
The Model-based Approach to Autonomous Behavior:
A Personal View

Hector Geffner
ICREA & Universitat Pompeu Fabra

Barcelona, SPAIN
hector.geffner@upf.edu

Abstract

The selection of the action to do next is one of the cen-
tral problems faced by autonomous agents. In AI, three
approaches have been used to address this problem: the
programming-based approach, where the agent controller
is given by the programmer, the learning-based approach,
where the controller is induced from experience via a learn-
ing algorithm, and the model-based approach, where the con-
troller is derived from a model of the problem. Planning in
AI is best conceived as the model-based approach to action
selection. The models represent the initial situation, actions,
sensors, and goals. The main challenge in planning is compu-
tational, as all the models, whether accommodating feedback
and uncertainty or not, are intractable in the worst case. In
this article, I review some of the models considered in cur-
rent planning research, the progress achieved in solving these
models, and some of the open problems.

Approaches to Autonomous Behavior

At the center of the problem of intelligent behavior is the
problem of selecting the action to do next. In AI, three dif-
ferent approaches have been used to address this problem.
In the programming-based approach, the controller that pre-
scribes the action to do next is given by the programmer,
usually in a suitable high-level language. In this approach,
the problem is solved by the programmer in his head, and
the solution is expressed as a high-level program. In the
learning-based approach, the controller is not given by a
programmer but is induced from experience: the agent’s own
experience, in reinforcement learning, or the experience of
a ‘teacher’, in supervised learning schemes. Finally, in the
model-based approach, the controller is not learned from ex-
perience but is derived automatically from a model of the
actions, sensors, and goals. The controller is the solution to
the model.

The three approaches to the action selection problem are
not orthogonal, and exhibit different virtues and limitations.
Programming agents by hand, puts all the burden on the pro-
grammer that can’t anticipate all possible contingencies, and
often result in systems that are brittle. Learning methods
have the greatest promise and potential, but tend to be lim-
ited in scope. In particular, reinforcement learning methods

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

do not provide a principled solution to the problem of learn-
ing when the state of the system is not observable. Last,
model-based methods, require a model of the actions, sen-
sors, and goals, and face the computational problem of solv-
ing the model; a problem that is computationally intractable
even in the simplest case, where information is complete and
actions have deterministic effects.

While planning is often defined as the branch of AI con-
cerned with the “synthesis of plans of action to achieve
goals”, planning is best conceived as the model-based ap-
proach to action selection, a view that defines more clearly
the role of planning in intelligent autonomous systems.
Programming-based approaches, on the other hand, corre-
spond to systems whose control is hardwired and thus less
flexible. Learning or model-free approaches, have the great-
est flexibility, but also the most challenging computational
problem. Moreover, this flexibility is often be result of
learning and using a model, and thus do not dispense with
the need for effective model-based methods. The distinc-
tion that Dennett (1996) makes between ‘Darwinian’, ‘Skin-
nerian’, and ‘Popperian’ creatures, mirrors quite closely the
distinction between hardwired (programmed) agents, agents
that learn, and agents that use models respectively. The
contrast between the first and the latter corresponds also to
the distinction made in AI between reactive and delibera-
tive systems, as long as deliberation is not equated to logical
reasoning. Indeed, as we will see, the inferences captured
by model-based methods that scale up are not logical but
heuristic, and follow from approximations.

Planning Models

A wide range of models used in planning can be understood
as variations of a basic state model featuring:1

• a finite and discrete state space S,

• a known initial state s0 ∈ S,

• a set SG ⊆ S of goal states,

• actions A(s) ⊆ A applicable in each s ∈ S,

• a deterministic transition function f(a, s), and

• positive action costs c(a, s).

1For lack of space, I omit references; see (Russell and Norvig
2010).

1709

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



This is the model underlying classical planning where it also
assumed that action costs c(a, s) do not depend on the state,
and hence c(a, s) = c(a). A solution or plan in this model
is a sequence of applicable actions that map the initial state
into a goal state. The cost of a plan is the sum of the action
costs, and a plan is optimal if it has minimum cost.

Domain-independent classical planners accept a compact
description of models of this form, in languages such as
Strips, ADL, or PDDL, and automatically produce a solution
(plan) as the output. A classical plan π = a0, . . . , an rep-
resents an open-loop controller where the action to be done
at time step i depends just on the step index i. The solution
of models that accommodate uncertainty and feedback, on
the other hand, produce closed-loop controllers where the
action to be done at step i depends on the actions and ob-
servations collected up to that point. These models can be
obtained by relaxing some of the assumptions in the model
above.

