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Abstract

The conservation of wildlife corridors between existing habi-
tat preserves is important for combating the effects of habi-
tat loss and fragmentation facing species of concern. We in-
troduce the Steiner Multigraph Problem to model the prob-
lem of minimum-cost wildlife corridor design for multiple
species with different landscape requirements. This problem
can also model other analogous settings in wireless and social
networks. As a generalization of Steiner forest, the goal is to
find a minimum-cost subgraph that connects multiple sets of
terminals. In contrast to Steiner forest, each set of terminals
can only be connected via a subset of the nodes. Generalizing
Steiner forest in this way makes the problem NP-hard even
when restricted to two pairs of terminals. However, we show
that if the node subsets have a nested structure, the problem
admits a fixed-parameter tractable algorithm in the number
of terminals. We successfully test exact and heuristic solution
approaches on a wildlife corridor instance for wolverines and
lynx in western Montana, showing that though the problem is
computationally hard, heuristics perform well, and provably
optimal solutions can still be obtained.

1 Introduction

One of the major problems in computational sustainabil-
ity is that of preserving our world’s diminishing biodiver-
sity (Gomes 2009). The plight of many endangered species
is largely due to the encroachment of human development
activities that diminish and fragment their existing habitat.
While conserving contiguous reserves is essential for set-
ting aside core habitat areas, connectivity must be main-
tained between the smaller communities that form in these
reserves. Habitat fragmentation can lead to small isolated
populations, which in turn can lead to negative demo-
graphic and genetic consequences (Gilpin and Soule 1986;
Fagan and Holmes 2006). One method to mitigate this prob-
lem is to set aside so-called wildlife corridors, or swaths of
preserved land that connect important patches of habitat for
the endangered species. Wildlife corridors have been used
successfully in the past (Shepherd and Whittington 2006;
Haddad et al. 2003). An important computational problem
that arises is how to best spend limited funds on these con-
servation efforts. It is also important for biodiversity and
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economic reasons to plan conservation efforts while consid-
ering the diverse needs of the different species in a common
geographical area (Beier, Majka, and Spencer 2008).

In Montana, both the wolverine (Gulo gulo) and the
Canada lynx (Lynx canadensis) (see Figure 1) are classi-
fied as species of concern, with the lynx federally listed
as a threatened species under the Endangered Species Act.
Both these species suffer from habitat fragmentation and in-
habit the Northern Continental Divide Ecosystem (NCDE)
as well as the Greater Yellowstone Area (GYA) as shown
in Figure 1. Preserving a wildlife corridor connecting these
two major areas, as well as other areas of potential habi-
tat, would be beneficial for both species. However, it should
be noted that while the two species inhabit similar habitats,
their needs are not identical.

While the habits of the few and elusive Montana wolver-
ines are not fully known, they commonly occur in areas
with persistent spring snow cover (Copeland et al. 2010).
These areas are essential for reproduction, as the female
wolverines make their dens in the snow itself. In the study
of landscape genetics, the dispersal of wolverines has also
been found to be highly correlated with areas with persistent
spring snow cover (Schwartz et al. 2009). Dispersal and ex-
ploration of individual wolverines largely occurs when juve-
niles travel through varied suboptimal habitat before estab-
lishing a home range, possibly covering hundreds of kilo-
meters in the process (Gardner, Ballard, and Jessup 1986;
Inman et al. 2004; Moriarty et al. 2009).

Canada lynx are also known for long distance move-
ments especially during the low of a hare population cycle
(Schwartz et al. 2002), yet due to their dependency on snow-
shoe hares for the majority of their diet they have an eco-
logically limited home range when not dispersing (Squires
and Ruggiero 2007). They are also known to prefer gentler
slopes (less than 15 degrees), and as hunters, they are less
successful at finding food in open areas and thus can only
travel through denser ground cover. Thus to design a wildlife
corridor to connect the NCDE and the GYA for the wolver-
ine and lynx, we must take into account the stricter require-
ments of the lynx as shown in Figure 1.

