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Abstract 

An optimization variant of a problem of path planning for 
multiple robots is addressed in this work. The task is to find 
spatial-temporal path for each robot of a group of robots 
such that each robot can reach its destination by navigating 
through these paths. In the optimization variant of the prob-
lem, there is an additional requirement that the makespan of 
the solution must be as small as possible. A proof of the 
claim that optimal path planning for multiple robots is 
𝑁𝑃-complete is sketched in this short paper. 

Introduction and Motivation   

The problem studied in this paper is a variation of a well 
known task of pebble motion on a graph (also known as 
pebble motion puzzle, specially (𝑛2 − 1)-puzzle) (Korn-
hauser et al., 1984). This task is given as an undirected 
graph and a set of pebbles placed in vertices of the graph. 
At most one pebble is placed in each vertex and at least 
one vertex remains unoccupied. The dynamicity of the 
problem is defined by a notion of an allowed move, which 
is a move of a pebble into a neighboring vertex that must 
be unoccupied at the time of commencing the move. The 
task is to find a partially ordered set of allowed moves such 
that all the pebbles reach their target vertices. Notice that if 
there is more than one unoccupied vertex, then several 
moves can be done in parallel at a single time step. 
 The problem addressed in this paper differs slightly with 
regard to the notion allowed moves. Here, the constraint on 
allowed move is slightly relaxed to make the problem a 
more realistic abstraction for motion tasks. Again, an undi-
rected graph and a set of entities in vertices (now they are 
called robots) are given and the task is to rearrange them. 
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An allowed move is defined transitively: an allowed move 
is a move into a neighboring unoccupied vertex and it is 
also a move into a neighboring vertex that is being left by 
another robot using an allowed move. Let this variation be 
called a problem of path planning for multiple robots
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(Ryan, 2008; Surynek, 2009). 
 It has been shown in (Ratner & Warmuth, 1986) that 
finding a shortest possible sequence of moves that solves 
an instance of the problem of pebble motion on a graph 
when there is a single unoccupied vertex is 𝑁𝑃-hard. Un-
fortunately, the proof does not work for multi-robot path 
planning since parallelism may occur even if there is only 
one unoccupied vertex. So the question is how difficult 
(computationally) is the optimization variant of the prob-
lem of path planning for multiple robots? A sketch of proof 
that this task is 𝑁𝑃-complete is given in this short paper. 

The 𝑵𝑷-Completeness of the Problem 

Definition 1 (path planning for multiple robots). Let 
𝐺 = (𝑉, 𝐸) be an undirected graph and let 𝑅 =
{𝑟 1, 𝑟 2, … , 𝑟 𝜈} be a set of robots where 𝜈 <  𝑉 . The initial 
arrangement of robots is defined by a simple function 
𝑆𝑅

0: 𝑅 ⟶ 𝑉 (that is 𝑆𝑅
0(𝑟) ≠ 𝑆𝑅

0(𝑠) for every 𝑟, 𝑠 ∈ 𝑅 such 
that 𝑟 ≠ 𝑠); the goal arrangement of robots is defined by 
another simple function 𝑆𝑅

+: 𝑅 ⟶ 𝑉. A problem of multi-
robot path planning is the task to find a number 𝜁 called a 
makespan and a sequence 𝒮𝑅 = [𝑆𝑅

0, 𝑆𝑅
1, … , 𝑆𝑅

𝜁
] where 

𝑆𝑅
𝑘 : 𝑅 ⟶ 𝑉 is a simple function for every 𝑘 = 1,2, … , 𝜁 

while 𝒮𝑅 must satisfy the following constraints: 
(i)    𝑆𝑅

𝜁
= 𝑆𝑅

+, that is, robots finally reach their destinations. 
(ii) Either 𝑆𝑅

𝑘 𝑟 = 𝑆𝑅
𝑘+1 𝑟  or {𝑆𝑅

𝑘 𝑟 , 𝑆𝑅
𝑘+1 𝑟 } ∈ 𝐸 for 

every 𝑟 ∈ 𝑅 and 𝑘 = 1,2, … , 𝜁 − 1. 
(iii) If 𝑆𝑅

𝑘 𝑟 ≠ 𝑆𝑅
𝑘+1 𝑟  and  𝑆𝑅

𝑘 𝑠 ≠ 𝑆𝑅
𝑘+1 𝑟  ∀𝑠 ∈ 𝑅 

such that 𝑠 ≠ 𝑟, then the move of 𝑟 at the time step 𝑘 
is allowed (a move into an unoccupied vertex). If 

                                                 
1
 This term has been first used in (Ryan, 2008); indeed for the already 

described problem of pebble motion on a graph. Instead of using two 

terms for the same concept, an attempt to shift the term multi-robot to-
wards problems with higher intrinsic parallelism is made here. 

