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Abstract

One proposed approach to managing a large complex Smart
Grid is through Broker Agents who buy electrical power from
distributed producers, and also sell power to consumers, via
a Tariff Market—a new market mechanism where Broker
Agents publish concurrent bid and ask prices. A key chal-
lenge is the specification of the market strategy that the Bro-
ker Agents should use in order to earn profits while maintain-
ing the market’s balance of supply and demand. Interestingly,
previous work has shown that a Broker Agent can learn its
strategy, using Markov Decision Processes (MDPs) and Q-
learning, and outperform other Broker Agents that use prede-
termined or randomized strategies. In this work, we investi-
gate the more representative scenario in which multiple Bro-
ker Agents, instead of a single one, are independently learn-
ing their strategies. Using a simulation environment based on
real data, we find that Broker Agents who employ periodic
increases in exploration achieve higher rewards. We also find
that varying levels of market dominance in customer alloca-
tion models result in remarkably distinct outcomes in market
prices and aggregate Broker Agent rewards. The latter set
of results can be explained by established economic princi-
ples regarding the emergence of monopolies in market-based
competition, further validating our approach.

Introduction

The Smart Grid, which enhances the existing power grid
using digital communications technologies, aims to (i) in-
crease production of power from renewable sources, and (ii)
shift demand to time periods when power is produced more
cheaply. A key subgoal of Smart Grid design is to enhance
the ability of distributed small-scale power producers, such
as small wind farms or households with solar panels, to sell
energy into the power grid. The corresponding increased
complexity creates the need for new control mechanisms.

One approach to addressing the challenge of encouraging
increased participation from distributed producers is through
the introduction of Broker Agents who buy power from such
producers and also sell power to consumers (Ketter, Collins,
and Block 2010). Broker Agents interact with producers and
consumers through a Tariff Market—a new market mecha-
nism. In this mechanism, each Broker Agent acquires a port-
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folio of producers and consumers by simultaneously pub-
lishing prices to buy and sell power. The design of fees and
penalties in the Tariff Market incentivizes Broker Agents to
balance supply and demand within their portfolio by buy-
ing production and storage capacity from local producers
instead of acquiring all supply from the national grid. This
also gives them the ability compete in the market by offer-
ing prices distinct from the prices on the national grid while
also helping local producers. Broker Agents that are able
to operate successfully in Tariff Markets, while earning a
profit so that they continue to participate, contribute to the
overall goals of the Smart Grid. With this motivation, we
study the development and interaction of market strategies
for autonomous Broker Agents in this work.

We have previously shown that an autonomous Broker
Agent can learn its strategy, using Markov Decision Pro-
cesses (MDPs) and Q-learning, and outperform other Bro-
ker Agents that use predetermined or randomized strategies
(Reddy and Veloso 2011). In this work, we investigate the
scenario in which multiple Broker Agents, not just one, are
learning their strategies. We assume here that within the
range of prices we consider, consumers may shift demand
from one time to another but that their overall demand does
not vary significantly. We then study the sensitivity of the
learned strategies to specific learning parameters and also
study the emergent attributes of the market prices and Broker
Agent rewards. Specifically, through realistic simulation-
based experiments, we find that Broker Agents who employ
periodic increases in exploration achieve higher rewards.
Further, we find that different simulation models for how
customers are allocated to Broker Agents, ranging from uni-
form distribution to market dominance by one or a few Bro-
ker Agents, result in remarkably distinct outcomes in market
prices and aggregate Broker Agent rewards. The observed
outcomes regarding Broker Agent rewards can be explained
by economic principles of market-based competition.

Tariff Market Simulation Model

Figure 1 provides an overview of the Smart Grid Tariff Mar-
ket domain. Tariff Markets exist in the context of a national
grid that carries power produced by large centralized pro-
duction plants and also moves excess power across Tariff
Markets. The Wholesale Market is an auction-based market
that determines the price at which power can be bought from
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or sold into the national grid. Physical Coupling points reg-
ulate the flow of power between the national and regional
grids. The Tariff Market, which operates over the regional
grid, is not an operating entity like the Wholesale Market but
is instead defined by a set of participants and rules.

