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Abstract

The aim of a modern Building Automation System
(BAS) is to enhance interactive control strategies for
energy efficiency and user comfort. In this context, we
develop a novel control algorithm that uses a stochas-
tic building occupancy model to improve mean energy
efficiency while minimizing expected discomfort. We
compare by simulation our Stochastic Model Predictive
Control (SMPC) strategy to the standard heating control
method to empirically demonstrate a 4.3% reduction in
energy use and 38.3% reduction in expected discomfort.

Introduction

The industrial and residential building sectors consume
around 40% of total energy use in industrial societies, and
account for nearly one-third of greenhouse gas emissions.
Of that, approximately one-third can be attributed to the
Heating, Ventilation and Air-Conditioning (HVAC) systems.
There is now a significant effort being devoted to reducing
these energy costs. Many buildings incorporate a Building
Management System (BMS) to maintain a comfortable envi-
ronment in an energy-efficient manner. A key task of HVAC
control is to minimize occupant discomfort due to inap-
propriate indoor temperature and humidity. A typical BMS
would provide a core functionality that keeps the building’s
climate within a specified range, automates the lighting and
HVAC based on fixed schedules, and monitors system per-
formance and device failures. There are many sources of
energy inefficiency in BMSs, some of which arise due to
the use of simple control algorithms (e.g., On/Off, P or PI
controllers). One main inefficiency is the widespread use of
schedule-based control, where buildings will be heated to
20oC during office hours, regardless of the actual occupancy
of the building.

An intuitive approach to obtaining a desired temperature
when it is needed is to anticipate the requirement and turn
on the heating system in advance. This raises the follow-
ing questions: (a) what is the optimal moment to trigger the
system, and (b) what is the required actuation to reach the
temperature reference? The optimal period of preheating can
vary between minutes and several hours, depending on the
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outdoor temperature, the desired internal temperature, and
the building physics. This is further complicated by uncer-
tainty in the time at which the temperature is required. In this
paper we introduce a more sophisticated HVAC control ap-
proach that incorporates a Model-Predictive Control (MPC)
algorithm augmented with stochastic occupancy informa-
tion, which we assume is provided by a separate building in-
formation model. We compare this algorithm with a standard
schedule-based controller, and show that it decreases user
discomfort by an average of 38.3% while decreasing energy
usage by 4.3%. MPC (Garcia, Prett, and Morari 1989) is a
control algorithm that computes the current control action
by solving, at each sampling instant, a finite-horizon open-
loop optimal control problem, using the current state of the
plant as the initial state. The optimization process generates
an optimal control sequence, the first control value of which
is applied to the plant.

Our contributions are as follows:

− we formulate a building HVAC control system as an opti-
mal control problem where we minimize energy use and
expected user discomfort, using occupancy predictions as
inputs for control;

− we empirically compare a baseline approach of schedule-
based control to solving the optimal control problem us-
ing fixed schedule MPC and stochastic MPC;

− we show empirically that our MPC approach improves
user comfort by an average of 38.3% while decreasing
energy usage by 4.3%.

Related Work

BMSs typically incorporate simple control mechanisms in
practical applications (Chandan, Mishra, and Alleyne 2010;
Kolokotsa et al. 2009). We study the use of MPC in such ap-
plications. There have been a few approaches that have used
MPC for building systems, such as (Oldewurtel et al. 2010;
Morosan et al. 2010; Chandan, Mishra, and Alleyne 2010;
Siroky et al. 2011). The novelty of our approach in compar-
ison to this prior work is that we incorporate stochastic oc-
cupancy models within the control loop, whereas prior work
assumes fixed deterministic schedules.

