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Abstract

In order to better protect and conserve biodiversity, ecolo-
gists use machine learning and statistics to understand how
species respond to their environment and to predict how
they will respond to future climate change, habitat loss and
other threats. A fundamental modeling task is to estimate
the probability that a given species is present in (or uses) a
site, conditional on environmental variables such as precip-
itation and temperature. For a limited number of species,
survey data consisting of both presence and absence records
are available, and can be used to fit a variety of conventional
classification and regression models. For most species, how-
ever, the available data consist only of occurrence records
— locations where the species has been observed. In two
closely-related but separate bodies of ecological literature,
diverse special-purpose models have been developed that
contrast occurrence data with a random sample of avail-
able environmental conditions. The most widespread statis-
tical approaches involve either fitting an exponential model
of species’ conditional probability of presence, or fitting a
naive logistic model in which the random sample of avail-
able conditions is treated as absence data; both approaches
have well-known drawbacks, and do not necessarily produce
valid probabilities. After summarizing existing methods, we
overcome their drawbacks by introducing a new scaled bi-
nomial loss function for estimating an underlying logistic
model of species presence/absence. Like the Expectation-
Maximization approach of Ward et al. and the method of
Steinberg and Cardell, our approach requires an estimate of
population prevalence, Pr(y = 1), since prevalence is not
identifiable from occurrence data alone. In contrast to the
latter two methods, our loss function is straightforward to in-
tegrate into a variety of existing modeling frameworks such
as generalized linear and additive models and boosted re-
gression trees. We also demonstrate that approaches by Lele
and Keim and by Lancaster and Imbens that surmount the
identifiability issue by making parametric data assumptions
do not typically produce valid probability estimates.
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Introduction
We study a modeling task that is central to two related but
largely separate bodies of ecological literature. Ecologists
investigating resource selection by animals seek to charac-
terize those areas within a region of interest that are “used”
by a particular species or individual animals (Manly et al.
2002), while ecologists studying a broad range of sessile or
mobile species wish to predict the suitability of sites for oc-
cupation or persistence of the species (Franklin 2010). In
both cases, the available data frequently consist of a col-
lection of geographic locations with evidence of use by (or
presence of) the species together with data on environmen-
tal covariates in the region of interest, termed available (or
background) data. The most desirable output is the probabil-
ity of use (resp., probability of presence) conditional on en-
vironmental covariates; the shape of the response to the co-
variates is also important for understanding how the species
relates to its environment. Methods for estimating probabil-
ity of use/presence and related indices are important – they
have been used extensively for a variety of applications in
ecology and conservation, and according to Google Scholar,
a seminal resource selection text (Manly et al. 2002) has
been cited 1237 times while an influential SDM paper (Elith
et al. 2006) has received 970 citations.

While there is shared agonizing over data and model
interpretation in the two bodies of ecological research —
what defines “presence” rather than a transitory or chance
visit, how to determine absolute “absence”, what defines the
background area from which the species is selecting sites,
what ecological insight can be derived from model outputs
(Lele and Keim 2006; Pulliam 2000; Desrochers et al. 2010;
Johnson et al. 2006; Franklin 2010) — we focus here on the
underlying statistical questions rather than ecological inter-
pretation. In particular, we study maximum-likelihood lo-
gistic models of probability of presence and introduce a new
method for estimating such models. For brevity, we will use
only the “presence–background” terminology from here on.

In practice, exponential models are most often used, fitted
using logistic regression (Manly et al. 2002) or maximum
entropy (Phillips, Anderson, and Schapire 2006), in both
cases providing a maximum-likelihood estimate of relative
probability of presence. Exponential models have the draw-
back of being unbounded above, so that when estimates are
scaled to estimate true (rather than relative) probability of
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presence, estimates greater than 1 may be obtained (Keat-
ing and Cherry 2004; Ward et al. 2009). Therefore, logis-
tic models are preferable simply for giving values bounded
by [0, 1]. Maxent estimates are typically rescaled to remain
within [0, 1] (Phillips and Dudı́k 2008), but the result is
no longer a maximum likelihood model. “Naive” logistic
models are sometimes simply fitted to presence-background
data, treating the background as if it were absence (Fer-
rier et al. 2002; Elith et al. 2006), but the resulting models
are not proportional to probability of presence (Phillips et
al. 2009). (They are monotonically related, which is suffi-
cient for some applications, such as when model outputs are
thresholded to yield binary values rather than probabilities.)