                                                         Regional
                                                         Grid

Service Operator

Consumers

Producers

Broker Agents

National
Grid

Wholesale 
Market

Power

Control

Trades Tariffs
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Figure 1: Overview of the Smart Grid Tariff Market domain.

A Tariff Market consists of the following participants:

〈C,P,B, O〉
where:
• C = {Ci}Ii=1 are the Consumers and N = O(105);

• P = {Pj}Jj=1 are the Producers and M = O(103);

• B = {Bk}Kk=1 are the Broker Agents and K = O(101);
• O is the Service Operator, a regulated regional monopoly

that manages the physical infrastructure for the grid.
Let Q = C ∪ P be the combined set of Customers from a

Broker Agent’s perspective. A tariff is a public contract of-
fered by a Broker Agent that can be subscribed to by a subset
of the Customer population. While a tariff can in reality con-
sist of several attributes specifying contract terms and con-
ditional prices, we represent each tariff using a single price.
Let the performance of a Broker Agent be evaluated over a
finite sequence of timeslots, T . At each timeslot, t ∈ T ,
each Broker Agent, Bk, publishes two tariffs visible to all
agents in the environment—a Producer tariff with price pBk

t,P

and a Consumer tariff with price pBk

t,C . Each Broker Agent
holds a portfolio, Ψt = Ψt,C ∪ Ψt,P , of Consumers and
Producers who have subscribed to one of its tariffs for the
current timeslot. Each Consumer consumes a fixed amount
of power, κ, per timeslot and each Producer generates νκ
units of power per timeslot.

At each timeslot, the profit, πBk
t of a Broker Agent is

the net proceeds from Consumers, Ψt,C , minus the net pay-
ments to Producers, Ψt,P , and the Service Operator:

πBk
t = pBk

t,CκΨt,C − pBk

t,P νκΨt,P − φt|κΨt,C − νκΨt,P |

The term |κΨt,C − νκΨt,P | represents the supply-demand
imbalance in the portfolio at timeslot, t. This imbalance is

penalized using the balancing fee, φt, which is specified by
the Service Operator at each timeslot. The primary goal of
a Broker Agent is to maximize its cumulative profit over all
timeslots,

∑
T πBk

t .
We have developed a simulation model that is driven by

real-world hourly power prices (Reddy and Veloso 2011).
Each Customer is represented by a Customer Model, which
ranks an unordered set of tariffs based on its preferences;
they do not simply rank tariffs by their prices because some
Customers may not actively evaluate their available tariff op-
tions and therefore continue to subscribe to suboptimal tar-
iffs. Moreover, some Customers may choose tariffs with less
favorable prices because other tariff attributes, such as the
percentage of green energy or the lack of early withdrawal
penalties, may be preferable.

Broker Agent Strategies

In this section, we first describe an MDP formulation that
forms the basis for the specification of various market strate-
gies for Broker Agents. We then define six such strategies
and evaluate their relative performance with respect to the
cumulative profit goal of a Broker Agent.

Let Mk = 〈S,A, δ, r〉 be an MDP for Broker Agent, Bk,
where S = {si} are the States, A = {aj} are the Actions,
δ(s, a) → s′ is a transition function defined by numerous
stochastic interactions in the simulation model, and r(s, a) is
a reward function that computes the reward at each timeslot
by applying the profit rule for computing πBk

t .
To define the States, S , we discretize tariff prices in 0.01

increments and restrict their range from 0.02 to 0.30, which
represents a realistic range of prices in US dollars per kWh
of power (DoE 2010). We then define minimum and max-
imum Producer and Consumer tariff prices over the set of
Broker Agents excluding Bk: pmin

t,C = minBk∈B\{BL} p
Bk

t,C ,
and pmax

t,C = maxBk∈B\{BL} p
Bk

t,C . Next, we define a derived
price feature, PriceRangeStatus, whose values are enumer-
ated as {Rational, Inverted}. The Tariff Market is Rational
from Bk’s perspective if pmin