Researchers (Conrad et al. 2007; Gomes, van Hoeve, and
Sabharwal 2008; Dilkina and Gomes 2010) have modeled
the wildlife corridor design problem as a network design
problem with strict connectivity constraints between a set of
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Figure 1: Both the wolverines (left, photo from the National Park Service) and the Canada lynx (right, photo taken by Keith Williams, 2010)
are listed as species of concern in Montana. The lynx are federally listed as a threatened species under the Endangered Species Act. The areas
of wolverine terminals are the areas with persistent spring snow cover (acquired using MODIS snow cover data). The lynx terminals shown
are the areas in the intersection of Montana and the Critical Habitat designated by the US Fish and Wildlife in 2000. As shown above, the
lynx have more restrictions with respect to land cover. Not pictured: barriers common to both species, e.g. bodies of water and urban areas.

locations called terminals which represent the core habitat
areas to be connected. The land parcels under consideration
are modeled as nodes in a network with costs equal to their
purchase price and utility values measuring their habitat suit-
ability for a particular species. Edges are drawn between any
two parcels that share a border. A feasible corridor is then a
subset of parcels (nodes) that connect any two habitat ar-
eas (terminals) for a total cost that satisfies a given budget
amount. To make the most of the available budget, they de-
fine the optimal solution to be the wildlife corridor which
contains the maximum total utility possible.

Unfortunately, we cannot use the model posed by (Con-
rad et al. 2007) to solve the wildlife corridor design problem
simultaneously for the wolverines and the lynx. While we
can certainly use it to solve it once for each species and then
hope to combine the solution for a single wildlife corridor,
this may not find the most economically efficient solution.
The crux of the problem lies in the fact that some areas that
are practically barriers for the lynx (such as steep slopes)
should not be used to connect habitat for the lynx, but they
should still be considered for connecting wolverine habitat.
In this paper, we introduce the Steiner Multigraph Problem
(SMP) to address the limitation of previous corridor models
by taking into account the set of land parcels that can be used
to connect each species’ set of terminals. This paper studies
the cost-minimization problem as a first step towards study-
ing the analogous multiple-species wildlife corridor problem
with budget constraints and utility values.

SMP can also be used to model other settings such as
wireless sensor networks and social networks. For example,
graph nodes can represent sensors that can communicate if
they have been placed close enough (Salhieh, Weinmann,
and Kochhal 2001). Finding a minimum-cost subgraph in a
graph of potential sensor locations corresponds to finding
the cheapest backbone for multicast communication in the

network. As an SMP instance, we can now model a network
with different devices that may only have the required hard-
ware for certain communication capabilities

In social networks, nodes represent individuals, and edges
represent relationships between them. Finding the smallest
connected subgraph in a social network can give informa-
tion on the minimum number of people who need to have
gossiped for news to travel from one end of the network to
the other (Faloutsos, McCurley, and Tomkins 2004). As one
might imagine, a social network is actually composed of
smaller communities that are connected and overlap (Ahn,
Bagrow, and Lehmann 2010). SMP can model such differ-
ent communities by taking into account the fact that differ-
ent types of information may freely travel within different
subgraphs of the overall social network.

Our Contributions

In Section 2, we formally define the Steiner Multigraph
Problem. In Section 3, we characterize its computational
complexity under different restrictions. As a generalization
of Steiner forest, it follows directly that SMP is also NP-
hard. For a constant number of terminals, the Steiner forest
problem is also fixed-parameter tractable (FPT) and admits
a polynomial time algorithm. However, we show that SMP
is NP-hard even for two sets of terminals with two terminals
each. In a positive result, we show that when the subsets Vi

have a nested structure, SMP admits an optimal solution that
does not contain a cycle. This special case of SMP is in FPT
with respect to the number of terminals. In Sections 4 and 5,
we present and test both exact and heuristic approaches to
solving SMP on a set of synthetic instances and finally on
the wildlife corridor problem in Montana. On the synthetic
instances, the heuristics perform well, coming within 10%
of optimal for most of the tested instances. For the wildlife
corridor instance in Montana, we found that the inherent
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T1, T2 = {t1, t2}
V1 = {t1, u, t2}
V2 = {t1, v, t2}

t1 t2
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v

Figure 2: In this example, a feasible solution requires all the nodes
and edges in the graph, resulting in a cycle.

structure of the land parcel costs and the additional con-
straints placed on the problem by the lynx made the problem
tractable, allowing us to obtain provably optimal solutions.

2 Problem Definition

We will focus on the node-weighted formulation of SMP
because our motivating application in wildlife corridor
design is modeled more naturally using node weights.
Though we will not discuss it in detail, our hardness and
algorithmic results hold for the edge-weighted case as well.

