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Abstract 
We propose a novel deep web crawling framework based on 
reinforcement learning. The crawler is regarded as an agent 
and deep web database as the environment. The agent 
perceives its current state and submits a selected action 
(query) to the environment according to Q-value. Based on 
the framework we develop an adaptive crawling method. 
Experimental results show that it outperforms the state of art 
methods in crawling capability and breaks through the 
assumption of full-text search implied by existing methods.  

Introduction 
Studies (Lawrence 1998) show deep web content is 
particularly important. Deep web surfacing or crawling 
enables leveraging existing search engine infrastructure 
hence adopted by most of crawlers, such as HiWE 
(Raghavan 2001), Hidden Web crawler (Ntoulas 2005), 

(Madhavan 2008). A 
critical challenge is how a crawler can automatically 
generate promising queries to carry out efficient crawling 
(Madhavan 2008), (Ntoulas 2005), (Barbosa 2005). 
Existing methods relied on an assumption that full-text 
search is provided by deep web databases, leading to that 
estimation techniques for full-text databases e.g. Zipf Law 
can hardly be applied to non full-text databases. We 
present a formal framework based on reinforcement 
learning for deep web crawling. A crawler is regarded as 
an agent and deep web database as the environment. The 
agent perceives its current state and submits an action 
(query) to the environment based on long-term reward. The 
environment responds by giving the agent some  
reward (new records) and changing it into the next state. 

Framework and Algorithm 
The process of deep web crawling is defined as a discrete 
Decision Process  consisting of a set of states , a 
set of actions  and transition probabilities distribution . 
A crawling process follows a specific issue policy 

.  represents the acquired portion of the 
deep web database records at the step .  (  for 
short) denotes a query to the database with keyword , 
causing a transition from  to some successor state  

with probability .  is the collection of all 
records residing in deep web database.  
denotes the collection of records responded by execution of 

 at . , . The portion of new 
records retrieved by executing  at  is . 

. (1) 

Reward function is the reward received at the 
transition from state  to state  by executing action . 

. (2) 
Actions cause a cost , 
where is the cost of issuing an action and is 
proportional to the average time of handling a response 
record. The expectation conditioned on the current state  
and the policy  is called state-value function  of 
state , computed from 

 (3) 

in which  is the step length and is the discount factor.  
is an optimal policy defined as  ( , 

). We write . We can rewrite Q-function as: 

   (4) 

The formal definition of deep web crawling is defined as: 
Problem 1  Find such policy  under 
the constraint  ( ) that 
maximizes the accumulative reward value. 

Let  (  for short) denote number 
of documents containing keyword  in acquired record 
set . Suppose at  , training set  is a set 
of executed actions, . Similarly, candidate set  is 
a set of available action candidates for submission. Each 
action in either  or  is encoded in the same vector 
space. For an action  in , its reward can be estimated as: 

 (5) 

where  is a kernel function used to evaluate the 
distance between the given two actions. Three types of 
features (linguistic, statistical and HTML features) are 
incorporated to establish the feature space. We calculate 
each action s reward and Q-value as follows: 
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Theorem 1 At state , the reward of each action  in  
can be calculated from 

  (6) 

Theorem 2 At state  when  the Q-value of an action 
 ( , ) can be estimated as: 

 (7) 

The adaptive RL crawling algorithm takes the current 
state and last executed action as input and outputs the next 
optimal action. It first calculates the reward of the last 
executed action and then updates the action set through 
Step 2 ~ 7, causing the agent to transit from current state  
to successor state . The training and candidate set are 
updated in accord with the new action set in Step 9. Step 
10 ~ 13 estimates the reward and Q-value for each action 
in candidate set. The action that maximizes Q-value will be 
returned as the next optimal action. 

Algorithm 1: Adaptive RL crawling algorithm 
Input: ,  
Output:   
1:   calculate  s reward following Eq. (6); 
2:   for each document  
3:      for each keyword  in  do 
4:         if action  then ; 
5          else then update TF and DF of action ;  
6:      end for 
7:   end for 
8:   change the current state to ; 
9:   ; ; 
10: for each   
11:    update its reward using Eq. (5) and (6); 
12:    calculate its Q-value using Eq. (7); 
13: end for 
14: return ; 

  Experiments 
To compare our RL method with existing methods, we 
choose the following three methods as the baseline: 
  Random: the reward of an action is assigned to a 
random float i.e.  . 
  Generic Frequency: the reward of an action is 
evaluated by the generic DF of the action at current state, 
i.e. . 
  Zipf: The size of response record set of each action is 
estimated by Zipf-  (Mandelbrot 1982): 

 ,where , and are parameters 
and  is the DF rank of the action. 

It is interesting to note that RL is more general 
compared with the baseline methods. If future reward of an 
action is ignored i.e.  and the reward of an action is 
determined by a presumed distribution, the RL degenerates 
to Zipf, i.e. . Further if the acquired 

portion of an action is ignored too i.e. , the 
RL degenerates to the GF, i.e. . 

To make results more intelligible, we roughly use 
harvest (number of actual retrieved records) and number of 
queries to evaluate the crawling. The experimental results 
of comparing our method with the baseline are displayed in 
Fig. 3, in which the y-axis denotes the number of acquired 
records and the x-axis represents the query number. In 
experiments step length was set to 1. The result shows that 
RL method is more efficient than the baseline methods on 
the experimental websites. 

 
(a) Experiment on Baidu Baike 

 
(b) Experiment on AbeBooks 

Figure 3: Performance Comparisons with baseline methods
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