodes x ∈ ∆ do
Remove tuples containing x from sn1(x) and

superfeatures connected to it
Move x to Xnew ∈ L1 of appropriate value v
for all features t containing x do

if there exists superfeature F connected to Xnew

from the same clause as t, such that each atom in
t is in a supernode connected to F then
Insert t into F

else
Create new superfeature F , and insert t

end if
end for

end for
for all 2 ≤ i ≤ k do

Insert
⋃

x∈∆ nb(nb(x)) into ∆
for all nodes x ∈ ∆ do

Remove tuples containing x from superfeatures
connected to sni(x)

if sni−1(x) has child X in Li with projection counts
n(X,F ) = n(x, F ) for all F ∈ nb(X) then
Move x from the previous sni(x) to X

else
Move x to a newly created child of sni−1(x)

end if
for all features t containing x do

if there exists superfeature F connected to the new
sni(x) from the same clause as t, such that each
atom in t is in a supernode connected to F then
Insert t into F

else
Create new superfeature F , and insert t

end if
end for

end for
end for
return updated (L1, . . . ,Lk)

Algorithm 2. (Like Algorithm 1, this pseudocode assumes
for clarity that each predicate occurs at most once in each
clause.) See Figure 1 for an example.

Note that the lifted network produced by running k itera-
tions of ∆LNC is identical to that produced by running stan-
dard LNC. The error bounds from Singla, Nath, and Domin-
gos (2010) apply to approximate ∆LNC as well. ∆LNC can
also be run to convergence to update an exact lifted network.

Experiments
We evaluated the performance of ∆LNC on two problems:
video segmentation and viral marketing. The experiments
were run on 2.33 GHz processors with 2 GB of RAM.

Video Segmentation
BP is commonly used to solve a variety of vision problems
on still images, but it can be very expensive to run BP on

Table 1: Results of video stream experiments.
Shuttle takeoff BP LBP-4
Initial number of nodes 76800 2992
Initial number of factors 306080 13564
Initial LNC time (s) - 200.46
Average ∆LNC time (s) - 6.95
Average BP time (s) 394.46 30.91
Total time (s) 3900.92 558.3
Cricket BP LBP-4
Initial number of nodes 76800 4520
Initial number of factors 306080 19965
Initial LNC time (s) - 870.69
Average ∆LNC time (s) - 18.29
Average BP time (s) 398.55 78.99
Total time (s) 3976.40 1619.07

videos (e.g., Wang and Cohen (2005)). ∆LNC can be used
to make BP on videos much more scalable. We illustrate this
by running ∆LNC on a simple binary video segmentation
problem. Starting from a complete segmentation of the first
frame into background and foreground, we wish to segment
the remaining frames. For each frame, pixels whose colors
change by less than some threshold keep their segmentation
labels from the previous frame as biases for their new labels.
We then infer new segmentation labels for all pixels.

The model is defined by an MLN with predi-
cates KnownLabel(x, l), where l ∈ {Background,
Foreground, Unknown}; PredictedLabel(x, l); Color-
Difference(x, y, d). The formulas are:

KnownLabel(x, l) => PredictedLabel(x, l) (1)
ColorDifference(x, y, d)

=> (PredictedLabel(y, l)
<=> PredictedLabel(x, l))

(2)

We also introduced deterministic constraints that
KnownLabel(x, l) and PredictedLabel(x, l) can only
be true for a single l, and PredictedLabel(x, Unknown)
must be false. In our experiments, ColorDifference was
calculated as the RGB Euclidean distance, and discretized
into six levels. KnownLabel(x, Unknown) was set to true if
the difference from one frame to the next was over 30.0. The
weight of Formula 1 was 1.0, and the weight of Formula 2
varied inversely with d, up to 2.0 for the smallest difference
level.

We ran ∆LNC with four refinement levels (LBP-4), and
compared it to ground belief propagation (BP). 1000 steps of
max-product BP were performed, to infer the globally most
probable labels. We predicted labels for 10 frames of two
videos: a space shuttle takeoff (NASA 2010), and a cricket
demonstration (Fox 2010). The first frames were segmented
by hand. The results are in Table 1. Figure 2 shows the seg-
mentations produced in the last frames. In both experiments,
∆LNC provided dramatic speedups over full ground BP, and
produced a similar (but not identical) segmentation. On av-
erage, ∆LNC was about 28X faster than the initial LNC on
the shuttle video, and 48X faster on the cricket video.