Existing maximum-likelihood logistic methods include
those of Steinberg and Cardell (1992), Lancaster and Im-
bens (1996), Lele and Keim (2006) and Ward et al. (2009),
which we will refer to as the SC, LI, LK and EM models
respectively. The first was brought to our attention during
review of this paper; it appears to be untested in ecology so
here we explain it and note its equivalence to a maximum
entropy formulation. The second and third are given some
attention here, because they are used by ecologists. They
depend on a parametric assumption to make model param-
eters identifiable, and we demonstrate with a simple exam-
ple that deviation from the assumption results in very poorly
calibrated models. The EM method uses the Expectation-
Maximization algorithm to impute presence/absence in the
background data, and takes population prevalence, Pr(y =
1), as an additional parameter. This method is theoretically
attractive and can be combined with a variety of model fit-
ting methods, but has not seen significant ecological use as it
requires specialized software and there is no generally avail-
able implementation. The SC method has been described
only for parametric models; it takes prevalence as an input
to avoid the strong assumption of LI and LK.

Our main contribution is to introduce a new scaled bino-
mial loss function for presence-background data and demon-
strate that it is easily expressed as a link function for gener-
alized linear and additive models (GLM and GAM) or op-
timized by existing boosted regression tree (BRT) software,
in order to give maximum likelihood logistic models of pres-
ence/absence. Our loss function is related to that of the LI
model; the primary point of departure is that we take the
population prevalence as a supplied parameter, thus avoid-
ing unrealistic parametric assumptions about the data. We
present experiments that suggest that our approach is at least
as effective a solution as the EM and SC methods, and we
argue that our loss function is simple to integrate with a va-
riety of established model fitting methods.

Derivation of scaled binomial loss
Let L be the landscape of interest, and L1 the subset of L
where the species is present. Let U be a set of presence
samples drawn from L1 and B a set of background sam-
ples drawn from L. Following Phillips et al. (2009), we for-
malize a sampling model for presence-background data that
simplifies the analysis. Let fp be the fraction of presence
samples in the training data, i.e., fp = np/(np + nb) where
np = |U | and nb = |B|. We regard the data as having been

generated by the following process: each sample is drawn
uniformly from L1 with probability fp (a presence sample)
and uniformly from L with the remaining probability (1−fp)
yielding a background sample. We use the symbol PUA to de-
scribe probabilities under this sampling model, and reserve
the symbol Pr to refer to probabilities over L. We use s to
represent sampling stratum, with s = 1 for presence samples
and s = 0 for background samples. We refer to Pr(y = 1)
as the population prevalence, or simply prevalence.

When a statistical model is applied to presence-
background data by treating the background data as absence
(a “naive” model) it produces an estimate of PUA(s = 1|x),
the probability that a sample is a presence sample given en-
vironmental conditions x. While this is not the same as
conditional probability of presence of the species, Pr(y =
1|x), the two probabilities are related by a simple formula
(Phillips et al. 2009; see also Keating and Cherry 2004; Lan-
caster and Imbens 1996; Ward et al. 2009). If we define

r =
(1− fp)

fp
Pr(y = 1) (1)

then

PUA(s = 1|x) = 1

1 + r/Pr(y = 1|x) . (2)

We can transform a naive model into a model of Pr(y =
1|x) by simply inverting Eqn. 2:

Pr(y = 1|x) = rPUA(s = 1|x)
1− PUA(s = 1|x) (3)

In other words, Pr(y = 1|x) is r times the odds of
PUA(s = 1|x). This is why exponential models are widely
used in resource selection studies: the odds of a logistic
model (1/(1 + e−η(x))) are exponential (eη(x)). That is,
a naive logistic model for presence-background data yields
an exponential model of probability of presence.