1261

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



𝑆𝑅
𝑘 𝑟 ≠ 𝑆𝑅

𝑘+1 𝑟  and there is 𝑠 ∈ 𝑅 such that 𝑠 ≠ 𝑟 ∧
𝑆𝑅

𝑘 𝑠 = 𝑆𝑅
𝑘+1 𝑟 ∧ 𝑆𝑅

𝑘 𝑠 ≠ 𝑆𝑅
𝑘+1 𝑠  and the move of 

𝑠 at the time step 𝑘 is allowed, then the move of 𝑟 at 
the time step 𝑘 is also allowed. All the moves of ro-
bots must be allowed. 

 The problem described above is formally a quadruple 
Σ =  𝐺 =  𝑉, 𝐸 , 𝑅, 𝑆𝑅

0, 𝑆𝑅
+ . □ 

 

 Notice that an allowed move can be performed either 
into an unoccupied vertex or into a vertex that is just being 
left using allowed move (robots can move like a train). 
 It is expectable, that some solutions are preferred to 
others in real-life applications. Typically, solutions with 
the small makespan are required. This immediately raises 
the question whether it is possible to compute a solution of 
the smallest possible makespan. Let the problem with this 
additional objective be called an optimization variant. A 
sketch of proof of the 𝑵𝑷-completeness of the optimiza-
tion variant is shown in the following text. 
 

 
 

Figure 1. An illustration of vertex locking. A vertex 𝑣 is to be 

locked at time steps 1 and 3. An augmentation Σ′  of an instance Σ 

is implemented by adding a path around the locked vertex 𝑣 while 

newly added robots are enforced to go through 𝑣 exactly at time 

step 1 and 3 in any optimal solution of Σ′ . 
 

Lemma 1 (vertex locking). Let Σ = (𝐺 =  𝑉, 𝐸 , 𝑅, 𝑆𝑅
0, 

𝑆𝑅
+) be an instance of the problem of multi-robot path 

planning and let 𝑣 ∈ 𝑉 be a vertex such that 𝑆𝑅
0(𝑟) ≠ 𝑣 

∀𝑟 ∈ 𝑅. Next, let 𝑇 = {𝑡1, 𝑡2 , … , 𝑡𝑛} where 𝑡𝑖 ∈ ℕ and 
𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛  be a set of lock time steps. Then there 
exists an augmentation of Σ (vertices and robots are added) 
such that it never happens that a robot enters the vertex 𝑣 at 
any time step 𝑡𝑖 ∈ 𝑇 in any optimal solution. Moreover, the 
original robots from the set 𝑅 can move only within 𝐺. ■ 
 

Sketch of proof. A new path is added to the graph 𝐺 such 
that it goes through the vertex 𝑣. Then, new robots are 
placed at the beginning of this path and their destinations 
are set at the end of this path. The length of the path is set 
in such a way that it takes at least 𝜁∗ + 𝑡𝑛  time steps before 
the newly added robots can reach their destinations, where 
𝜁∗ is the makespan of any optimal solution of Σ. Thus, the 
bottleneck on the makespan of an optimal solution is im-
posed by the newly added path and robots. Additionally 
new robots are arranged is such a way that they go through 
the vertex 𝑣 exactly at time steps from the set 𝑇. 

 It remains to augment the resulting instance to prevent 
the original robots from entering the newly added vertices 
(this is an unwanted behavior since new vertices may serve 
as additional parking place for robots). This can be done by 
the same technique. Vertices directly preceding 𝑣 and 
directly succeeding 𝑣 on the newly added path are locked 
for all the time steps except that time steps at which the 
newly added robots from the first stage of the augmenta-
tion need to go through them. ■ 
 

 Observe that the size of the augmented instance is poly-
nomial in size of Σ and 𝜁∗. Lemma 1 represents the crucial 
ability to implement so called conjugation principle for a 
group of robots. The term conjugation means that all the 
robots of the group are forced to go either through one way 
or through the other way in any optimal solution (the group 
cannot split). The technique of conjugation will be used to 
simulate Boolean consistency. Observe further, that Lem-
ma 1 can be easily generalized to lock a set of vertices 
instead of only one vertex. A set 𝑊 ⊆ 𝑉 can be locked so 
that at least one vertex of 𝑊 is not occupied by the original 
robots from 𝑅 at selected time steps. This generalization 
will be used to simulate clause satisfaction. 
 

Lemma 2 (conjugation principle). Let 𝑅𝐺  be a set of ro-
bots. There exists an instance of multi-robot path planning 
problem Σ =  𝐺 =  𝑉, 𝐸 , 𝑅, 𝑆𝑅

0, 𝑆𝑅
+  with 𝑅𝐺 ⊆ 𝑅 such 

that conjugation with the group 𝑅𝐺  occurs in any optimal 
solution of Σ. That is, there is 𝑉ℒ ⊆ 𝑉, 𝑉ℛ ⊆ 𝑉 with 
𝑉ℒ ∩ 𝑉ℛ = ∅ and  𝑉ℒ =  𝑉ℛ = 𝑅𝐺   and a time step 𝑡 
such that all the robots of the set 𝑅𝐺  are placed either in 𝑉ℒ 
or in 𝑉ℛ at the time step 𝑡 in any optimal solution while 
both alternatives can equally happen. ■ 
 