A Markov Decision Process (MDP), for example, is a
state model where the state transition function f(a, s) is re-
placed by state transition probabilities Pa(s′|s), and the next
state s′, while no longer predictable with certainty, is as-
sumed to be fully observable. A solution to an MDP must
drive the system state towards a goal state with certainty,
and its form is a function or policy π that maps states into
actions. The cost of a policy is the expected cost to go from
the initial state to the goal.

A Partially Observable MDP (POMDP) further extends
MDPs by relaxing the assumptions that states are fully ob-
servable. In a POMDP, a set of observation tokens o ∈ O
is assumed along with a sensor model Pa(o|s) that relates
the true but hidden state s of the system with the observable
token o. In POMDPs, the initial state of the system is not
known, but is characterized by a probability distribution, and
the task is to drive the system to a final, fully observable tar-
get state. Solutions to POMDPs are closed-loop controllers
of a different form that map belief states into actions, with
optimal solutions reaching the target state with minimum ex-
pected costs. Belief states are probability distributions over
the states.

While MDPs and POMDPs are commonly described us-
ing positive or negative rewards rather than positive costs,
and using discount factors rather than goal states, simple
transformations are known for translating discounted reward
MDPs and POMDPs into equivalent goal MDPs and goal
POMDPs as above, that are strictly more expressive (Bert-
sekas 1995; Bonet and Geffner 2009).

MDP and POMDP models are also useful when the un-
certainty in the system dynamics or in the feedback is repre-
sented by means of sets rather than probability distributions.
Planning with a dynamics and feedback represented in this
qualitative manner is called contingent planning. Solutions
to these models can be represented in many ways, including
functions of sets of states into actions, contingent plans, sets
of rules, and finite-state machines. Conformant planning is
a special case of contingent planning where there is no sens-
ing, and a plan, that must achieve the goal for every possible
initial state and transition, is like in classical planning, an
action sequence.

The languages used for representing conformant, con-
tingent, MDP, and POMDP planning problems in compact
form, are minor variations of the languages used for repre-
senting classical planning problems, in particular PDDL.

Status

Since all the models considered in planning are intractable
in the worst case, the main challenge in planning is com-
putational: how to scale up to large and complex prob-
lems. In this sense, the research agenda in planning is not
too different from the agenda concerning other intractable
models in AI such as SAT, CSPs, and Bayesian Networks.
In all cases, blind methods don’t work, and for domain-
independent solvers to scale up, they must automatically
recognize and exploit the structure of the problems by some
form of inference, for guiding or pruning the search for so-
lutions.

Classical Planning

The good news in planning over the last decade, is that plan-
ning over the simplest types of models, classical planning,
works. Namely, solvers accept problems involving hun-
dreds of actions and variables, and produce good solutions
quickly.2 The sheer size of a problem is no longer an im-
pediment to its solution. This progress is the result of a re-
newed emphasis on experimentation, and new ideas (Blum
and Furst 1995; Kautz and Selman 1996; McDermott 1996;
Bonet, Loerincs, and Geffner 1997). State-of-the-art classi-
cal planners manage to solve large problems using heuristic
functions that are derived automatically from the problem
encodings (Richter, Helmert, and Westphal 2008).

The model underlying classical planning is simple, but as
we will see below, quite flexible too. Actions in planning can
be activities or policies of any sort that can be characterized
deterministically in terms of pre and postconditions. While
non-deterministic effects are not represented, they can often
be handled in a natural way. Some of the best planners in the
MDP competitions held so far, for example, are not MDP
solvers, but classical planners that ignore all but one of the
possible outcomes, and replan from scratch when the system
is observed off its expected trajectory (Geffner 2002; Yoon,
Fern, and Givan 2007).

Beyond Classical Planning

For dealing with non-classical planning models, two types of
approaches have been pursued: a top-down approach, where
native solvers are developed for more expressive models,
and a bottom-up approach, where the power of classical
planners is exploited by means of suitable translations.

MDP and POMDP planners are examples of native
solvers for more expressive models. Interestingly, recent
MDP and POMDP planners make heavy use of heuristic
search methods as well, and progress on the solution of both

2My focus throughout is on satisficing planning, not optimal
planning. Satisficing planners search for solutions that are good
but not necessarily optimal.

1710



types of models has been significant in recent years. A lim-
itation of these planners in comparison with classical plan-
ners, however, is that inference is performed at the level of
states and belief states, rather than at the level of variables,
taking the form of value function updates.

Translation-based approaches address features that are
absent from the classical model such as soft-goals, plan-
constraints, uncertainty, and partial feedback, by compil-
ing them away. For example, soft-goals represent formulas
that if achieved along with the goal, entail a positive utility.
The task is to compute plans that maximize overall utility,
defined as the sum of the utilities achieved minus the plan
cost. Soft-goals, thus express preferences, as opposed to
hard goals. Interestingly, however, soft-goals can be com-
piled away easily and efficiently resulting in standard clas-
sical planning problems (Keyder and Geffner 2009). Like-
wise, plan constraints expressible as LTL formulas, such as
“if a tool is used, it must eventually be returned”, that ap-
pear in recent versions of PDDL, can be compiled away ef-
fectively too: the LTL formula is converted into a Buchi au-
tomata that is then merged with the planning domain (De Gi-
acomo and Vardi 2000).

