

An Optimization Variant of Multi-Robot Path Planning is Intractable

Pavel Surynek

Charles University in Prague

Faculty of Mathematics and Physics

Department of Theoretical Computer Science and Mathematical Logic

Malostranské náměstí 25, 118 00 Praha 1, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract

An optimization variant of a problem of path planning for
multiple robots is addressed in this work. The task is to find
spatial-temporal path for each robot of a group of robots
such that each robot can reach its destination by navigating
through these paths. In the optimization variant of the prob-
lem, there is an additional requirement that the makespan of
the solution must be as small as possible. A proof of the
claim that optimal path planning for multiple robots is
𝑁𝑃-complete is sketched in this short paper.

Introduction and Motivation

The problem studied in this paper is a variation of a well
known task of pebble motion on a graph (also known as
pebble motion puzzle, specially (𝑛2 − 1)-puzzle) (Korn-
hauser et al., 1984). This task is given as an undirected
graph and a set of pebbles placed in vertices of the graph.
At most one pebble is placed in each vertex and at least
one vertex remains unoccupied. The dynamicity of the
problem is defined by a notion of an allowed move, which
is a move of a pebble into a neighboring vertex that must
be unoccupied at the time of commencing the move. The
task is to find a partially ordered set of allowed moves such
that all the pebbles reach their target vertices. Notice that if
there is more than one unoccupied vertex, then several
moves can be done in parallel at a single time step.
 The problem addressed in this paper differs slightly with
regard to the notion allowed moves. Here, the constraint on
allowed move is slightly relaxed to make the problem a
more realistic abstraction for motion tasks. Again, an undi-
rected graph and a set of entities in vertices (now they are
called robots) are given and the task is to rearrange them.

Copyright © 2010, Association for the Advancement of Artificial Intelli-

gence (www.aaai.org). All rights reserved.

This work is supported by The Czech Science Foundation (Grantová

agentura České republiky - GAČR) under the contract number
201/09/P318 and by The Ministry of Education, Youth and Sports, Czech

Republic (Ministerstvo školství, mládeže a tělovýchovy ČR – MŠMT ČR)

under the contract number MSM 0021620838.

An allowed move is defined transitively: an allowed move
is a move into a neighboring unoccupied vertex and it is
also a move into a neighboring vertex that is being left by
another robot using an allowed move. Let this variation be
called a problem of path planning for multiple robots

1

(Ryan, 2008; Surynek, 2009).
 It has been shown in (Ratner & Warmuth, 1986) that
finding a shortest possible sequence of moves that solves
an instance of the problem of pebble motion on a graph
when there is a single unoccupied vertex is 𝑁𝑃-hard. Un-
fortunately, the proof does not work for multi-robot path
planning since parallelism may occur even if there is only
one unoccupied vertex. So the question is how difficult
(computationally) is the optimization variant of the prob-
lem of path planning for multiple robots? A sketch of proof
that this task is 𝑁𝑃-complete is given in this short paper.

The 𝑵𝑷-Completeness of the Problem

Definition 1 (path planning for multiple robots). Let
𝐺 = (𝑉, 𝐸) be an undirected graph and let 𝑅 =
{𝑟 1, 𝑟 2, … , 𝑟 𝜈} be a set of robots where 𝜈 < 𝑉 . The initial
arrangement of robots is defined by a simple function
𝑆𝑅

0: 𝑅 ⟶ 𝑉 (that is 𝑆𝑅
0(𝑟) ≠ 𝑆𝑅

0(𝑠) for every 𝑟, 𝑠 ∈ 𝑅 such
that 𝑟 ≠ 𝑠); the goal arrangement of robots is defined by
another simple function 𝑆𝑅

+: 𝑅 ⟶ 𝑉. A problem of multi-
robot path planning is the task to find a number 𝜁 called a
makespan and a sequence 𝒮𝑅 = [𝑆𝑅