1196



(a) Initial lifted network (b) Updated lifted network

Figure 1: The first iteration of ∆LNC on an MLN with binary predicates S(x) and F (x), and formula F (x, y) => (S(x) <=>
S(y)). Trivially false superfeatures are omitted. In the above example, all S(x) atoms are unknown, and two F (x, y) atoms
are changing from false to true.

(a) Last frame (b) BP labeling (c) LBP-4 labeling (d) Last frame (e) BP labeling (f) LBP-4 labeling

Figure 2: Output labelings for the final frames of both videos.

Viral Marketing
Viral marketing is based on the premise that members of a
social network influence each other’s purchasing decisions.
The goal is then to select the best set of people to market
to, such that the overall profit is maximized by propagation
of influence through the network. Originally formalized by
Domingos and Richardson (2001), this problem has since
received much attention, including both empirical and theo-
retical results.

A standard dataset in this area is the Epinions “web of
trust” (Richardson and Domingos 2002). Epinions.com
is a knowledge-sharing website that allows users to post
and read reviews of products. The web of trust is formed
by allowing users to maintain a list of peers whose opin-
ions they trust. We used this network, containing 75,888
users and over 500,000 directed edges, in our experiments.
With over 75,000 action nodes, this is a very large deci-
sion problem, and no general-purpose utility maximization
algorithms have previously been applied to it (only domain-
specific implementations).

We modeled this problem as a Markov logic decision
network (MLDN; Nath and Domingos (2009)) using the
state predicates Buys(x) and Trusts(x1, x2), and the action
predicate MarketTo(x). The utility function is represented
by the unit clause Buys(x) (with positive utility, represent-
ing profits from sales) and MarketTo(x) (with negative util-
ity, representing the cost of marketing). The topology of
the social network is specified by an evidence database of
Trusts(x1, x2) atoms. The core of the model consists of

two formulas:

Buys(x1) ∧ Trusts(x2, x1) ⇒ Buys(x2) (1)
MarketTo(x) ⇒ Buys(x) (2)

The model also includes the unit clause Buys(x) with a
negative weight, representing the fact that most users do not
buy most products. The weight of Formula 1 represents how
strongly x1 influences x2, and the weight of Formula 2 rep-
resents how strongly users are influenced by marketing.

Maximizing utility in an MLDN involves finding an
assignment of values to groundings of the action pred-
icates (in this case, MarketTo(x)) that maximizes the
expected utility, which is given by: E[U(x|a, e)] =∑

i ui

∑
x∈Gi

P (x|a, e). Here, ui is the utility of formula i,
Gi is the set of its groundings, and P (x|a, e) is the marginal
probability of grounding x. Finding the optimal choice of
actions is an intractable problem, since the search space is
very large. We used a greedy search strategy, changing the
value of one action at a time and recalculating the marginals
using belief propagation. If the change does not prove to be
beneficial, it is reversed.

On a lifted network, greedy search involves finding the
optimal number of atoms to flip within each MarketTo(x)
supernode. In an exact lifted network, all atoms within each
supernode would be identical, and the choice of which spe-
cific atoms we flip is not relevant. This is not precisely true
for approximate lifted networks, but it is a useful approx-
imation to make, since it reduces the number of flips that
need to be considered. To find the greedy optimum within

1197



Table 2: Results of viral marketing experiment.
BP LBP-2 LBP-1

Initial number of nodes 75888 37380 891
Initial number of factors 508960 484895 201387
Initial LNC time (s) - 478.59 336.60
Average ∆LNC time (s) - 0.82 0.68
Average BP time (s) 20.79 20.09 13.41
Total flips 4038 4003 5863
Best utility found 102110 106965 137927
Improvement in utility 668 5523 36485

a supernode, we simply need to start with all its atoms set
to true or all its atoms set to false, and flip one atom at a
time until we make a non-beneficial change (which we then
reverse). The decision of whether to start with all atoms set
to true or false is also made greedily.

We compared three algorithms: fully ground belief propa-
gation (BP), lifted BP with LNC terminated after one refine-
ment (LBP-1), and lifted BP with two refinements (LBP-2).
Formula 1 had a weight of 0.6, and Formula 2 had a weight
of 0.8. Buys(x) had a weight of −2 and a utility of 20.
MarketTo(x) had a utility of −1. BP was run for 25 iter-
ations. The starting action choice was to market to no one.
The entire MEU inference was given 24 hours to complete,
and all algorithms reported the highest utility found within
that time. The final solution quality was evaluated with BP
on the ground network, with 100 iterations.

