
 
Materializing Inferred and Uncertain Knowledge in RDF Datasets

James P. McGlothlin, Latifur Khan 
The University of Texas at Dallas 

Richardson, TX, USA 
{jpmcglothlin, lkhan}@utdallas.edu 

 
  

Abstract 
There is a growing need for efficient and scalable semantic 
web queries that handle inference.  There is also a growing 
interest in representing uncertainty in semantic web 
knowledge bases.  In this paper, we present a bit vector 
schema specifically designed for RDF (Resource 
Description Framework) datasets.  We propose a system for 
materializing and storing inferred knowledge using this 
schema.  We show experimental results that demonstrate 
that our solution drastically improves the performance of 
inference queries.  We also propose a solution for 
materializing uncertain information and probabilities using 
multiple bit vectors and thresholds.  

 Introduction   
The RDF data format is the standard mechanism for 
describing and sharing data across the web.   OWL (Web 
Ontology Language) specifies inference rules  which allow 
additional knowledge to be derived from known facts.  The 
goal of our research is to improve the efficiency and 
scalability of queries against this data.  The core strategy of 
our research is to perform inference at the time the data is 
added rather than at query time.   All inferred triples are 
persisted in our relational database.   Queries requiring 
inference become both simpler and more efficient.   
 This would not be a viable solution unless the inferred 
triples can be added and stored without increasing the 
performance cost of queries. We have designed a bit vector 
schema that can store these triples with negligible impact 
to query performance.  Our bit vectors enable joins and 
unions to be performed as bitwise operations, and our 
inference materialization reduces the need for subqueries, 
joins, and unions at  query time.  The end result is that 
query performance is improved.  Our evaluation results 
show that our solution outperforms the current state-of-the-
art solutions for RDF storage and querying. 
 We also present a framework for storing uncertain 
information and probability data.  Every triple is persisted 
including its probability and an explanation of how it was 
inferred.  We define a multiple bit vector schema involving 
thresholds.  This solution materializes uncertain 
information and makes this knowledge available to queries. 
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Bit Vector Schema 
We have designed a bit vector schema, RDFVector, 
specifically for RDF datasets.  We store the RDF triples in 
three bit vector tables: the POTable, the SOTable and the 
PSTable.  Each URI or literal is dictionary-encoded to a 
unique ID number which is the index into the bit vectors. 
As an example, the POTable includes four columns: the 
PropertyID, the SubjectID, the SubjectBitVector and a 
BitCount.  The SubjectBitVector has a 1 for every subject 
that appears with that property and object in a  RDF triple.  
For example, all subjects matching <?s type text> can be 
retrieved from a single tuple and returned as a single bit 
vector, indexed by the ID numbers. The BitCount is used 
to support aggregation queries and query optimization.     
 The  bit vectors are the reason we are able to store 
inferred triples at little or no cost.  There are bits in each 
vector for every known URI, therefore inferring additional 
triples just involves changing 0s to 1s.   In the next section, 
we present an example of such an inference. Our solution 
incurs a performance penalty only when the dataset's 
vocabulary (number of unique URIs) is increased, and 
OWL inference usually adds only a few terms to the 
vocabulary. For our experiments, we utilize the LUBM 
(Lehigh University Benchmark, http://swat.cse.lehigh.edu/ 
projects/lubm/) dataset with >44 million RDF triples.  For 
this dataset, 20,407,385 additional triples are inferred, yet  
only 22 unique URIs are added by this inference.  Our 
schema pays no performance penalty for the addition of 20 
million inferred triples, only for the 22 new URI terms.    
 The bit vectors can become quite large.  We have tested 
with datasets that have over 18 million unique URIs.  We 
use compression to take advantage of the sparse nature of 
the vectors. We utilize  D-Gap 
(http://bmagic.sourceforge.net/dGap.html) compression, an  
algorithm that has the key advantage that it allows bitwise 
operations to be performed against compressed data, thus 
eliminating the need to decompress the vectors. 
 In addition to the bit vectors, we provide a triples table. 
The triples table is the only table exposed to the inference 
rules and all user additions, deletions and updates are 
performed against this table.  The triples table allows us to 
encapsulate our schema and to optimize processes for 
pushing updates across our other tables.  The triples table 
also contains the inference count which is used to support 
deletions of inferred triples.  The triples table is not used 
during queries; it is used  only for manipulating the dataset. 
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Inference 
Consider the triple <Professor0 type FullProfessor>. The 
LUBM ontology will allow us to infer 4 additional triples: 
<Professor0 type Professor>, <Professor0 type Faculty>, 
<Professor0 type Employee>, <Professor0 type Person>.  
Our strategy is to materialize and store all 4 inferred 
triples.  As Professor, Faculty, Employee and Person exist 
elsewhere in the dataset, no new vocabulary is introduced.  
All that is required to add these triples to the bit vector 
tables is to change 0s to 1s in the vectors; the size of the bit 
vectors is not increased.  Now, we can execute a query 
such as List all persons by reading a single bit vector.  To 
query all persons with vertical partitioning (Abadi et al., 
2007) or RDF-3X (Neumann&Weikum,  2008) would 
require 21 subqueries and 20 unions.  
 We provide an inference engine to register and manage 
inference rules.  When a triple is added to the triples table, 
the inference engine iterates through the inference rules 
and allows each rule to add inferred triples.  We have 
implemented inference rules for all OWL constructs.   
 Deletions offer a special challenge for inferred triples. If 
the base triple is deleted, then any  inferred triples should 
be deleted as well.  However, a triple might  be inferred 
from more than one  base  triple.  We solve this problem by 
maintaining an inference count in the triples table, and only 
deleting the inferred triple when the count becomes 0. 