STEINER MULTIGRAPH PROBLEM (SMP)

Given: an undirected graph G = (V,E), an index set P ,
node sets Vi ⊆ V for all i ∈ P , sets of terminals Ti ⊆ Vi

for all i ∈ P , and costs cv for all v ∈ V .

Find: a node set W ⊆ V such that the induced subgraph
G(W ∩ Vi) connects Ti for each i ∈ P , and the total cost∑

v∈W cv is minimized.

The name of this problem is inspired by the net-
work design problems that it generalizes, most notably the
minimum-weight Steiner tree and Steiner forest problems. A
Steiner tree instance is an instance of SMP where |P | = 1;
there is only one species to be accommodated by the wildlife
corridor. A Steiner forest instance is an instance of SMP
where all Vi are the same; there can be multiple species, and
all land is equally permeable for all of them. Intuitively, a
solution to SMP can be thought of as the union of feasible
Steiner trees that connect the sets of terminals Ti in their
respective induced subgraphs G(Vi). As a generalization of
minimum-weight Steiner forest, however, an optimal solu-
tion for SMP may contain cycles. An example of such a case
is shown in Figure 2, where there are two (non-disjoint) pairs
of terminals. Each pair is limited to a different path connect-
ing the two terminals. As a result, the only feasible solution
is the entire graph which contains a cycle.

In the rest of this paper, we will consider a few differ-
ent special cases of the problem. In particular, given that
the wolverine can traverse a superset of the landscape that
the lynx can, we will also define and discuss the Laminar
Steiner Multigraph Problem (LSMP) where the sets Vi are
required to form a laminar family. By definition, a family of
sets is laminar if for every two member sets Vi and Vj , it is
the case that Vi ∩ Vj = ∅, Vi ⊆ Vj , or Vj ⊆ Vi.

3 Hardness Results

3.1 General Case

As a generalization of Steiner forest, SMP is NP-hard and
is at least as hard to approximate as Steiner forest. For the
node-weighted case, this means that the best approximation
factor possible is Ω(log |T |) for general graphs.

3.2 Two Sets of Terminals

If the node-weighted Steiner forest problem is restricted to
two pairs of terminals, it is solvable in polynomial time. This
is because the solution can only be either (a) a single Steiner
tree connecting all the terminals, or (b) a forest consisting of
the shortest paths for each of the two pairs of terminals. In
contrast, SMP is NP-hard even under the same restriction.

Theorem 1. SMP is NP-hard for instances on two pairs of
terminals, i.e. where |P | = 2, |T1| = 2, and |T2| = 2.

This result is obtained via a reduction from the NP-
complete problem 3SAT. Our construction is similar to the
reduction showing that the integer multicommodity flow
problem is NP-hard for two commodities (Even, Itai, and
Shamir 1976). For the full proof, see (Lai et al. 2011).

Many graph problems like Steiner forest are easier on pla-
nar graphs, not only in practice but also in terms of theoreti-
cal guarantees. Unfortunately, SMP on two terminal pairs is
still NP-hard on planar graphs. For this result, we reuse the
concepts of the nonplanar reduction and reduce from the re-
stricted planar 3SAT, another NP-complete problem (Licht-
enstein 1982). Again, see (Lai et al. 2011) for a full proof.

Theorem 2. Theorem 1 also applies to planar graphs.

3.3 Laminar Subgraphs

In the 3SAT reductions, the two node sets V1 and V2 overlap
in a convoluted manner. However, if we restrict one set to be
contained in the other, the problem becomes fixed-parameter
tractable. As described earlier, this special case comes up in
the problem of designing a wildlife corridor for wolverines
and lynx. Social networks and biological networks are also
often argued to have and interpreted to have a hierarchical or
modular structure in many cases (Newman and Girvan 2004;
Simon 1962). We refer the reader to the full version of the
paper for the proof of the following result (Lai et al. 2011).

Theorem 3. LSMP admits some optimal solution with no
cycles and is therefore FPT with respect to | ∪i∈P Ti|.

4 Exact and Heuristic Solutions

We describe several algorithms to solve SMP. To solve the
problem exactly, we can employ a mixed integer program
(MIP) formulation. If the instance is laminar, then it admits
a dynamic programming (DP) algorithm. We also describe
faster approaches that may not solve the problem optimally.