0, 𝑆𝑅
1, … , 𝑆𝑅

𝜁
] where

𝑆𝑅
𝑘 : 𝑅 ⟶ 𝑉 is a simple function for every 𝑘 = 1,2, … , 𝜁

while 𝒮𝑅 must satisfy the following constraints:
(i) 𝑆𝑅

𝜁
= 𝑆𝑅

+, that is, robots finally reach their destinations.
(ii) Either 𝑆𝑅

𝑘 𝑟 = 𝑆𝑅
𝑘+1 𝑟 or {𝑆𝑅

𝑘 𝑟 , 𝑆𝑅
𝑘+1 𝑟 } ∈ 𝐸 for

every 𝑟 ∈ 𝑅 and 𝑘 = 1,2, … , 𝜁 − 1.
(iii) If 𝑆𝑅

𝑘 𝑟 ≠ 𝑆𝑅
𝑘+1 𝑟 and 𝑆𝑅

𝑘 𝑠 ≠ 𝑆𝑅
𝑘+1 𝑟 ∀𝑠 ∈ 𝑅

such that 𝑠 ≠ 𝑟, then the move of 𝑟 at the time step 𝑘
is allowed (a move into an unoccupied vertex). If

1
 This term has been first used in (Ryan, 2008); indeed for the already

described problem of pebble motion on a graph. Instead of using two

terms for the same concept, an attempt to shift the term multi-robot to-
wards problems with higher intrinsic parallelism is made here.

1261

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

𝑆𝑅
𝑘 𝑟 ≠ 𝑆𝑅

𝑘+1 𝑟 and there is 𝑠 ∈ 𝑅 such that 𝑠 ≠ 𝑟 ∧
𝑆𝑅

𝑘 𝑠 = 𝑆𝑅
𝑘+1 𝑟 ∧ 𝑆𝑅

𝑘 𝑠 ≠ 𝑆𝑅
𝑘+1 𝑠 and the move of

𝑠 at the time step 𝑘 is allowed, then the move of 𝑟 at
the time step 𝑘 is also allowed. All the moves of ro-
bots must be allowed.

 The problem described above is formally a quadruple
Σ = 𝐺 = 𝑉, 𝐸 , 𝑅, 𝑆𝑅

0, 𝑆𝑅
+ . □

 Notice that an allowed move can be performed either
into an unoccupied vertex or into a vertex that is just being
left using allowed move (robots can move like a train).
 It is expectable, that some solutions are preferred to
others in real-life applications. Typically, solutions with
the small makespan are required. This immediately raises
the question whether it is possible to compute a solution of
the smallest possible makespan. Let the problem with this
additional objective be called an optimization variant. A
sketch of proof of the 𝑵𝑷-completeness of the optimiza-
tion variant is shown in the following text.

Figure 1. An illustration of vertex locking. A vertex 𝑣 is to be

locked at time steps 1 and 3. An augmentation Σ′ of an instance Σ

is implemented by adding a path around the locked vertex 𝑣 while

newly added robots are enforced to go through 𝑣 exactly at time

step 1 and 3 in any optimal solution of Σ′ .

Lemma 1 (vertex locking). Let Σ = (𝐺 = 𝑉, 𝐸 , 𝑅, 𝑆𝑅
0,

𝑆𝑅
+) be an instance of the problem of multi-robot path

planning and let 𝑣 ∈ 𝑉 be a vertex such that 𝑆𝑅
0(𝑟) ≠ 𝑣

∀𝑟 ∈ 𝑅. Next, let 𝑇 = {𝑡1, 𝑡2 , … , 𝑡𝑛} where 𝑡𝑖 ∈ ℕ and
𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 be a set of lock time steps. Then there
exists an augmentation of Σ (vertices and robots are added)
such that it never happens that a robot enters the vertex 𝑣 at
any time step 𝑡𝑖 ∈ 𝑇 in any optimal solution. Moreover, the
original robots from the set 𝑅 can move only within 𝐺. ■