The concept of predicting occupant movements to help
improve building efficiency is now being addressed. Hoes et
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al. (2009) demonstrate that human activities can have a sig-
nificant effect on efficiency, particularly in passive buildings,
although this work is focused on the design stage rather than
on control. Dodier et al. (2006) consider Bayesian Networks
for predicting occupant behaviour based on sensor data. Per-
haps the most comprehensive model is by (Page et al. 2008),
based on Markov chains, with added features to account for
divergences from normal behaviour. However, few of these
papers consider the link back to active control systems, nor
demonstrate the tradeoff between increased energy savings
and enhanced occupant comfort.

Application Domain

HVAC systems provide a specified ambient environment
for occupants with comfortable temperature, humidity, etc.
Several control strategies have been introduced to control
the temperature regulation, where an operating scheduling is
pre-defined. In this context, standard PI control algorithms
are adequate for the control of HVAC processes (Dounis
and Caraiscos 2009), so it is considered as one of our base-
line control algorithms. In addition to the PI-Controller, we
have considered an MPC controller that uses a fixed operat-
ing scheduler as an additional baseline in order to show the
impact of integrating the stochastic occupancy model.

In our approach, we integrate a heating controller with
a stochastic building occupancy model that uses predicted
occupant profiles for improving HVAC control. Fig. 1 com-
pares the room temperature generated from three controllers,
which use PI, MPC and stochastic MPC (SMPC) algorithms,
given a room that is occupied between 0800 and 1200 and
again between 1300 and 1700, and is empty between 1200
and 1300. The figure shows that the PI approach overshoots
the 20o C setpoint S, and fails to converge totally; the MPC
algorithm reaches an equilibrium near S quickly, but does
not account for the absence of the occupant; the SMPC al-
gorithm reaches equilibrium quickly, but also can save en-
ergy by reducing the room temperature when the occupant
is absent for lunch. This plot shows the potential for the
SMPC approach to save energy relative to the other algo-
rithms through its fast convergence and energy savings dur-
ing periods of no occupancy.

We describe in this section the evaluation metrics for the
control effectiveness and the design specifications for the
model used to evaluate the developed controller.

Performance Metrics

We regulate the temperature (for maintaining thermal
comfort) with respect to two performance metrics: energy
consumption and user discomfort.

− The energy consumed for indoor heating, in kWh:

ME =

kf∑
k=ks

u(k)PwrmaxTs (1)

Where Pwrmax is the maximum power consumed by
the actuator, u(k) is the actuation variable at time-step
k (where k varies from ks to kf ), and Ts is the sampling
period.
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Figure 1: Comparison of PI, MPC and SMPC algorithms in
controlling a room to a setpoint of 20o C

− The expected discomfort metric penalizes the difference
between the measured indoor air temperature y(k) and
the reference temperature r(k) weighted by the probabil-
ity p(k) of occupancy. We use the weighted Mean Square
Error (wMSE) to reflect the indoor temperature variation
around the reference temperature in oC2:

MC =

kf∑
k=ks

(y(k)− r(k))2

kf
p(k) (2)

Design Specification

In order to demonstrate our control approach, we have
modelled a single room that contains two main groups of
components, as shown in Fig. 2: (a) environment compo-
nents reflect the plant physics (e.g., walls, windows); (b)
control components show the control/sensing algorithm that
used to modify/monitor the environment. Hybrid Systems
(HS) (Henzinger 1996) are used to create our model, where
both discrete (e.g. presence detection) and continuous (e.g.
heat dissipation) dynamics are represented. Here, the contin-
uous dynamic is represented using differential-equation and
hence the Linear Hybrid Automata (LHA) become a suitable
HS candidate for this model.