4.1 An Exact MIP Formulation

We can encode SMP by formulating each species’ connec-
tivity requirements as a multicommodity flow mixed integer
program, binding each of these sets of constraints together
by a common set of variables xv that indicate which nodes
are to be bought. For each species, we must connect its ter-
minals Ti using only nodes in Vi, and we can model this as
having to choose |Ti| − 1 paths from a designated source
si ∈ Ti to each of the other (sink) terminals T ′

i = Ti \ {si}.
For each pair of terminals (si, t)where t ∈ T ′

i , we have a set
of node and directed edge flow variables f it

v and f it
uv for all

nodes and edges in G(Vi). Using Γi(v) to indicate the nodes

1359



min
∑

v∈V
cvxv (3)

s.t. init
si
= 0 ∀i ∈ P, t ∈ T ′

i (4)

outitsi = 1 ∀i ∈ P, t ∈ T ′
i (5)

f it
si
= 1 ∀i ∈ P, t ∈ T ′

i (6)

init
t = 1 ∀i ∈ P, t ∈ T ′

i (7)

outitt = 0 ∀i ∈ P, t ∈ T ′
i (8)

f it
t = 1 ∀i ∈ P, t ∈ T ′

i (9)

init
v = f it

v ∀i ∈ P, t ∈ T ′
i , v �= si, t ∈ Vi

(10)

f it
v = outitv ∀i ∈ P, t ∈ T ′

i , v �= si, t ∈ Vi

(11)

f it
v ≤ xv ∀i ∈ P, t ∈ T ′

i , v ∈ Vi (12)

xv ∈ {0, 1} ∀v ∈ V (13)

f it
v , f it

uv ≥ 0 ∀i ∈ P, ∀v ∈ Vi, ∀u ∈ Γi(v)
(14)

Figure 3: Using the expressions from (1) and (2), this multicom-
modity flow MIP exactly captures SMP. For each species, a unique
commodity is defined for each sink terminal t ∈ T ′

i = Ti \ {si},
and exactly 1 unit of flow of this type must travel from the source si
to the sink t. The function Γi(v) denotes the neighbors of v in Vi.

in Vi which neighbor v, we define the following expressions
for incoming and outgoing flow:

init
v =

∑
u∈Γi(v)

f it
uv (1)

outitv =
∑

u∈Γi(v)
f it
vu (2)

The complete MIP is shown in Figure 3. Constraints (4)-
(5) force si to be the source of 1 unit of flow for each re-
maining terminal for species i. The corresponding sink con-
straints are captured by (7)-(8). Constraints (6) and (9) force
the endpoints si and t of each flow to be in the solution. Con-
straints (10) and (11) capture flow conservation for all other
nodes while preventing flow through a node v if f it

v is set to
0. By (12), the node flow variable f it

v can only be positive
if v has been chosen for the solution, i.e. xv has been set to
1. The last two constraints (13) and (14) force the indicator
variables to be integer and the flow to be nonnegative. An
optimal solution to this MIP is a minimum Steiner multi-
graph. Each set of terminals must be connected by the set of
nodes V ′ = {v ∈ V : xv = 1} since there must be a feasi-
ble flow from si to every other terminal t ∈ T ′

i , and any such
flow must use some path in Vi that can only travel via nodes
that have nonzero capacity, i.e. nodes for which xv = 1.

We note that we relax the variables f it
v to be continuous

variables because in any feasible solution for which a vari-
able f it

v has been set to a fractional value, we can round its
value up without violating any constraints nor affecting the
objective value. The formulation also technically allows the
existence of cycles in the multicommodity flow, but these
will not appear in the optimal solution when the total cost
is minimized unless the cycle is effectively free, in which

case it has no bearing on the solution. We also considered a
single commodity flow formulation that uses only a single
set of flow variables for each species, and we report some
experimental results in Section 5 for comparison.

4.2 Exact Laminar DP Algorithm for |P | = 2
For LSMP, we describe a DP algorithm for when |P | = 2;
we will refer to this as the Laminar DP Algorithm (LDP).
For |P | = 2, laminarity implies either (a) V1 ∩ V2 = ∅
or (b) V1 ⊆ V2 without loss of generality. For (a), it is
sufficient to find the optimal Steiner tree for the two dis-
joint sub-instances with a DP algorithm which runs in time

Õ(3|T1|+3|T2|) (Dreyfus and Wagner 1972). For (b), the op-
timal solution is either (1) the union of two disjoint Steiner
trees, or (2) one connected component. We therefore solve
for both cases and choose the cheaper solution. We now de-
scribe how to solve for the latter case.