Sketch of proof. A new path is added to the graph 𝐺 such
that it goes through the vertex 𝑣. Then, new robots are
placed at the beginning of this path and their destinations
are set at the end of this path. The length of the path is set
in such a way that it takes at least 𝜁∗ + 𝑡𝑛 time steps before
the newly added robots can reach their destinations, where
𝜁∗ is the makespan of any optimal solution of Σ. Thus, the
bottleneck on the makespan of an optimal solution is im-
posed by the newly added path and robots. Additionally
new robots are arranged is such a way that they go through
the vertex 𝑣 exactly at time steps from the set 𝑇.

 It remains to augment the resulting instance to prevent
the original robots from entering the newly added vertices
(this is an unwanted behavior since new vertices may serve
as additional parking place for robots). This can be done by
the same technique. Vertices directly preceding 𝑣 and
directly succeeding 𝑣 on the newly added path are locked
for all the time steps except that time steps at which the
newly added robots from the first stage of the augmenta-
tion need to go through them. ■

 Observe that the size of the augmented instance is poly-
nomial in size of Σ and 𝜁∗. Lemma 1 represents the crucial
ability to implement so called conjugation principle for a
group of robots. The term conjugation means that all the
robots of the group are forced to go either through one way
or through the other way in any optimal solution (the group
cannot split). The technique of conjugation will be used to
simulate Boolean consistency. Observe further, that Lem-
ma 1 can be easily generalized to lock a set of vertices
instead of only one vertex. A set 𝑊 ⊆ 𝑉 can be locked so
that at least one vertex of 𝑊 is not occupied by the original
robots from 𝑅 at selected time steps. This generalization
will be used to simulate clause satisfaction.

Lemma 2 (conjugation principle). Let 𝑅𝐺 be a set of ro-
bots. There exists an instance of multi-robot path planning
problem Σ = 𝐺 = 𝑉, 𝐸 , 𝑅, 𝑆𝑅

0, 𝑆𝑅
+ with 𝑅𝐺 ⊆ 𝑅 such

that conjugation with the group 𝑅𝐺 occurs in any optimal
solution of Σ. That is, there is 𝑉ℒ ⊆ 𝑉, 𝑉ℛ ⊆ 𝑉 with
𝑉ℒ ∩ 𝑉ℛ = ∅ and 𝑉ℒ = 𝑉ℛ = 𝑅𝐺 and a time step 𝑡
such that all the robots of the set 𝑅𝐺 are placed either in 𝑉ℒ
or in 𝑉ℛ at the time step 𝑡 in any optimal solution while
both alternatives can equally happen. ■

Figure 2. An instance of the problem of path planning for mul-

tiple robots with the conjugation principle for a group of robots

𝑅𝐺 = {𝑠 1, 𝑠 2, 𝑠 3, 𝑠 4}. The bottom line of vertices is open (not

locked) only at time step 0. Dark vertices in the 4th line (1st line in

on the top) can be entered only at time step 8; dark vertices in the

6th line can be entered only at time step 14. The principle of con-

jugation is that all the robots 𝑠 1, 𝑠 2, 𝑠 3, and 𝑠 4 are located either

in 𝑉ℒ or in 𝑉ℛ at time step 1 within any optimal solution.