It has also been shown recently that uncertain information
can be compiled away too in conformant problems with de-
terministic actions (Palacios and Geffner 2009). The transla-
tion maps a conformant problem P into a classical problem
K(P ), whose solutions, computable with an off-the-shelf
classical planner, are in correspondence. The complexity
of the translation is exponential in a width parameter that
is bounded and equal to 1 over most of the benchmarks.
The ideas behind this translation have been used since to
define an effective action selection mechanism for on-line
planning in the presence of partial observability (Albore,
Palacios, and Geffner 2009), and for computing solutions
to planning problems with uncertainty and partial feedback,
in the form of finite-state controllers (Bonet, Palacios, and
Geffner 2009).

Challenges

In spite of the progress achieved, some open challenges re-
main for making the model-based approach practical in the
design and analysis of autonomous systems. A choice of
challenges and opinions follow.

Classical planning. The performance increase in classical
planning over the last decade is less less the result of the
new heuristics, than other forms of inference, such as help-
ful actions (actions deemed as directly relevant to the goal)
and landmarks (fluents that must be achieved in the way
to the goal), and new search algorithms, like greedy local
searches for finding states with lower heuristic values (en-
forced hill climbing), and best-first searches with multiple
queues (Hoffmann and Nebel 2001; Hoffmann, Porteous,
and Sebastia 2004; Helmert 2006). One way to understand
the difference between recent planning algorithms and tradi-
tional heuristic search algorithms, is that the latter do not aim
to exploit the structure of states and heuristic values that are
regarded as ‘black boxes’. Ideas such as helpful actions and
landmarks, on the other hand, are the result of looking at the

fine propositional structure. I believe that further progress
in classical planning will depend more on new methods for
exploiting this structure, than on more powerful heuristic es-
timators or search algorithms.

Probabilistic planning. As argued above, scalable MDP
and POMDP solvers will have to reason, not at the level of
states and belief states, but at the level of variables.3 MDP
planners that use heuristic values derived from the propo-
sitional, factored representation of MDPs, like MDP plan-
ners based on classical replanners, are moves in that direc-
tion. The challenge is achieve both scalability and quality,
and furthermore, to do this in the more difficult setting of
POMDPs, where current heuristic estimators are not infor-
mative and replanning approaches do not apply (as it can’t
be determined then when to replan and from which state).
Recent translation-based approaches to conformant and con-
tingent planning are moves in that direction too, as the trans-
lations and the inferences required to solve the translations
are carried out over propositional representations. A limi-
tation of these approaches is that, by not taking probabili-
ties into account, they are left with the task of minimizing
cost in the worst case (optimally or heuristically), which is
ill-defined in many domains of interest. Thus either, prob-
abilities must be taken into account, or meaningful solution
forms that do not demand bounded cost in the worst case,
are needed (Daniele, Traverso, and Vardi 1999). I close this
point by noting that there are very few domain-independent
solvers able to represent and solve a problem such as the
Wumpus (Russell and Norvig 2010).4 A concrete challenge
in this area is to have a domain-independent solver that can
solve the Wumpus and scale up to large instances.

Learning. There are many roles for learning in model-based
approaches, the first of which is learning the model itself
from experience and partial observations. Learning, how-
ever, has also a role to play in the search for solutions; a role
that has been crucial in the context of SAT, but has not been
exploited yet in the context of planning. For example, con-
sider an agent that has to deliver a large package to one of
two cells A or B in a grid, by going to the cell and dropping
the package. Furthermore, assume that A is closer to the
agent than B but that A cannot be entered while holding a
large package. Most current heuristics will drive the search
toward A in a way resembling a fly that wants to get across
a closed window. Unlike flies, however, search algorithms
avoid revisiting the same states, and eventually would solve
the problem after partially exhausting the space around A.
A more intelligent strategy would be to note that the failed
search around A is the result of an interaction ignored by the
heuristic that should be fixed. This is precisely what SAT
solvers do: they identify the causes for failure (backtracks)
and fix them, while searching. Traditional heuristic meth-
ods cannot replicate this behavior because they ignore the
structure of the heuristic function. Yet this structure is avail-

3Terms like ‘factored MDPs’ and ‘factored POMDPs’ refer to
representations built on top variables, not to solution methods that
work at the level of those variables.

4The only such solver that I’m aware of is a POMDP solver,
GPT, that doesn’t scale up to large instances.