Uncertainty Reasoning 
OWL has provable inference.  All inferred triples are 
known to be true with absolute certainty.  Uncertainty 
reasoning addresses the issue of knowledge that might be 
true.  Our goal is to associate probability numbers with 
facts (RDF triples) in the database.  There is no standard 
for representing probability in an ontology.  Our goal is not 
to restrict the ontology representation.  Therefore, as with 
provable inference, we allow inference rules to register. 
 To support probability, we modify the triples table and 
the bit vector tables.  For the triples table, we add extra 
columns for the probability and an explanation of the 
inference. For the bit vector tables, we add a threshold 
column.   The vectors become bit vectors with 1s for every 
triple known with probability>=threshold.  For vectors 
without probability, the threshold is 1.   Below is an 
example POTable with probabilities and thresholds: 

Property Object Threshold SubjectBitVector Count 

hasDisease LungCancer 1.0 101001010100100000 6 
hasDisease LungCancer 0.75 101101010101100001 9 
hasDisease LungCancer 0.5 111101010101101011 12 
hasDisease LungCancer 0.25 111101110101101011 13 

We can now retrieve all subjects with >0.5 probability of 
having lung cancer by reading a single tuple, and we can 
still use bitwise operations to join vectors.  If a query 
requests a different probability than provided by the 
threshold, we use the bit vectors for efficient selection and 
then we access the triples table for precise comparison.  

 We propagate the probabilities throughout the system 
based on the simple Bayesian logic rule that P(A)= 
P(A|B)*P(B).   We recognize that there can be ambiguities 
when 2 inference rules attempt to add the same triple with 
different probabilities.  Our goal in this framework is not to 
solve such ambiguities.  We support and register exception 
handlers to enable flexibility and to allow existing 
reasoning technologies to be used. Our contribution is that 
once the probabilities are calculated they can be persisted 
and made available for efficient querying. 

Evaluation Results 
Due to space limitations, we only present a summary of 
our results for one dataset (LUBM) for the queries 
involving inference. We compared with RDF-3X and 
vertical partitioning.  All of our experiments here were 
performed on a Dell M6400 laptop with 8GB RAM.   Our 
run times for LUBM (for the 44 million triples dataset) are:  
 Q3 Q5 Q6 Q11 Q13 
Time(sec) 0.15 0.23 0.14 0.24 0.21 
%Improvement 67.4% 98.0% 60.8% 84.7% 81.1% 

The %improvement is in comparison to the next fastest 
solution for that query.  In most cases, this is RDF-3X. 
 LUBM Query 5: List persons who are members of a 
particular department. This query invokes five kinds of 
inference rules.  Since our solution materialized the 
inferred triples, we can just query the POTable.  We 
retrieve the tuples for property=type, object=Person and 
property=memberOf, object=Department0, and execute 
the bit operation and between the bit vectors. We are able 
to perform this query in 0.23 seconds.  RDF-3X requires 
2.88 seconds and vertical partitioning requires 56.28. 

Future Work 
 In the future, we plan to identify or create large 
benchmarks to test our uncertainty solution for scalability 
and efficiency.  We also plan to improve our framework 
for handling ambiguities and to integrate with available 
ontology tools such as BayesOWL and PR-OWL.  
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