𝑺𝑹
𝟎

𝑺𝑹
+

…

𝒍 𝓛

𝒍 𝓡

𝒔 𝟏

𝒔 𝟐

𝒔 𝟑

𝒔 𝟒

𝚵𝑹𝑮 = (𝐺, 𝑅, 𝑆𝑅
0, 𝑆𝑅

+)

𝑹𝑮 = {𝑠 1, 𝑠 2, 𝑠 3 , 𝑠 4}

…

𝒍 𝓛

𝑉ℒ 𝑉ℛ
𝒍 𝓡

𝒔 𝟏

𝒔 𝟐

𝒔 𝟑

𝒔 𝟒

𝒒 𝟏 𝒒 𝟐 𝒒 𝟏 𝒒 𝟐

𝑺𝑹′
𝟎 𝑺𝑹′

+ 𝚺′ = (𝐺 ′ , 𝑅′ , 𝑆𝑅′
0 , 𝑆𝑅′

+)

𝑺𝑹
𝟎 𝑺𝑹

+ 𝚺 = (𝐺, 𝑅, 𝑆𝑅
0, 𝑆𝑅

+)

𝒗 𝒗

𝒗 𝒗

𝑹 = {𝑟 1, 𝑟 2 , 𝑟 3}

𝜻∗ = 2
𝝀 = 3 + 2 − 1 = 4

𝑻 = {1,3}

𝑹′ = 𝑟 1, 𝑟 2 , 𝑟 3 ∪
{𝑞 1, 𝑞 2}

𝒓 𝟏 𝒓 𝟐

𝒓 𝟑

𝒓 𝟐 𝒓 𝟏

𝒓 𝟑

𝒓 𝟏 𝒓 𝟐

𝒓 𝟑

𝒓 𝟐 𝒓 𝟏

𝒓 𝟑

1262

Figure 3. A polynomial time reduction of a Boolean formula to a

decision instance of multi-robot path planning. The conjugation

technique is used to simulate Boolean consistency and the set

locking technique is used to simulate clause satisfaction (reduc-

tion of one variable/clause is shown). There exists a solution of Σ

of the makespan 𝜂 = 11 if and only if the formula 𝐹 is satisfiable.

Sketch of proof. The instance Σ for a group of robots
𝑅𝐺 = {𝑠 1, 𝑠 2, 𝑠 3, 𝑠 4} is shown in Figure 2. The proof will
just briefly comment the figure. The robots need to go
from the bottom line to the top line of the graph. Using the
construction from Lemma 1, the initial vertices are open
only at time step 0. Thus, robots must go to the set of ver-
tices 𝑉ℒ and 𝑉ℛ. The dark vertices in 4

th
 and 6

th
 line of the

graph are open only at time steps 8 and 14 respectively.
Since there are robots 𝑙ℒ and 𝑙ℛ causing an obstruction in
entering line 4 of the graph at time step 8 in case the group
of robots is divided, all the robots must go either into 𝑉ℒ or
into 𝑉ℛ at time step 1. The upper part of the graph can be
prolonged as necessary to obtain an optimal solution of the
required makespan. It is not difficult to generalize the in-
stance from Figure 2 for an arbitrary group of robots 𝑅𝐺 . ■

 Again observe that the size of the conjugation instance is
polynomial in 𝑅𝐺 . At this point, it is easy to polynomially
reduce an instance of the Boolean satisfiability problem
(𝑆𝐴𝑇) (Cook, 1971) to the decision version of the optimal
multi-robot path planning using the above constructions.

Theorem 1 (𝑵𝑷-hardness). Let 𝐹 be an instance of 𝑆𝐴𝑇 in
conjunctive normal form (CNF). It is possible to construct
an instance of the problem of multi-robot path planning
Σ/𝜂 in polynomial time such that there exists a solution of
Σ of the makespan 𝜂 if and only if 𝐹 is satisfiable. ■