As one connected component, the optimal solution con-
sists of a single tree which can be viewed as a star of con-
nected components: the center is a tree H1 ⊆ V1 connect-
ing all of T1 (and possibly some members of T2), and the
leaf components are optimal Steiner trees Hk on T k

2 ∪ {v
k
1}

where T k
2 ⊆ T2 and vk1 ∈ H1. To find this solution, we ex-

tend the Dreyfus-Wagner algorithm to recursively compute
the optimal trees that connect all possible sets X1∪X2∪{v1}
where X1 ⊆ T1, X2 ⊆ T2, v1 ∈ V1, and all paths between
nodes in X1 and v1 use only nodes in V1.

Without loss of generality, we assume that T1 ∩ T2 = ∅.
For any terminal t in the intersection, any feasible solution
will still be feasible if t is removed from T2 while forcing the
sets T1 and T2 to be connected. Using the Dreyfus-Wagner
DP algorithm, we recursively calculate the following func-
tions for all X2 ⊆ T2 and v ∈ V2.

• s2(X2, v2): cost of the optimal tree connecting X2∪{v2}

• s2v(X2, v2): cost of the optimal tree connecting X2∪{v2}
where v2 has degree at least 2

To compute the full star of connected components, we now
define the following functions.

• s1(X1, X2, v1): cost of the optimal tree connecting X1 ∪
{v1} using only nodes in V1 while also connecting X1 ∪
{v1} ∪X2 using any nodes in the graph

• s1v(X1, X2, v1): cost of the optimal tree connecting X1 ∪
{v1} using only nodes in V1 and connecting X1 ∪ {v1} ∪
X2 using any nodes in the graph such that the node v1 has
degree at least 2.

Note that s1(∅, X2, v1) = s2(X2, v1) and s1v(∅, X2, v1) =
s2v(X2, v1). Let d1(u, v) be the shortest path distance be-
tween nodes u and v using only nodes in V1, including the
weight of u and v. We then have the following base case.

s1(t1, ∅, v1) = d1(t1, v1) ∀t1 ∈ T1, v1 ∈ V (15)

The function s1v(X1, X2, v1) is recursively computed by
finding the pair of sets (X ′

1 ⊆ X1, X
′
2 ⊆ X2) that satisfies

∅ �= X ′
1 ∪X ′

2 �= X1 ∪X2 and minimizes

s1(X ′
1, X

′
2, v1) + s(X1 \X

′
1, X2 \X

′
2, v1)− cv (16)

The function s1(X1, X2, v1) is recursively defined by taking
the cheaper option from (a) requiring v1 to have degree at
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least 2 (which has cost s1v(X1, X2, v1)), and (b) connecting
v1 to a node w in a precomputed tree connecting X1 and
X2. In this latter case, v1 and w must both be connected to
X1 using only nodes in V1. Specifically, we find the node
w ∈ V1 that minimizes the following.⎧⎨

⎩
d1(v, w) + s1(X1 \ {w}, X2, w) − cw if w ∈ X1

d1(v, w) + s1(X1, X2 \ {w}, w)− cw if w ∈ X2

d1(v, w) + s1v(X1, X2, w) − cw otherwise

(17)
This algorithm’s running time is dominated by the com-
putations for s1v(X1, X2, v1) where it looks up previously-
computed values for all nonempty proper subsets of X1 ∪
X2. In aggregate, this amounts to O(3|T1∪T2|) subset com-
binations since each terminal t ∈ Ti must be in one of three
sets: X ′

i , Xi \X ′
i, or Ti \Xi. The total running time is dom-

inated by the exponential terms and takes Õ(3|T1∪T2|) time.

4.3 Approximation Algorithms

We can use Steiner tree algorithms as building blocks for
approximation algorithms for SMP. Since any solution to an
SMP instance must include a Steiner tree for each subgraph
G(Vi), we can compute a Steiner tree for each subgraph and
take their union. Furthermore, the optimal Steiner tree for
each sub-instance is a lower bound on the overall cost of the
optimal SMP solution, so the union of the optimal Steiner
trees costs at most the number of Steiner trees, or |P |, times
OPT. By using the exact Dreyfus-Wagner DP algorithm, this

achieves an approximation ratio of |P | in Õ(3|Tm|) where
m = argmaxi∈P |Ti|. We can further improve this itera-
tive solution by taking past decisions into account: after each
Steiner tree has been computed, we mark used nodes as free
for later Steiner tree computations. We will refer to this ap-
proximation algorithm as the Iterative DP Algorithm (IDP).
For instances with more terminals where the DP algorithm is
no longer practical, faster approximation algorithms can be
substituted for an exact Steiner tree algorithm for an overall
SMP approximation guarantee of α|P |when the approxima-
tion algorithm used has a guarantee of α.