Lancaster and Imbens (1996) took a different approach:
they specified a logistic model of Pr(y = 1|x), i.e.,

Pr(y = 1|x) = 1

1 + exp(−η(x)) (4)

and they assumed the response η(x) = β · x is a linear
function of the environmental predictors. Substituting into
Eqn. 2, we obtain

PUA(s = 1|x) = c

1 + exp(−η′(x)) . (5)

where c = 1/(1 + r) and

η′(x) = η(x)− ln(r/(1 + r)). (6)

We can therefore obtain η by fitting η′ (in Eqn. 2) and
then offsetting it by ln(r/(1 + r)). The model in Eqn. 5 is
not quite a logistic model, because of the scaling parameter
c. Lancaster and Imbens (1996) proposed a maximum like-
lihood method for estimating prevalence (and hence c) and
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scaledlogit <- function(c)
{
linkfun <- function(mu) qlogis(mu/c)
linkinv <- function(eta) c*plogis(eta)
mu.eta <- function(eta) c*.Call("logit_mu_eta",

eta, PACKAGE = "stats")
valideta <- function(eta) TRUE
validmu <- function(mu) all(mu>0) && all(mu<c)
link <- paste("scaledlogit(", c, ")", sep="")
structure(list(
linkfun=linkfun, linkinv=linkinv, mu.eta=mu.eta,
valideta=valideta, name=link), class="link-glm")

}

c <- 1/(1+prevalence)
glm(s ˜ x,
family=binomial(link=scaledlogit(c)),
weights=ifelse(s==1,1,sum(s==1)/sum(s==0))
start=c(0,0))

Figure 1: R code to fit a univariate model to PUA(s = 1|x)
with scaled binomial loss. Predicted values of PUA(s = 1|x)
or its logit can be converted to logistic estimates of Pr(y =
1|x) using Eqn. 3 or Eqn. 6. Sample weights equalize the
total weight of presence and background data, so r equals
the (supplied) estimate of the species’ prevalence in Eqn.1.

the parameters of η′. 1 However, the population prevalence
Pr(y = 1) is not identifiable in practice from presence-
background data (Ward et al. 2009) – it is only identifiable
under the assumption that the logit of the true probability
of presence is exactly linear in the predictors. Ward et al.
(2009) strongly advise against making such an unrealistic
assumption – after all, linearity is always at best an approxi-
mation to the complexity of natural phenomena (further, as-
suming an approximately linear response is often not justi-
fied ecologically; Austin 2002).

We therefore assume that an estimate of population preva-
lence is provided as an input. The estimate could derive from
limited presence-absence surveys or from expert opinion,
and sensitivity to the estimate can be explored by running
multiple models. With the parameter c now given, Eqn. 5
describes a link function which can be used in GLMs or
GAMs. There is widely-available software for fitting such
models, and in particular, the glm method and the gam
package in R allow specification of the link function (Fig. 1).
Eqn. 5 similarly defines a loss function — “scaled binomial
loss” — that can be minimized with BRT methods, includ-
ing gbm (Friedman 2001) which has been recognized as a
powerful method for modeling species distributions (Elith
et al. 2006; Elith, Leathwick, and Hastie 2008). We de-
fined a scaled logit link family (similar to Fig. 1) for the
mboost R package which has a generic link family mecha-
nism (Bühlmann and Hothorn 2007). We also implemented

1Lancaster and Imbens (1996) also describe an approach for es-
timating the linear predictor η if the prevalence is known, based on
the generalized method of moments. The approach is difficult and
has not been applied in ecology due to lack of available software.
In this paper we use “LI” only to refer to the maximum likelihood
approach of Lancaster and Imbens (1996) for estimating parame-
ters when the prevalence is unknown.

a scaled binomial loss function in C++ to add to the most
widely-used implementation of BRT, the gbm package for
R (Ridgeway 2007). This package uses hard-coded loss
functions so that terminal node estimates can be custom-
designed for each error distribution. For our scaled binomial
loss implementation, we used the weighted average gradient
of loss for terminal node estimates, forgoing the single step
of Newton-Raphson used for Bernoulli loss in gbm, as the
latter might diverge as scaled binomial loss is not convex.

Summary of existing methods
We present the LI method above. The LK method
defines the log likelihood of the presence samples as∑

x∈U ln Pr(x|y = 1;β). Applying Bayes’ rule and drop-
ping terms that do not depend on β yields:

∑

x∈U
ln Pr(y = 1|x;β)− |U | ln Pr(y = 1;β) (7)

An empirical estimate of the second term is given by

|U |
|B|

∑

x∈B
Pr(y = 1|x;β). (8)

Standard numerical optimization techniques (Lele and
Keim 2006) or more involved optimization methods (Lele
2009) are used to maximize Eqn. 7 and hence obtain a max-
imum likelihood estimate of β. The parameters are identifi-
able only under the parametric assumption described above.