Sketch of proof. Observe that 𝐹 can be transformed to an
equisatisfiable 𝐹= in which each Boolean variable has the
same number of positive and negative occurrences in poly-
nomial time. Then each occurrence of a literal in 𝐹= is
associated with a vertex and each variable in 𝐹= is asso-
ciated with a conjugation subgraph where the size of the
group of robots is equal to the number of positive
(=negative) occurrences of the variable in 𝐹=. Vertices
corresponding to negative and positive literals of the same
variable are matched to vertices 𝑉ℒ and 𝑉ℛ of the corres-
ponding conjugation subgraph respectively. The height of
conjugation subgraphs is set in a way to have the same
makespan 𝜂 of optimal solutions in all these subgraphs.
 Literals that correspond to vertices through which a
robot goes at time step 1 are set to 𝐹𝐴𝐿𝑆𝐸; otherwise they
are set to 𝑇𝑅𝑈𝐸. The construction guarantees that this
assignment is correctly defined (Boolean consistency is
preserved; it cannot happen that two complementary liter-
als of the same variable are assigned the same truth value).
 A satisfied clause must have at least one unoccupied
vertex at time step 1. To enforce this clause satisfaction
the technique of vertex set locking is applied on the set of
clause vertices. That is, some additional robots are forced
to enter at least one vertex of each clause at time step 1. ■

 Since there exists a solution of the makespan of 𝒪 𝑉 3
for any solvable instance of the problem of pebble motion
on a graph 𝐺 = (𝑉, 𝐸) (Kornhauser et al., 1984), there is
also such a small solution for any solvable instance of
multi-robot path planning. Hence, the decision version of
the optimization variant of multi-robot path planning is in
𝑁𝑃. Altogether, the studied problem is 𝑁𝑃-complete.

References

Cook, S. A., 1971. The Complexity of Theorem Proving
Procedures. Proceedings of the 3rd Annual ACM Sympo-
sium on Theory of Computing, pp. 151-158, ACM Press.

Kornhauser, D., Miller, G. L., Spirakis, P. G., 1984. Coor-
dinating Pebble Motion on Graphs, the Diameter of Per-
mutation Groups, and Applications. Proceedings of the
25th Annual Symposium on Foundations of Computer
Science (FOCS 1984), pp. 241-250, IEEE Press.

Ratner, D., Warmuth, M. K., 1986. Finding a Shortest
Solution for the N × N Extension of the 15-PUZZLE Is
Intractable. Proceedings of the 5th National Conference on
Artificial Intelligence (AAAI 1986), pp. 168-172, Morgan
Kaufmann Publishers.

Ryan, M. R. K., 2008. Exploiting Subgraph Structure in
Multi-Robot in Multi-Robot Path Planning. Journal of
Artificial Intelligence Research (JAIR), Volume 31, pp.
497-542, AAAI Press.

Surynek, P., 2009. An Application of Pebble Motion on
Graphs to Abstract Multi-robot Path Planning. Proceed-
ings of the 21st International Conference on Tools with
Artificial Intelligence (ICTAI 2009), pp. 151-158, IEEE
Press.

𝑭 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3)

𝑭= = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥2 ∨ 𝑦1 ∨ 𝑦1

𝚺/𝜼 = (𝐺, 𝑅, 𝑆𝑅
0 , 𝑆𝑅

+)/11

 1 2 3

𝒙 𝟏 𝒙 𝟑 𝒙 𝟐 𝒙 𝟏 𝒙 𝟑 𝒙 𝟐 𝒙 𝟐 𝒚 𝟏 𝒙 𝟐 𝒚 𝟏

𝑽𝑭=

𝒓 𝟏
𝒙𝟐

𝒒 𝟏

𝒍 𝓛
𝒙𝟐 𝒍 𝓡

𝒙𝟐

𝒓 𝟐
𝒙𝟐

1 2 3

𝑺𝑹
+

𝒙 𝟏 𝒙 𝟑 𝒙 𝟐 𝒙 𝟏 𝒙 𝟑 𝒙 𝟐 𝒙 𝟐 𝒚 𝟏 𝒙 𝟐 𝒚 𝟏

𝑽𝑭=

𝒓 𝟏
𝒙𝟐

𝒒 𝟏

𝒍 𝓛
𝒙𝟐 𝒍 𝓛

𝒙𝟐

𝒓 𝟐
𝒙𝟐

1 2 3

𝑺𝑹
𝟎

1263