The results of the experiment are shown in Table 2. LBP-1
was the only one of the three algorithms to converge to a lo-
cal optimum within the time limit. ∆LNC achieved approx-
imately a 500X speedup over the initial LNC. ∆LNC also
significantly lowers the BP running time, due to the smaller
factor graph. LBP yields a much higher utility improvement
than ground BP in a comparable number of flips, since each
non-beneficial flip on a lifted network tells us that we need
not consider flipping other atoms in the same supernode.
LBP-1 is competitive in performance with the most directly
comparable algorithm of Richardson and Domingos (2002).

Conclusions and Future Work
In this paper, we proposed ∆LNC, an algorithm for ef-
ficiently updating an exact or approximate lifted network,
given changes to the evidence. ∆LNC works by retrac-
ing the path the changed atoms would have taken during
LNC, modifying the network as necessary. Experiments on
video segmentation and viral marketing problems show that
∆LNC provides very large speedups over standard LNC,
making it applicable to a wider range of problems.

There are several directions for future work. ∆LNC can
be applied to a variety of problems, including learning and
MAP inference. On video problems, it can be made even
more scalable by combining it with efficient BP algorithms
designed specifically for vision (e.g., Felzenszwalb and Hut-
tenlocher 2006). Using BP for more complicated problems
will also require more sophisticated models of inter-frame
dependencies (e.g., Isard and Blake 1998). The ability to
efficiently update a lifted network may also allow us to lift

other probabilistic inference algorithms besides BP.

Acknowledgements
This research was partly funded by ARO grant W911NF-
08-1-0242, AFRL contract FA8750-09-C-0181, DARPA con-
tracts FA8750-05-2-0283, FA8750-07-D-0185, HR0011-06-C-
0025, HR0011-07-C-0060 and NBCH-D030010, NSF grants IIS-
0534881 and IIS-0803481, and ONR grant N00014-08-1-0670.
The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of ARO,
DARPA, NSF, ONR, or the United States Government.

References
Acar, U. A.; Ihler, A. T.; Mettu, R. R.; and S̈umer, O. 2008. Adap-
tive inference on general graphical models. In Proc. UAI-08.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-order
probabilistic inference. In Proc. IJCAI-05.
de Salvo Braz, R.; Natarajan, S.; Bui, H.; Shavlik, J.; and Russell,
S. 2009. Anytime lifted belief propagation. In Proc. SRL-09.
Delcher, A. L.; Grove, A. J.; Kasif, S.; and Pearl, J. 1996.
Logarithmic-time updates and queries in probabilistic networks. J.
Artif. Intel. Res. 4.
Domingos, P., and Lowd, D. 2009. Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan Kaufmann.
Domingos, P., and Richardson, M. 2001. Mining the network value
of customers. In Proc. KDD-01.
Felzenszwalb, P. F., and Huttenlocher, D. P. 2006. Efficient belief
propagation for early vision. Int. J. Comput. Vision 70.
Fox, E. 2010. This is batting. Retr. Jan 20 from com-
mons.wikimedia.org/wiki/File:This is batting.OGG.
Getoor, L., and Taskar, B., eds. 2007. Introduction to Statistical
Relational Learning. MIT Press.
Ihler, A. T.; Fisher, J. W.; and Willsky, A. S. 2005. Loopy belief
propagation: Convergence and effects of message errors. J. Mach.
Learn. Res. 6.
Isard, M., and Blake, A. 1998. Condensation – conditional density
propagation for visual tracking. Int. J. Comput. Vision 29.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001. Factor
graphs and the sum-product algorithm. IEEE T. Inform. Theory 47.
NASA. 2010. Atlantis launches with supplies, equipment for sta-
tion. Retr. Jan 20 from www.nasa.gov/multimedia/hd/.
Nath, A., and Domingos, P. 2009. A language for relational deci-
sion theory. In Proc. SRL-09.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.
Poole, D. 2003. First-order probabilistic inference. In Proc. IJCAI-
03.
Richardson, M., and Domingos, P. 2002. Mining knowledge-
sharing sites for viral marketing. In Proc. KDD-02.
Singla, P., and Domingos, P. 2008. Lifted first-order belief propa-
gation. In Proc. AAAI-08.
Singla, P.; Nath, A.; and Domingos, P. 2010. Approximate lifted
belief propagation. To appear.
Wang, J., and Cohen, M. F. 2005. An iterative optimization ap-
proach for unified image segmentation and matting. In Proc. ICCV-
05.

1198