t,C ≥ pmax
t,P + μk where μk is

the margin required by Bk to be profitable in expectation.
The Tariff Market is considered to be Inverted if the oppo-
site is true. Similarly, depending on the relative number of
Consumers and Producers in Bk’s portfolio, we define a de-
rived PortfolioStatus feature that takes on a value from the
set {Balanced, OverSupply, ShortSupply}. Thus, we have
PriceRangeStatus and PortfolioStatus for the current times-
lot, PRS t and PS t, as elements of each state. In addi-
tion, we explicitly include the PriceRangeStatus and Port-
folioStatus for the previous timeslot, PRS t−1 and PS t−1,
to distinguish states anticipating that learning algorithms
may focus on reacting rapidly to scenarios where either the
PriceRangeStatus or the PortfolioStatus has just changed.

We define the following actions in A:

• Maintain publishes prices for timeslot t − 1 that are the
same as those in timeslot, t;

• Lower reduces both the Consumer and Producer tariff
prices relative to their values at t by a constant, ξ;
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• Raise increases both the Consumer and Producer tariff
prices relative to their values at t by a constant, ξ;

• Revert increases or decreases each price by a constant, ξ,
towards the midpoint, mt = � 12 (pmax

t,C + pmin
t,P )	;

• Inline sets the new Consumer and Producer prices as
pBk

t+1,C = 
mt +
μ
2 � and pBk

t+1,P = �mt − μ
2 	;

• MinMax sets the new Consumer and Producer prices as
pBk

t+1,C = pmax
t,C and pBk

t+1,P = pmin
t,P .

Next, we define the following Broker Agent strategies:

1. Fixed: This strategy ties the Producer tariff price to a
moving average over smoothed forecasted prices in the
Wholesale Market. We use real data from a representative
market in Ontario, Canada, to drive these forecasts in our
simulation and obtain fifty different fixed price patterns
(IESO 2011), any one of which is used in each invocation
of the strategy. The Consumer tariff price is derived by
adding a profit margin μ to the Producer tariff price.

2. Random: This strategy chooses one of the actions in A
randomly at each timeslot; it represents a naı̈ve strategy
that is outperformed even by the Fixed strategy when they
are played against each other.

3. Balanced: This strategy chooses the Raise action if
PS t = ShortSupply and Lower if PS t = OverSupply .

4. Greedy: This strategy chooses the MinMax action if
PRS t = Rational and Inline if PRS t = Inverted .

5. Learning: This strategy learns an MDP policy using Q-
learning with a learning rate that depends inversely on the
number of visits to each state-action pair. The learning
algorithm uses a typical exploration-exploitation tradeoff
that explores more often in early episodes and progres-
sively less as the number of visits to various MDP states
increase.

Note that Balanced and Greedy are adaptive strategies that
take different actions based on current market conditions but
they do not learn from past experience. In prior work, we
have shown that a Broker Agent who employs the Learning
strategy outperforms Broker Agents that use various non-
learning strategies (Reddy and Veloso 2011). Figure 2 il-
lustrates those results; it shows the earnings of the Broker
Agents, each employing a different strategy, over a number
of episodes where each episode contains 240 timeslots.

In this work we consider the scenario where multiple in-
dependent learning agents exist in the environment concur-
rently. We find that when many learning agents are partici-
pating in the Tariff Market, they each tend to outperform the
non-learning strategies. As an illustration of the work we
present here, Figure 3 shows the superior cumulative per-
formance of two Learning Broker Agents, BL1 and BL2,
competing against Broker Agents using the Balanced and
Greedy strategies. Note that the different Broker Agents are
non-cooperative and we do not derive or analyze joint poli-
cies in this work. Further note that the earnings summed
over all Broker Agents are not expected to equal zero be-
cause of the balancing fee, φt, imposed by the Service Op-
erator for portfolio imbalances. In an extended model of
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Figure 2: Earnings comparison of a set of strategies com-
peting against each other; we see that the Learning strategy
performs best here (Reddy and Veloso 2011).

the Smart Grid domain that includes the Wholesale Market,
Broker Agents would try and offset the potential balancing
fees using forward trading contracts on the Wholesale Mar-
ket (Ketter, Collins, and Block 2010).
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Figure 3: Two Learning Broker Agents perform better than
two Broker Agents who use adaptive non-learning strate-
gies.