4.4 Primal-Dual Heuristic

One Steiner forest algorithm that can be naturally adapted to
SMP is the primal-dual 6-approximation algorithm for pla-
nar Steiner forest (Demaine, Hajiaghayi, and Klein 2009).
We will refer to this as the Primal-Dual Algorithm (PD).
The algorithm maintains a (primal) infeasible solution F
of nodes along with a (dual) set of variables yiS for all
i ∈ P, S ⊆ Vi. It proceeds as follows.

1. Initialize F = ∅ and all yiS = 0.

2. Define ziv =
∑

S⊆Vi:v∈Γi(S) yiS for all i ∈ P, v ∈ Vi,

where Γi(S) indicates the node neighbors of S in G(Vi).

3. Let V iol(F ) be the connected components in each F ∩Vi

for which connectivity is not yet satisfied (i.e. they contain
some proper nonempty subset of Ti).

4. While F is not a feasible solution, increase yiS for all S
in V iol(F ) until

∑
i∈P ziv = cv for some v. Add v to F ,

and update V iol(F ) accordingly.

Algorithm Time (s) Max Gap Med. Gap

Laminar DP (LDP) 1.600 0% 0%
Iterative DP (IDP) 1.980 11.1% 2.2%
Primal-Dual (PD) 0.260 27.6% 6.9%

Table 1: We tested the LDP and the approximate approaches on
100 25x25 (|V | = 625) grid graphs where |P | = 2, |T1| = |T2| =
3, V2 = V , and |V1| = 575 = 0.92|V |. Reported here are the
median running times and optimality gaps. On these instances, the
MIP solver often took more than a few hours and was effectively
superseded by the LDP algorithm.

5. In reverse order in which the nodes were added, delete the
nodes in F that are not needed for connectivity.

Unfortunately, this algorithm has no theoretical guaran-
tees and can perform arbitrarily badly even for planar and
laminar SMP instances. For an example of such a case, see
(Lai et al. 2011). Nevertheless, this heuristic still performed
very well in practice, as we report in the next section.

5 Experimental Results

5.1 Synthetic Instances

To test our solution approaches fully, we created synthetic
planar instances on square grid graphs with node costs gen-
erated uniformly at random in the range [50, 1000]. Each
set of terminals was chosen by placing two terminals in the
opposite corners of the grid graph and adding the rest by
sampling the grid graph uniformly at random.

We first tested the performance of the multicommod-
ity flow MIP formulation (Section 4.1) using IBM ILOG
CPLEX, as well as the IDP and PD algorithms described in
Sections 4.3 and 4.4, respectively. Figure 4a shows the me-
dian MIP solver running times for different size grid graphs
on two sets of terminals of varying sizes. Each Vi was cho-
sen uniformly at random from the graph and was of size
0.85|V |. As might be expected, the time required to solve the
MIP scales exponentially with |V |, though it is notable that
it still finishes within minutes for even hundreds of nodes.
The performance of the IDP and PD algorithms were also
tested on these instances (see Figure 4c). Though the IDP
algorithm is only guaranteed to have a maximum optimality
gap of 100%, it performed surprisingly very close to optimal
(within 3%) more than half the time. The IDP and the PD al-
gorithms were also fast on these instances, always finishing
within 6 seconds and 1 second, respectively.

We tested the LDP algorithm described in Section 4.2 on
even larger instances, and we compared it against the IDP
and PD algorithms. The results are tabulated in Table 1.
While the PD algorithm is very fast, it generally performed
worse than the IDP algorithm. However, for most of the
cases, both heuristics performed within 10% of optimal.