The SC method breaks the log likelihood of the entire
landscape L given parameters β into terms that depend ei-
ther on L1 or all of L. These terms can then be empiri-
cally estimated using the samples U and B (as in Eqn. 8).
Combining terms (using an estimate of prevalence) yields a
pseudo-likelihood that approximates the log likelihood of L:

∑

x∈B
− ln(1 + exp(η(x))) + p |B| η(μ) (9)

where p is the given prevalence and μ is the vector of
means of predictors over U . Eqn. 9 can be maximized using
standard numerical optimization techniques. An alternative
derivation of this pseudo-likelihood can be obtained using
a maximum-entropy based approach called “class-robust lo-
gistic regression” (Dudı́k and Phillips 2008), replacing the
class-robustness by the constraint that modeled prevalence
on B should equal p. The SC method has the advantage
of being the only one (out of those considered here) with a
convex loss function.

EM is a general-purpose algorithm for estimating missing
data (Dempster, Laird, and Rubin 1977). For the current
application, the missing data is the value of y for background
samples. EM repeatedly fits a model (e.g., a GLM, GAM
or BRT) using the current estimates of the missing data (a
“Maximization” step), then uses that model to update the
estimates of the missing data (an “Expectation” step). This
iterative process is repeated until convergence, and can be
very slow for complex fitting procedures (e.g. BRT).
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Comparison with existing methods
First we explore the implication of the parametric assump-
tion in both LI and LK. We generated models for a simple
simulated species (Fig. 2) for which the logit of Pr(y = 1|x)
is not exactly linear in x. A logistic model that assumes a
linear logit therefore cannot be a perfect estimate of Pr(y =
1|x), but despite this, we could hope to get a reasonable es-
timate. Any practical method for modeling Pr(y = 1|x)
needs to be robust enough to deal with the likely range of
species-environment relationships, and this simulation falls
within that range. We present results primarily for the LI
method (Fig. 2 a to c); results were very similar for LK
(Fig. 2 d). Model predictions varied wildly between simula-
tions and were unsuccessful at estimating true probability of
presence (Fig. 2 a). Furthermore, although the methods are
guaranteed to converge to the maximum-likelihood model
parameters given enough data, 1000 presence samples and
10000 background samples were not sufficient (Fig. 2 c,d).
These results support previous findings (Ward et al. 2009)
that LI parameter estimates are highly variable, especially
when true probabilities deviate from the assumed parametric
form. In contrast, combining GLM with either scaled bino-
mial loss or EM gave a close approximation of true proba-
bility of presence (Fig. 2 a), with minimal variation between
simulations.

The LI and LK methods do yield accurate resource selec-
tion functions (RSF; Manly et al. 2002), i.e., the modeled
response is approximately proportional to true probability
of presence (Fig. 2 b). They do not yield resource selection
probability functions (RSPF) – i.e., correct probabilities –
since the constant of proportionality is not close to 1.

In our second experiment, we applied a GLM with scaled
binomial loss (Fig. 1) to data generated from a bivariate lo-
gistic model, with details of the experiment matching those
of Ward et al. (2009) to allow comparison of results. Pa-
rameter estimates using scaled binomial loss were approx-
imately unbiased, unlike for naive models (Fig. 4). Vari-
ance of the parameter estimates increased with higher preva-
lence, and appears comparable to those obtained by Ward et
al. (2009; Fig. 3). Because these artificial data have linear
logit, the LK method also produced approximately unbiased
parameter estimates, but with higher variance. In contrast to
the LK method though, scaled binomial loss is also valid in
the general case that the data are not exactly parametric —
for example, it gives a good approximation to the simulated
distribution of Fig. 2 (green line).

For our third experiment (Fig. 3), we used the same test
data as for Fig. 4 and fit both naive models and models
with scaled binomial loss using two implementations of
BRT, gbm (Ridgeway 2007) and mboost (Bühlmann and
Hothorn 2007). GAMs with scaled binomial loss were also
included. The naive models all under-estimated the slope of
the response to the predictor variables (Fig. 3 bottom), and
this bias was essentially corrected by use of scaled binomial
loss (Fig. 3 top). The GAM and gbm models were broadly
similar, though mboost exhibited more bias in naive simu-
lations and greater variance and some residual bias in simu-
lations with scaled binomial loss.