An important complexity in the multiple independent
learners scenario is that learned policies must be updated
over time as the other learners in the environment possibly
update their own policies, thus leading to a non-stationary
environment for each of the learners. We investigate the po-
tential benefit of periodic relearning in this context, which
leads to an additional Broker Agent strategy:

6. Relearning: This strategy builds upon the previously
defined Learning strategy by modifying the exploration-
exploitation tradeoff, which is typically a monotonic
curve with exploration decreasing with time and across
episodes. Our simulation model informs us that tariff
prices are reset by each Broker Agent at the start of each
episode to be within a fixed range of a configured parame-
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ter, p0, i.e., p0±ε. We hypothesize that a learning strategy
might gain useful information by exploring to a greater
extent at the beginning of each episode.

We define a relearning window, w, as the number of
timeslots at the beginning of each episode where the MDP
policy chooses a random action with a higher probability
than it would have otherwise. Let ρf be a fixed exploration
ratio and let ρct be the ratio implied by a monotonically de-
creasing curve at timeslot, t. At the beginning of a particular
relearning window starting at t, the exploration ratio is set
to max(ρf , ρ

c
t). After w/2 timeslots, the ratio is changed

to max(0.5ρf , ρ
c
t+w/2) and at the end of w timeslots in the

window, the ratio is restored to ρct+w. Figure 4 shows an ex-
ploration curve with relearning windows with w=40 for 10
episodes of 240 timeslots each.
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Figure 4: Modified exploration curve with relearning win-
dows at the start of each of 10 episodes.

As shown in Figure 5, we find that two Broker Agents
who use such a relearning exploration curve achieve signif-
icantly higher rewards than two Broker Agents who use a
monotonically decreasing curve.
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Figure 5: Cumulative performance of two Broker Agents
who relearn at every episode is better than that of two Broker
Agents who monotonically exploit their learned policies.

Figure 6 shows the results of varying the relearning win-
dow. Four Broker Agents of different window sizes compete
with each other over 100 episodes. The y-axis represents a
derived metric, number of wins, for evaluating Broker Agent
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Figure 6: A relearning window, w, of 40 timeslots produces
more wins than other window sizes.

performance; it is the count of the number of episodes where
a given Broker Agent achieves the highest rewards for that
episode. We find that increasing the window size helps up to
a maximum and then hurts after that. Intuitively, this makes
sense since a large relearning window decreases the oppor-
tunity to exploit the relearned policy.

Customer Allocation Models

The Tariff Market simulation model that we have developed
allocates Customers to Broker Agents based on the total or-
der preference ranking by each Customer Model of the pub-
lished tariffs at timeslot, t. A probability distribution X de-
termines the likelihood of a Customer choosing a particular
Broker Agent’s tariff. In this section, we study the effects of
varying X , the customer allocation model.

For example, in an environment with four Broker Agents,
B1 to B4, we have X as a discrete distribution:

X = {Xk :
∑

k

Pr(Xk = k) = 1, k = 1..4}

With probability Xi, a given Customer Model prefers the
tariff with the ith most favorable price and thus the corre-
sponding Broker Agent. The possible distribution values for
X are infinite, but we analyze four distinct and interpretable
instances for the four Broker Agents scenario:
• Uniform allocates Customers to Broker Agents evenly. In

this model, Broker Agents have no incentive to publish
tariffs that Customers would find to be preferable because
they acquire Customers with the same probability regard-
less of their published tariff prices.