5.2 Wildlife Corridor Design in Montana

We used our solution approaches to solve the wildlife corri-
dor design problem for wolverines and Canada lynx in Mon-
tana. Because the lynx can use only a subset of the land that
the wolverines can traverse, this is exactly an instance of
LSMP. We studied the problem using a 6km resolution of
square cells, with each cell having a cost and binary val-
ues for wolverine and lynx permeability. The 6km cell size
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Figure 4: (a) The MIP solver was run on 100 samples each of square grid graph instances with |P |= 2, |T1|= |T2|, and the subgraphs
chosen uniformly at random such that |V1|= |V2|= 0.85|V | (b) The MIP solver was run on 100 samples each of 15x15 square grid graphs
with |Vi|= 191= 0.85|V |, |Ti|= 3 (c) Optimality gaps for the IDP and PD algorithms (same instances as in (a)).

was chosen to be consistent with statistically downscaled cli-
mate data used to model wolverine habitat (McKelvey et al.
In press). The data preprocessing was performed using Ar-
cGIS 9.3. For most of the data used, we used the publicly
available data sets downloadable from Montana’s website.
This included elevation (USGS National Elevation), land
cover (USGS GAP analysis 2010), and roads (Census 2010
TIGER/Line). Housing density was derived from Census
2010 data. To calculate the permeability layer for the Canada
lynx, we combined the factors of slope, land cover, road
density, and housing density as per the formula reported by
(Bates and Jones 2007). To generate the costs, we regarded
all already-conserved land as free and otherwise used the
taxable land value data from 2007. For cells which overlap
some part of a primary road, we added a cost estimate for in-
stalling a wildlife bypass such as an overpass. To define the
wolverines’ terminals, we found the contiguous areas with
persistent spring snow cover (queried from MODIS as per
(Copeland et al. 2010)) already under conservation, resam-
pled them to 6km, and then eliminated areas that were not
large enough for a female wolverine home range. Terminals
already connected by preserved land were consolidated for
a total of 13 wolverine terminals. The terminals for the lynx
were defined as the already-conserved areas in the NCDE
and GYA designated as critical habitat by the US Fish and
Wildlife Service; these terminals were consolidated into 4
terminals. After pruning the study area to exclude eastern
Montana, lakes, and other barriers such as urban areas, the
resulting graph contains a total of 4514 cells of 6km by 6km,
3326 of which are accessible to the lynx.

Given that the budget may not be large enough to con-
nect all the terminals, we created scenarios using different
subsets of the defined wolverine and lynx terminals, priori-
tizing the larger terminals. We report results on our solution
approaches on these scenarios in Table 2. The PD algorithm
was the fastest of all our solution approaches. While it has no
performance guarantees, it performed close to optimal on the
real data. We show the result of the PD heuristic as compared
to the optimal solution in Figure 5. For exact solutions, we
tested both the single-commodity and multicommodity flow
encodings for the MIP (of which we had not seen much of a
difference on the smaller randomized instances). We found

(L,W) SCF MCF LDP PD PD
Instance Gap Time Time Time Gap

(0,8) (13.6h) 3.13m 5.25m 5.46s .02%
(2,8) 17.5% 4.08m 11.5m 7.01s .02%
(4,8) (17.45h) 1.93m 27.7m 8.67s .02%
(0,13) 20.9% 37.34h 3.28h 5.70s 2.8%
(2,13) 31.1% 29.04h 7.87h 7.22s 2.8%
(4,13) 24.8% 42.2m 19.35h 9.10s 6.7%

Table 2: Different instances of the wildlife corridor design prob-
lem in Montana were solved for different subsets of the species’
terminals. They are indicated as pairs (L,W) for L lynx terminals
and W wolverine terminals. The best-known optimality gaps are
reported for the single-commodity flow (SCF) after 40 hours (or
the final running time if less than 40 hours). Running times are re-
ported for solving the multicommodity flow (MCF) encoding, the
LDP algorithm (LDP) (not including preprocessing time for calcu-
lating all-pairs shortest paths: 6.55 minutes when L=0, 9.10 min-
utes when L>0), and the PD algorithm (PD). The last column re-
ports the optimality gap for the PD algorithm.

that the multicommodity flow encoding, while adding more
variables and constraints, helped introduce tighter bounds
on the problem and allowed the solver to prove optimality
faster. For these experiments, we set the CPLEX parame-
ters according to those found by the CPLEX automatic tun-
ing utility. Comparing the different scenarios, increasing the
number of lynx terminals in the instance oftentimes actually
decreased the running times. As this was an LSMP instance,
we tested the LDP algorithm which also finds an optimal
solution. As expected, its running times increased exponen-
tially with the total number of lynx and wolverine terminals.
Surprisingly, because of the inherent structure of the real-
world instance, solving the MIP was sometimes faster than
the LDP algorithm, especially as the number of terminals in-
creased. While heuristics such as the PD algorithm can give
fast solutions that are close to optimal, real-world instances
of SMP can still be practical to solve to optimality.