Environment Models Three variables are identified to
evaluate the model behaviour: external temperature Te, set-
point temperature Tsp, and consistency parameter h. More-
over, four environment components have been used; Wall,
Window, Radiator and Indoor Air model as follows (for
more details, we refer the reader to (Mady, Boubekeur, and
Provan 2009)):

1. Wall Model: One of the room walls is facing the building
façade, which implies heat exchanges between the out-
door and indoor environments. In general, a wall can be
modelled using several layers, where greater fidelity is
obtained with increased layers in the wall model. In our
case, four layers have been considered to reflect sufficient
fidelity (Yu and van Paassen 2004), using the following
differential equation; Eq. 3:

ρwallVwallcwall
dTwall

dt
= αwallAwall(Te − Twall) (3)
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Figure 2: Single Room Model

Where, ρwall is wall density [kg/m3], Vwall is wall geo-
metric volume [m3], cwall is water specific heat capacity
[J/kg.K], Twall is wall temperature [oC], αwall is wall
thermal conductance [W/(m2.K)], Awall is wall geomet-
ric area [m2] and Te is outdoor temperature [oC].

2. Radiator Model: The radiator model uses the temperature
difference between the water-in and water-out in order to
heat the room. In this case, the temperature is controlled
through the radiator water flow using the valve occlusion
(called actuation variable u). Moreover the radiator ex-
changes temperature with its environment. Here we as-
sume that the radiator is fixed on a wall that does not ex-
change temperature and hence it has negligible effect on
the radiator, therefore the indoor air is the only effective
component on the radiator as shown in equations: Eq. 4
and Eq. 5.

Mwtrcwtr
dTrad

dt
= m.

wtrcwtr(Twtrin − Twtrout)−Q (4)

Q = Qair = αairArad(Trad − Tair) (5)

Where, Mwtr is water mass [kg] and m.
wtr is water mass

flow rate throw the radiator valve [kg/s].
3. Indoor Air Model: In order to model the indoor tempera-

ture Tair propagation, all HVAC components have to be
considered as they exchange heat with the air inside the
controlled room following equations 6 through 9.

ρairVaircair
dTair

dt
= Qair +Qwall +Qwindow (6)

Qwall = αairAwall(Twall − Tair) (7)
Qair = αairAradiator(Tradiator − Tair) (8)

Qwindow = αairAwindow(Twindow − Tair) (9)

4. Window Model: A window has been modelled to calculate
the effects of glass on the indoor environment. Since the
glass capacity is very small, the window has been mod-
elled as an algebraic equation, Eq. 10, that calculates the
heat transfer at the window node.
αair(Te − Twindow) + αair(Tair − Twindow) = 0 (10)

Occupancy Model The occupancy model assumes that
the probability of occupancy at any given time slot is con-
ditional on the state of the occupant in the previous time
slot. This probability will be different for different times of
day, to model arrival, departure, lunch breaks, etc.. This sug-
gests a time-inhomogeneous markov chain over two states
{in, out}. However, we assume the occupant’s behaviour is
more subtle. Most days, the occupant will conform to a stan-
dard pattern with high probability. But occasionally the stan-
dard pattern is broken, due to visitors, meetings or external
events. Averaging over all of those cases, we have a different
probability of occupancy, closer to 0.5, but still conditional
on the previous occupancy value. We therefore introduce n
consistency states {1,2,..., n}, representing an estimate of
how closely the behaviour is conforming to the standard pat-
tern. This gives a total of 2n states for the markov chain.
There are (kf - ks) time slots. For each time slot k, we have
a vector Pk of 2n probabilities that the occupant is in or out
in a particular consistency state. The probability of the oc-
cupant being in at time k , as used by the controller, is

p(k) = P (Ok = in) =
n∑

i=1

P (Xk = (in, i)) (11)

We have a 2n×2n matrix Mk, representing the transition
probabilities from time k to k + 1, where each element is of
the form P (Xk+1 = (occ, c)|Xk = (occ′, c′)). P0 is a fixed
vector of probabilities for the initial occupancy and consis-
tency states. The Markov chain is defined by the relations
Pk+1 = Pk ∗Mk. At any time k, if we are given a definite
occupancy value and consistency value h, we revise the ma-
trix Pk so that that entry is set to 1, and then we revise our
computation of Pk+1. To simulate an occupancy sequence
for a single day, we generate one sample from the Markov
chain. We first sample from P0, send it to the controller, and
obtain a value for X0. We then update P1, send it to the
controller, sample it, and obtain a value for X1, and so on.
The transition probabilities are set so that high initial values
of the consistency parameter tend to produce an initial set
of probabilities which are close to 1.0 or to 0.0, which rep-
resents a prediction with little uncertainty, while low initial
values produce a set of probabilities which are close to 0.5,
and thus indicate close to random behaviour.