X = {0.25, 0.25, 0.25, 0.25}

• Biased is more likely, compared to Uniform, to allocate
Customers to their preferred Broker Agents.

X = {0.50, 0.25, 0.15, 0.10}

• Volatile allocates each Customer to any of the Broker
Agents other than the one least preferred by that Cus-
tomer. Viewed from a Broker Agent’s perspective, this
is a volatile allocation model because it severely penal-
izes a Broker Agent for publishing tariffs that may not be
preferred by any Customers.

X = {0.33, 0.33, 0.33, 0.01}
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• Dominant allocates most Customers to the Broker Agent
with the most desirable tariffs. This is also a volatile allo-
cation model but it provides a large advantage to a single
Broker Agent instead.

X = {0.85, 0.05, 0.05, 0.05}

To understand the impact of these customer allocation
models, we first study the market prices that emerge from
the interaction of four Broker Agents, each independently
using the Learning strategy, under each allocation model.

In Figure 7, the data points in the subplot for each cus-
tomer allocation model represent a Consumer tariff price of-
fered by any of the four Broker Agents at a given times-
lot over 30 episodes. So, for each of the 240 timeslots per
episode, i.e. each value on the x-axis, there are 4× 30 = 120
data points along the y-axis.
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Figure 7: Customer allocation models distinctly affect the
convergence of Consumer tariff prices.

At the start of each episode, each Broker Agent publishes
a Consumer tariff price in the range p0 ± ε, where p0 is a
configured parameter to the simulation model. Given that
each Broker Agent is acting independently, we might expect
the published prices to diverge over the full range of allowed
Consumer tariff prices, 0.04 to 0.30. Such divergence would
show the 120 data points at each x-value spread out over
the y-axis, especially for the later timeslots in each episode.
But remarkably, we instead see a very high concentration of
prices. This is probably explained by the learning behavior
of each Broker Agent. Depending on the customer alloca-
tion model applied, each Broker Agent independently con-
verges to the same policy or each learns a policy that keeps
its published prices in very close proximity to the prices pub-
lished by the other Broker Agents.

For models other than Uniform, there is a pronounced ten-
dency of the Broker Agents to drive prices downwards very
rapidly. The Biased and Volatile models result in prices with

more variance in earlier episodes and as learning progresses,
they converge to lower prices. With the Dominant model,
prices converge to the lower limit within the first three or
four episodes. Lower Consumer prices are desirable but we
cannot conclude that the Dominant model is preferable since
Producer prices, which are not shown here, also converge to
their lower limit—when Producers are faced with low prices
they may be forced to withdraw from the market if they
cannot reduce costs sufficiently to remain profitable. Such
an outcome would defeat the goal of encouraging increased
participation from distributed small-scale power producers.

The bar plot in Figure 8 shows typical cumulative earn-
ings over 100 episodes for each of the four Learning Broker
Agents competing under the four customer allocation mod-
els. The first group of bars show cumulative earnings for
each Broker Agent under the Uniform model; we see that all
Broker Agents are highly profitable with an approximately
equal share of the earnings. The Biased model, compared to
the Uniform model, has lower sum earnings over all Broker
Agents and also shows more variance amongst their earn-
ings. The Volatile model further reduces the sum earnings
with about the same variance as the Biased model. The
Dominant model stands out for the highly negative earnings
of some of the Broker Agents.
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Figure 8: Different customer allocation models yield distinct
earnings profiles for four Learning Broker Agents, B1 to B4.

Even though all of the Broker Agents are using the same
Learning strategy, the policies they learn and their cumula-
tive performance can be quite different depending on two
factors: (i) the stochastic prices that they publish at the
beginning of each episode, and (ii) the customer alloca-
tion model being applied. For example, a Broker Agent
with initial Consumer prices that are not preferred by many
Customers may not be able to build a sufficiently large or
balanced portfolio of Customers if the customer allocation
model has a very low customer allocation probability, Xi,
for less preferable tariffs. This can cause the Broker Agent
to learn higher Q-values for an action like MinMax because
that action would increase revenue from the existing portfo-
lio of customers. However, such an action is likely to further
alienate Customers by making the published prices even less
preferable. This negative effect carries forward into subse-
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quent episodes, even if the prices are reset at each episode,
because the learned Q-values, if not unlearned quickly, con-
tinue to influence which actions are chosen by the Broker
Agent. Therefore, the initial conditions and the customer
allocation model can be quite influential in distinguishing
the cumulative performance of the Broker Agents even when
they all use the same Learning strategy.