6 Previous Work

In this paper, we present the Steiner Multigraph Problem,
a new network design problem under a multigraph setting.
This problem is closely related to problems in network de-
sign and multicommodity flow. The Steiner tree problem
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Figure 5: For 4 lynx terminals and 13 wolverine terminals, the MIP solver found an optimal solution in a surprisingly practical amount of
time: 42.2 minutes (left). The PD heuristic, while much faster at 9.1 seconds, found a suboptimal solution that cost 6.7% more (right).

is a special case of SMP and at the core of many other
network design problems in combinatorial optimization. In
its simplest form, the Steiner tree problem is a generaliza-
tion of the minimum spanning tree: on an undirected graph
G = (V,E) with nonnegative costs on the edges, find a
minimum-cost set of edges that connect a particular sub-
set of nodes T ⊆ V , or the terminals of the graph. This
problem is well-studied and is known to be APX-complete,
i.e. there is some constant factor within which it cannot be
approximated in polynomial time unless P = NP (Promel
and Steger 2002). The current best approximation factor is
1.39 for general graphs (Byrka et al. 2010), though there
exist polynomial time approximation schemes (or PTAS)
for Euclidean Steiner trees, planar graphs, and graphs of
bounded treewidth, which have a guarantee of 1 + ε for any
ε > 0 (Arora 1998; Bateni, Hajiaghayi, and Marx 2010).
The problem is also fixed-parameter tractable (FPT), ad-
mitting an exact dynamic programming (DP) algorithm that
runs in time exponential in |T | (Dreyfus and Wagner 1972).

In the variant called the node-weighted Steiner tree prob-
lem, costs appear on the nodes instead. This is more appro-
priate for capturing certain applications such as modeling
wireless sensor networks or adjacent parcels of land. While
this reformulation may seem like a trivial change to the
problem, it is computationally harder. For general graphs,
the best possible approximation factor is not a constant but
Θ(log |T |) (Klein and Ravi 1995), unless P = NP. However,
just as in the case of the original edge-weighted Steiner tree
problem, the problem is still in FPT, admitting a similar
DP algorithm. Better approximation guarantees can also be
found for restricted classes of graphs that appear in practice.
For example, there is a primal-dual 6-approximation algo-
rithm for the node-weighted Steiner tree problem in planar
graphs (Demaine, Hajiaghayi, and Klein 2009).

Steiner forest replaces the set of terminals T with a family
of multiple disjoint sets T1, . . . , Tk ⊆ V (Agrawal, Klein,

and Ravi 1991). A feasible solution must connect each set
of terminals Ti, but terminals in different sets need not be
connected. An optimal solution is a forest of trees, each tree
connecting some of the terminal sets.

Currently, the best theoretical result for the connection
subgraph problem posed by (Conrad et al. 2007) for single-
species wildlife corridor design is an approximation al-
gorithm which finds a tree with utility at most a factor
O(1

ε
log |V |) worse than optimal and may violate the bud-

get constraint by up to a factor of 1
ε

(Rabani and Scalosub
2008).

7 Conclusions and Future Work

In this paper, we introduced the Steiner Multigraph Prob-
lem, a new combinatorial optimization problem that cap-
tures the connectivity requirements for multiple species in
a common wildlife corridor. We showed that this problem is
harder than Steiner forest in general, but it is fixed-parameter
tractable for the special case where the demand subgraphs
have special structure. We presented a few different solution
approaches and tested them on a set of synthetic instances
as well as the wildlife corridor problem in Montana. While
solving the MIP generally takes significantly longer than
the inexact approaches and scales exponentially, the running
times when solving the real-world instance in Montana with
thousands of nodes were still practical and gave a guarantee
on the optimality of the solution. Most notably, the addi-
tional consideration of the lynx decreased the running time
as compared to solving the minimum-cost wildlife corridor
design problem for just the wolverines.

This work opens up several followup questions. For the
purposes of wildlife corridor design, one can add a bud-
get constraint to the problem and maximize a function of
the species-specific habitat suitability values for the land in-
cluded in the corridor. Another open question is to find an
algorithm that has a stronger approximation guarantee than
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the one from iteratively solving the Steiner tree instances. It
would also be interesting to look into other graph problems
that can be meaningfully defined in this multigraph setting.
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