Control Model A temperature sensor and SMPC are used
to monitor and control the environment model. The temper-
ature sensor samples the indoor temperature (Ts=1 min) and
sends the sampled value to the controller. The SMPC re-
ceives the sampled temperature and the occupancy proba-
bility p(k) generated from the occupancy model. Assuming
that predicted input, and a control horizon no greater than an
hour, the control model can use expected occupancy proba-
bilities for the next hour, as computed from the current oc-
cupancy data.

Control Algorithm

For a given reference signal r(k) at sample time k and
within a prediction horizon Np, the objective of the pre-
dictive control system J is to minimize the energy con-
sumption and to bring the predicted output Y = [y(k +
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1|k) . . . y(k + Np|k)]T as close as possible to the refer-
ence signal Rs, where we assume that the reference sig-
nal remains constant in the optimization window, such that
RT

s = [11 . . . 1]r(k), where [11 . . . 1] is a 1 × Np identity
vector. Our objective is to find the “best” actuation vector
ΔU = [Δu(k) . . .Δu(k +Nc − 1)]T that minimizes J .

The cost function J reflects the control objective de-
scribed in Eq. 12, where the first term is linked to the objec-
tive of minimizing the errors between the predicted output
and the reference signal based on the occupancy probabil-
ity P = [p(k + 1) . . . p(k + Np)]. The second term reflects
the power used at each sample time started from (k + 1) to
(k + Nc), where Nc is the control horizon. Finally, the last
term considers dampening the actuation ΔU . R is a diagonal
matrix with the form R = rwINc×Nc , where rw is used as
a tuning parameter for the desired closed-loop performance.
Limiting ΔU is standard in many control applications that
because the true dynamics contain inherent non-linearities
that are not expressed in the dynamics, however it is not re-
flected in the metrics as it is a secondary-goal.

J = P (Rs − Y )T (Rs − Y )

+(u(k) + ΔU)T (u(k) + ΔU)

+RΔUTΔU (12)

The system model for the heating process can be de-
scribed by a linear model, represented in a discrete state
space as in Eq. 13 and Eq. 14:

xm(k + 1) = Amxm(k) +Bmu(k) (13)
y(k) = Cmxm(k), (14)

where u ∈ R is the actuation variable (valve actuation),
y ∈ R is the process output (sampled indoor temperature),
and xm ∈ R

n×1 is the state variable.
Due to the principle of receding horizon control, where a

current information of the plant is required for prediction
and control, we have assumed that the input u(k) cannot
affect the output y(k) at the same time.

We denote the difference of the state variable by Δxm(k+
1) = xm(k+1)−xm(k) and the difference of the actuation
variable by Δu(k) = u(k)− u(k − 1), therefore:

x(k+1)︷ ︸︸ ︷[
Δxm(k + 1)
y(k + 1)

]
=

A︷ ︸︸ ︷[
Am oTm

CmAm 1

] x(k)︷ ︸︸ ︷[
Δxm(k)
y(k)

]

+

B︷ ︸︸ ︷[
Bm

CmBm

]
Δu(k) (15)

y(k) =

C︷ ︸︸ ︷
[om 1]

[
Δxm(k)
y(k)

]
(16)

where om =

n︷ ︸︸ ︷
[00 . . . 0] and the triplet (A,B,C) is called

the augmented model.
Therefore, a compact matrix form can be concluded from

Eq. 15 and Eq. 16 as:

Y = Fx(k) + ΦΔU (17)

Where, F =

⎡
⎢⎢⎣

CA
CA2

...
CANp

⎤
⎥⎥⎦ ;

Φ =

⎡
⎢⎢⎣

CB 0 0 · · · 0
CAB CB 0 · · · 0

...
...