Finally, a comparison over four synthetic distributions

Figure 2: LI (Lancaster and Imbens 1996) and LK (Lele
and Keim 2006) models from simulated data with Pr(y =
1|x) = 8/(1 + exp(4 − 2x)) (black line), with np = 1000
and nb = 10000 and x uniform in [0, 1]. Models were fit
for 100 simulations using the nlm function in R. (a): 100
LI models (grey), and the maximum likelihood estimate that
LI would produce given unlimited data (Pr(y = 1|x) =
1/(1+ exp(4− 2x)), dashed red line). Scaled binomial loss
(green) and EM (orange) models are shown for comparison
(only one simulation shown, others were similar). (b): LI
models after rescaling so that predictions at x = 1 match the
true probability of presence. (c): LI fitted parameters β0 and
β1 (black) and true parameter values (red). (d): LK fitted
parameters.
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Figure 3: Naive and scaled binomial loss gam, gbm and mboost models of simple test data. Partial response curves are shown
for the truth (dashed red line) and for 100 simulations for gbm (grey), mboost (green) and gam (blue). Data were drawn from
the model η = α+β1precip+β2temp, where α = −0.69, β1 = 1 and β2 = −2, precip and temp were standard normals giving
prevalence = 0.4, and np = 300 and nb = 1000. All gbm and mboost models were fitted with 10000 stumps (single-node
trees). Top: models with scaled binomial loss. Bottom: naive models.

Figure 4: Parameter estimates for logistic models using
presence-background data. Estimates are shown for 100
simulations generated from the model η = α + β1precip +
β2temp, where β1 = 1 and β2 = −2, precip and temp are
standard normals, np = 300 and nb = 1000, and α is set to
give prevalence of 0.1 (top) or 0.4 (bottom).

(Table 1) showed that the scaled binomial loss, EM, and SC
methods all produced good estimates of probability of pres-
ence, as measured by RMS error (Table 1), while LI and LK
had poor performance. Errors in prevalence estimates of ±
10% increased RMSE equally for scaled loss and EM, but
RMSE remained lower than for LI and LK in each case.

Conclusion
We surveyed existing methods for logistic modelling of
species’ probability of presence (or probability of use) from
presence-only (or use-availability) data. Some methods use
a strong parametric assumption to make model parameters
(in particular, population prevalence) identifiable; based on
our experiments and those of Ward et al. (2009), we strongly
recommend against relying on this assumption. Instead, we
recommend using an estimate of population prevalence.

We introduced a new loss function, scaled binomial loss,
which can easily be used as a link function in generalized
linear and generalized additive models or incorporated in es-
tablished model-fitting methods such as boosted regression
trees. As with the EM method of Ward et al. (2009) and the
method of Steinberg and Cardell (1992), our method takes
an estimate of population prevalence as input. We argue that
our loss function is easier to integrate with the variety of
existing model-fitting methods than either of these existing
methods. Our experiments on simulated data suggest that all
three can have good performance, and we feel that all three
warrant further investigation for the analysis of presence-
background / use-availability data in ecology.
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Truth Scaled logit EM SC Scaled logit + EM + Scaled logit - EM - LI LK
(x+y)/2 0.048 0.047 0.054 0.075 0.073 0.066 0.067 0.228 0.234
1/(1 + e3(x+y−1)) 0.047 0.045 0.052 0.071 0.069 0.066 0.066 0.165 0.165
8/(1 + e4−2x) 0.064 0.063 0.063 0.077 0.076 0.080 0.079 0.332 0.343
1/(1 + e4−2x) 0.0062 0.0061 0.0061 0.0095 0.0093 0.0084 0.0083 0.1880 0.1852

Table 1: Root mean square (RMS) error of logistic models fitted to synthetic species distributions, each of which is a function
of variables x and y uniform in [0, 1], with np = 200 and nb = 600. Results shown are the mean of 100 simulations. Models
with “+” were given prevalence estimates 10% higher than truth, while “-” indicates 10% lower. Scaled logit and EM use GLM
for model fitting; others use the nlm function in R. The synthetic responses are: (1) linear; (2) logistic with linear logit, with
probabilities covering the full range from 0 to 1; (3) same as black line in Figure 2 a; (4) same as dashed red line in Figure 2 a.
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