An interpretation of the results in Figure 8 is that the Bi-
ased model is attractive because it yields positive earnings
for a majority of the players and penalizes a few that publish
undesirable tariffs. The sum earnings over all Broker Agents
is lower compared to the Uniform model which may be due
to more economic value accruing to the Customers instead
of the Broker Agents. In the Volatile and Dominant models,
Broker Agents have a greater probability of building imbal-
anced portfolios by acquiring a large market share of Con-
sumers but not Producers or vice versa. Such imbalances are
likely to cause large negative earnings for the Broker Agents,
possibly forcing some of them to exit the market. If a num-
ber of Broker Agents leave the market, market power is con-
centrated in the initially successful Broker Agents, possibly
reinforcing a Dominant allocation model and leading to an
inefficient monopoly over time. This interpretation of the
Dominant customer allocation model seems consistent with
established economic principles, which maintain that natu-
ral monopolies can arise due to market-based reinforcement
and asymmetric growth of one market participant, at the cost
of the others, even though each participant has similar capa-
bilities (Pindyck and Rubinfeld 2004).

Related Work

To the best of our knowledge, there has not been any work
done on developing reinforcement learning-based strategies
for autonomous Broker Agents in Smart Grid Tariff Markets.
Published Smart Grid research has typically focused on ad-
vanced metering infrastructure (AMI) or fault-management,
neither of which are very relevant to our work. Bidding
strategies in existing electricity markets have been studied in
power systems research; however, these studies have mostly
focused on trading in wholesale markets which are vastly
different from the Tariff Markets we study.

Shen and Zeng (2008) address detection of changes in
non-stationary reinforcement learning environments in or-
der to trigger random exploration; since we have a highly
stochastic environment in our work, we increase exploration
at known intervals without relying on detection and focus
instead on tunable parameters of the exploration behavior.

Research in general sum Markov Games and multi-agent
reinforcement learning has yielded many results on equi-
libria and learning algorithms, e.g., Ziebart, Bagnell, and
Dey (2011) and Melo and Veloso (2010). Such work typ-
ically assumes joint policies for the agents and/or the abil-
ity to observe the other agents’ actions. In our Tariff Mar-
ket domain, Broker Agents can only observe the effects of
the other Broker Agents’ actions through the environment.
Moreover, a Broker Agent cannot see the composition of the
other Agents’ customer portfolios. These constraints make
it difficult to apply existing results to our scenario.

Conclusion

In this work, we explored the problem of developing pric-
ing strategies and simulation models for multiple learning
Broker Agents in Smart Grid markets. We showed that mul-
tiple Broker Agents using learned strategies each outper-
form non-learning Broker Agents. We contributed a non-
monotonic exploration heuristic for relearning to account
for changes in other Broker Agents’ strategies over time.
This heuristic is designed for environments with periodic
changes. We demonstrated, using realistic simulation-based
experiments, that Broker Agents who use this relearning
heuristic achieve higher rewards. We also contributed an
analysis of the behaviors resulting from the interaction of
multiple learning strategies in the Tariff Market. Specifi-
cally, we found that market prices are driven downwards
rapidly and we found that the emergent aggregate Broker
Agent rewards are largely consistent with economic princi-
ples, thus validating our simulation approach. These results
can provide guidance for the design of Smart Grid Tariff
Markets in the real world. In future work, we plan to apply
our current simulation model and Broker Agent strategies to
the Power Trading Agent Competition (Power TAC) which
aims to create a more comprehensive and open simulation
environment for researching Smart Grid markets.
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