...
. . .

...
CANp−1B CANp−2B CANp−3B · · · CANp−NcB

⎤
⎥⎥⎦

In order to evaluate the optimal ΔU that minimizes J ,
using Eq. 17, J is expressed as in Eq. 18.

J = P (Rs − Fx(k))T (Rs − Fx(k)) + u2(k)

−2ΔUT (PΦT (Rs − Fx(k))− u(k))

+ΔUTΔU(PΦTΦ+R+ 1) (18)

We have used quadratic programming to optimize the ob-
jective function J , constraining ΔU to the interval ΔU ∈
[ΔUmax,ΔUmin], where ΔUmax and ΔUmin are the max-
imum and minimum ΔU variation, respectively.

Experimental Design

In our experimental design, we vary external temperature
Te, set-point temperature Tsp and consistency parameter h
to evaluate the control efficiency, as measured using the ME

and MC metrics. These experiments consider the cross prod-
uct space Te×Tsp×h, where some constraints are identified
for the variables’ search space to eliminate the physically
unrealizable solutions. We consider two baseline models that
use schedule-based strategies: (a) a PI-Controller is selected
to show the improvement compared to a standard heating
controller, and (b) MPC is used to show the improvement
possible from integrating occupancy models. Note that the
baseline algorithms need only the control variables Te and
Tsp. As an example, if we have input triple (10, 23, 0) we
will measure outputs ME = 90 and MC = 5.

Prior to running experiments, we tune the control pa-
rameters (Np,Nc,rw) in order to evaluate the “best” oper-
ating points (based on ME , MC) for the proposed con-
trol algorithm, where Np and Nc are measured in min-
utes. Therefore, a schedule-base MPC algorithm has been
considered with typical values for Te=10 and Tsp=23. The
search space for each parameter is identified as following:
Np ∈ {5, 10, . . . , 60}, Nc ∈ {5, 10, . . . , 60}, and rw ∈
{0.1, 0.2, . . . , 0.5}, where Np ≥ Nc.

Using a pareto-frontier technique (Zitzler and Thiele
1998), we identify a set Pf of preferred operating points,
where each P ∈ Pf has lower energy consumption than all
other points with a similar expected discomfort level. In or-
der to select one operating point among the pareto points,
we have assumed an expected discomfort tolerance equal
to 1 oC2. Using this constraint, we identify the point with
minimum energy consumption as the “best” operating point
(Np = 45, Nc = 30, rw = 0.1).

Experimental Results

Our main aim is to examine the tradeoff between energy
use and expected occupant discomfort. We vary Te, Tsp and
h as follows: Te ∈ {5, 10, 15, 20}, Tsp ∈ {18, 20, 23} and
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h ∈ {−0.2,−0.1, . . . , 0.2}, where Te < Tsp, |Te − Tsp| ≤
Tmax and Tmax is the maximum allowable temperature dif-
ference (Tmax=13oC). The value of Te is selected based on
real data collected at our experimental site1, and Tsp is based
on the ASHRAE standard (Healy 2008).

Fig. 3 shows the expected discomfort and the energy con-
sumption for the PI and MPC controllers with respect to
(Te, Tsp). We see that the MPC algorithm is more efficient
in both expected discomfort and energy consumption: the
PI controller initially overshoots the temperature set point
and requires a long time to reach equilibrium, while MPC
quickly approaches and settles on it. MPC reduces energy
consumption by 2.6% and reduces expected discomfort by
34.5% compared to the PI-Controller (Table 1).
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We evaluate SMPC (stochastic MPC) for different triples
(Te,Tsp,h), each averaged over 5 samples from the occu-
pancy model. For samples with high certainty (Fig. 4, high
h values), the energy consumption is reduced, with a clearer
improvement when the temperature difference between Te

and Tsp is high. The controller is taking advantage of near-
certain absences to reduce the heating. However, this is at the
expense of expected discomfort (Fig. 5). Our performance
metric accumulates discomfort over time, and since our oc-
cupancy model predicts high occupancy, high h values mean

1http://www.ucc.ie/en/ERI/

that the occupant is expected to be present in most time slots,
leading to persistent discomfort, while low h values tend to
produce many absences and thus less total discomfort. This
effect is magnified in scenarios where there is a large gap
between Te and Tsp, when the controller trades-off energy
use for expected discomfort.