1711



able to heuristic search methods in planning, and they should
eventually be able to exploit it. The challenge is to account
for an effective form of ‘learning from backtracks’ as in SAT,
without having to use either CNF or CSP encodings that are
not suitable for planning over long horizons.
Hierarchies. Hierarchies form a basic component of HTNs,
an alternative model for planning that is concerned with the
encoding of the strategies for solving problems. Hierarchies,
however, play no role in state-of-the-art domain independent
planners that are completely flat. Yet, it is clear that most
real plans are understood as involving low and high level
actions. For example the action of picking up a block in-
volves displacements of the gripper that must be opened and
closed on the right block. A basic question that has not been
fully answered yet is how these abstractions can be formed
automatically, and how they are to be used to speed up the
planning process. For instance, the standard blocks world
is an abstraction of a problem where blocks are at certain
locations, and the grid move between locations. This ab-
straction, however, is not adequate when the table has no
space for all the blocks, or when the gripper cannot get past
towers of a certain height. The open question is how to au-
tomatically compile detailed planning description into more
abstract ones that can be used to solve the original problem
more effectively. There is a large body of work on abstract
problem solving that is relevant to this question, the latest of
which is (Marthi, Russell, and Wolfe 2007), but no robust
answer yet applicable to a wide range of problems.
Multi-agent planning. I’ve discussed planning models in-
volving single agents, yet often autonomous agent, must in-
teract with other autonomous agents. We do this naturally
all the time: walking on the street, driving, etc. The first
question is how plans and plan costs should be defined in
such setting. This is a subtle problem and many proposals
have been put forward, often building on equilibria notions
from game theory. Two elements, however, are still missing
from this body of work. First, it should be possible to define
a hierarchy of multi-agent models, starting with a simple
‘classical model’, as in single-agent planning. For example,
a model where each agent has a ‘classical planning prob-
lem’, knows the problems of the other agents, and at each
time point knows what each agent has done so far. More
interesting problems, accommodating limited forms of col-
laboration could then be defined by playing with the cost
structure of the problems. Second, by suitable translations,
it should be possible for each agent to plan using state-of-
the-art single-agent planners. Moreover, the goals of the
other agents could be hidden to the other agents, that could
infer them from the observations gathered using plan recog-
nition techniques, which as shown recently, can leverage on
classical planning technology as well (Ramirez and Geffner
2010).

I think that these are all meaningful computational prob-
lems where significant progress can be achieved over the
next few years. If you are looking for challenges in AI, con-
sider joining the effort.

Acknowledgments. H. Geffner is partially supported by
grant TIN2009-10232, MICINN, Spain.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In Proc.
IJCAI-09.

Bertsekas, D. 1995. Dynamic Programming and Optimal
Control, Vols 1 and 2. Athena Scientific.

Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. In Proceedings of IJCAI-95.

Bonet, B., and Geffner, H. 2009. Solving POMDPs: RTDP-
Bel vs. Point-based Algorithms. In Proc. IJCAI-09.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism for planning. In Proceed-
ings of AAAI-97, 714–719. MIT Press.

Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. Int. Conf. on Automated
Planning and Scheduling (ICAPS-09).

Daniele, M.; Traverso, P.; and Vardi, M. Y. 1999. Strong
cyclic planning revisited. In Proceedings of ECP-99.

De Giacomo, G., and Vardi, M. 2000. Automata-theoretic
approach to planning for temporally extended goals. Lecture
notes in computer science 226–238.

Dennett, D. 1996. Kinds of minds. Basic Books New York.

Geffner, H. 2002. Perspectives on artificial intelligence
planning. In Proc. AAAI-2002.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. JAIR 22(1):215–278.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In Proc.
AAAI, 1194–1201.

Keyder, E., and Geffner, H. 2009. Soft goals can be com-
piled away. JAIR 36:547–556.

Marthi, B.; Russell, S.; and Wolfe, J. 2007. Angelic seman-
tics for high-level actions. In Proc. ICAPS-07.

McDermott, D. 1996. A heuristic estimator for means-ends
analysis in planning. In Proc. Third Int. Conf. on AI Plan-
ning Systems (AIPS-96).

Palacios, H., and Geffner, H. 2009. Compiling Uncertainty
Away in Conformant Planning Problems with Bounded
Width. JAIR 35:623–675.

Ramirez, M., and Geffner, H. 2010. Probabilistic plan
recognition using off-the-shelf classical planners. In Proc.
AAAI-2010.

Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proc. AAAI, 975–982.

Russell, S., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Prentice Hall. 3rd Edition.

Yoon, S.; Fern, A.; and Givan, R. 2007. FF-replan: A base-
line for probabilistic planning. In Proc. ICAPS-07.

1712