 
 

Figure 2. An instance of the problem of path planning for mul-

tiple robots with the conjugation principle for a group of robots 

𝑅𝐺 = {𝑠 1, 𝑠 2, 𝑠 3, 𝑠 4}. The bottom line of vertices is open (not 

locked) only at time step 0. Dark vertices in the 4th line (1st line in 

on the top) can be entered only at time step 8; dark vertices in the 

6th line can be entered only at time step 14. The principle of con-

jugation is that all the robots 𝑠 1, 𝑠 2, 𝑠 3, and 𝑠 4 are located either 

in 𝑉ℒ or in 𝑉ℛ at time step 1 within any optimal solution. 
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Figure 3. A polynomial time reduction of a Boolean formula to a 

decision instance of multi-robot path planning. The conjugation 

technique is used to simulate Boolean consistency and the set 

locking technique is used to simulate clause satisfaction (reduc-

tion of one variable/clause is shown). There exists a solution of  Σ 

of the makespan 𝜂 = 11 if and only if the formula 𝐹 is satisfiable. 

 

Sketch of proof. The instance Σ for a group of robots 
𝑅𝐺 = {𝑠 1, 𝑠 2, 𝑠 3, 𝑠 4} is shown in Figure 2. The proof will 
just briefly comment the figure. The robots need to go 
from the bottom line to the top line of the graph. Using the 
construction from Lemma 1, the initial vertices are open 
only at time step 0. Thus, robots must go to the set of ver-
tices 𝑉ℒ and 𝑉ℛ. The dark vertices in 4

th
 and 6

th
 line of the 

graph are open only at time steps 8 and 14 respectively. 
Since there are robots 𝑙ℒ and 𝑙ℛ  causing an obstruction in 
entering line 4 of the graph at time step 8 in case the group 
of robots is divided, all the robots must go either into 𝑉ℒ or 
into 𝑉ℛ at time step 1. The upper part of the graph can be 
prolonged as necessary to obtain an optimal solution of the 
required makespan. It is not difficult to generalize the in-
stance from Figure 2 for an arbitrary group of robots 𝑅𝐺 . ■ 
 

 Again observe that the size of the conjugation instance is 
polynomial in  𝑅𝐺  . At this point, it is easy to polynomially 
reduce an instance of the Boolean satisfiability problem 
(𝑆𝐴𝑇) (Cook, 1971) to the decision version of the optimal 
multi-robot path planning using the above constructions. 
 

Theorem 1 (𝑵𝑷-hardness). Let 𝐹 be an instance of 𝑆𝐴𝑇 in 
conjunctive normal form (CNF). It is possible to construct 
an instance of the problem of multi-robot path planning 
Σ/𝜂 in polynomial time such that there exists a solution of 
Σ of the makespan 𝜂 if and only if 𝐹 is satisfiable. ■ 

Sketch of proof. Observe that 𝐹 can be transformed to an 
equisatisfiable 𝐹= in which each Boolean variable has the 
same number of positive and negative occurrences in poly-
nomial time. Then each occurrence of a literal in 𝐹= is 
associated with a vertex and each variable in 𝐹= is asso-
ciated with a conjugation subgraph where the size of the 
group of robots is equal to the number of positive 
(=negative) occurrences of the variable in 𝐹=. Vertices 
corresponding to negative and positive literals of the same 
variable are matched to vertices 𝑉ℒ and 𝑉ℛ of the corres-
ponding conjugation subgraph respectively. The height of 
conjugation subgraphs is set in a way to have the same 
makespan 𝜂 of optimal solutions in all these subgraphs. 
 Literals that correspond to vertices through which a 
robot goes at time step 1 are set to 𝐹𝐴𝐿𝑆𝐸; otherwise they 
are set to 𝑇𝑅𝑈𝐸. The construction guarantees that this 
assignment is correctly defined (Boolean consistency is 
preserved; it cannot happen that two complementary liter-
als of the same variable are assigned the same truth value). 
 A satisfied clause must have at least one unoccupied 
vertex at time step 1. To enforce this clause satisfaction 
the technique of vertex set locking is applied on the set of 
clause vertices. That is, some additional robots are forced 
to enter at least one vertex of each clause at time step 1. ■ 
 

 Since there exists a solution of the makespan of 𝒪  𝑉 3  
for any solvable instance of the problem of pebble motion 
on a graph 𝐺 = (𝑉, 𝐸) (Kornhauser et al., 1984), there is 
also such a small solution for any solvable instance of 
multi-robot path planning. Hence, the decision version of 
the optimization variant of multi-robot path planning is in 
𝑁𝑃. Altogether, the studied problem is 𝑁𝑃-complete. 
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𝑭= =  𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧  𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧  𝑥2 ∨ 𝑥2 ∨ 𝑦1 ∨ 𝑦1  

𝚺/𝜼 = (𝐺, 𝑅, 𝑆𝑅
0 , 𝑆𝑅

+)/11 
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