Table 1 summarises the SMPC, MPC and PI controllers in
terms of energy consumption and expected discomfort. Both
MPC and SMPC show significant improvement in expected
discomfort over PI, with moderate energy gains. Compared
to MPC, the stochastic version allows a little more expected
discomfort, but reduces energy consumption.
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Figure 5: SMPC Expected Discomfort Evaluation

Table 1: Controller Performance Improvement
Energy Consumption Expected Discomfort

PI Baseline
MPC 2.6 % 34.5 %

SMPC 4.3 % 38.3 %
MPC Baseline

SMPC 2 % 6 %

Although our main aim is to control for expected discom-
fort, we also evaluated the performance of the controller
given actual occupancy. We did this by computing actual
discomfort, where in the performance metric we substitute
for p(k) the 0/1 values representing observed occupancy
generated by the samples from the model, as shown in Fig.
6. The results here are mixed, reflecting three issues: (i) ran-
dom variations from the small numbers of samples, (ii) the
fact that our stochastic controller operates only on predicted
occupancy in the next timeslot, with no role for actual occu-
pancy in the current time slot, and (iii) the bias in our occu-
pancy models towards full occupancy. We will explore the
impact of issues (i) and (ii) on energy use and discomfort
levels in future work.

To start addressing the third issue, we consider three sim-
ple occupancy profiles which include expected absences:
(a) an expected absence in the morning (p(k) ≈ 0.1, 9 <
k < 12; (b) an expected absence in the afternoon (p(k) ≈
0.1, 13 < k < 17, and (c) expected absence all day (p(k) ≈
0.1). The expected discomfort is determined by the num-
ber of times the model predicts an absence but the occu-
pant appears, and by the difference between Te and Tsp, and
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Figure 6: SMPC Actual Discomfort Evaluation

is bounded by 0.1 × (Tsp − Te). The energy consumption,
however, is significantly reduced, as shown in Table 2. A
complete analysis of this trade-off between energy use and
discomfort, and the influence of the certainty of the occu-
pancy profile, will be addressed in future work.

Table 2: Energy Saving
PI Baseline MPC Baseline

Profile a 38 % 37.5 %
Profile b 39.9 % 39.4 %
Profile c 37.9 % 37.4 %

Conclusion and Future Work

In this article, we have proposed a Stochastic Model Pre-
dictive Control (SMPC) algorithm to regulate temperature
in building heating applications2. We empirically compared
our SMPC strategy for building heating control with the
standard PI method, and achieved a 4.3% reduction in en-
ergy use and 38.3% reduction in expected user discom-
fort. We focus on user comfort since it is a cornerstone in
the building automation, as it significantly affects the em-
ployee’s productivity (Fisk 2003). Our experiments com-
pared SMPC with PI and MPC (with fixed occupancy sched-
ules). We followed a two-phase approach, where we first op-
timized the parameters of the control algorithm, and then
compared the effectiveness of the SMPC controller against
the other control strategies. We have adopted a stochastic
occupancy model as input to the SMPC algorithm.

In future work we plan to extend this work to consider
a distributed control system, and to accept input data from
occupancy sensors. Moreover, the number of the occupants
for meeting rooms has a considerable effect on the heating
system. Therefore, we plan to adapt our SMPC approach to
take into account the stochastic prediction for the number of
occupants and their preferences (e.g. temperature, lighting).
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