
Block A*: Database-Driven Search with
Applications in Any-Angle Path-Planning

Peter Yap and Neil Burch and Rob Holte and Jonathan Schaeffer
Computing Science Department

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

blueberrypete@gmail.com, {nburch, rholte, jonathan}@ualberta.ca

Abstract

We present three new ideas for grid-based path-planning al-
gorithms that improve the search speed and quality of the
paths found. First, we introduce a new type of database, the
Local Distance Database (LDDB), that contains distances be-
tween boundary points of a local neighborhood. Second, an
LDDB-based algorithm is introduced, called Block A*, that
calculates the optimal path between start and goal locations
given the local distances stored in the LDDB. Third, our ex-
perimental results for any-angle path planning in a wide va-
riety of test domains, including real game maps, show that
Block A* is faster than both A* and the previously best grid-
based any-angle search algorithm, Theta*.

1 Introduction

Path planning on maps is an important problem in many do-
mains, particularly in robotics, GPS navigation and commer-
cial computer games. Fast path planning can be challenging
for a number of reasons. First, some domains have to deal
with a dynamically changing map. For example, military
simulations and real-time strategy (RTS) games operate in a
highly dynamic map world, where paths (bridges, doors) or
obstacles (buildings, vehicles) can be suddenly moved, built
or destroyed. Second, the domain may require paths to be
computed for multiple agents. For example, a RTS game
(like Starcraft) must handle the pathfinding requests of up
to eight competing human players, each capable of control-
ling an army of up to 200 units: a worst case total of 1600
pathfinding calls which must be handled in real-time over a
network. These paths generally must be solved (or partially
solved) in milliseconds. For these (and other) reasons, the
pathfinding algorithm must be as fast as possible.

Grids are standard for highly dynamic multi-agent do-
mains due to their speed. Grids are also common in single-
agent robotics (high resolution grids result in better quality
paths). A limitation of grids is that searches are limited to
moving from a cell to one of its eight closest neighboring
cells (an octile graph). This confines the path to 45◦ or 90◦

turns, which may result in loss of path optimality and an
unaesthetic (or unhuman-like) route. Algorithms like Field
D* (Ferguson and Stentz 2006) and Theta* (Daniel et al.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2010) attempt to overcome this by considering paths with
heading changes of any-angle. Theta* produces the best
quality paths, but is much slower than A*.

In this paper, we introduce a new algorithm, Block A*,
that uses a new type of pre-computed database, a Local
Distance Database or LDDB, to achieve high-performance
pathfinding. Block A* achieves its performance by dealing
with blocks of grid cells (m × n regions of cells) at a time,
in contrast to traditional pathfinding algorithms which ma-
nipulate individual cells (1 × 1 units). Information about
all possible distances across a block is pre-computed and
stored in the LDDB. Different local distance measures used
in this pre-computation lead to different types of searches,
including those that produce paths constrained to 4 direc-
tions (tile), 8 directions (octile), or any-angle.

This research makes the following contributions:

1. We introduce a new type of database, the Local Distance
Database (LDDB) whose entries are the actual distances
between boundary points of a local neighborhood.

2. A new A*-based pathfinding algorithm, Block A*, is pre-
sented that manipulates blocks of grid cells, rather than a
single cell at a time.

3. Block A* is data-driven in the sense that it uses the LDDB
to compute g-values. By changing the LDDB, different
types of searches can be performed (e.g., Manhattan, oc-
tile, or any-angle paths).

4. Experimental results show that Block A* using an any-
angle LDDB is superior to A* and Theta*.

2 Local Distance Database (LDDB)

A Local Distance Database, or LDDB, stores the exact dis-
tance between the boundary points of a local region of the
search space. The search space is grouped into regions of
m× n contiguous grid cells. During a search, the LDDB is
queried to find the change in g-values that the search will see
when it enters a block at one location on the boundary of the
block and then exits from all of the block’s other boundary
locations. Assume that x and y are cells on the boundary
of a block. Querying LDDB[x, y] will return the cost of the
least-cost path between these two cells. For every possible
block configuration, the LDDB stores the lowest path cost
for each (x, y) pair.

120

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

In a grid-based pathfinding problem, the search space is
usually stored as a two-dimensional array, where each cell
can be accessed by its Cartesian coordinates. In the simplest
(and most common) case, each cell has a binary value: ob-
structed (value 1) or unobstructed (value 0). For a b×b block
of cells, there are 2b·b possible patterns of grid obstructions.
This exponential growth in size means that b will have to be
quite small, but a 4×4 block LDDB is already very effective,
and even a simple 2 × 2 block LDDB outperforms A* by a
speed factor of 2. In practice, only a small subset of these
patterns are actually used in a particular search, but storing
all patterns allows us to handle any search domain, including
dynamically changing ones, without having to build a new
LDDB.

Symmetry can be used to reduce the number of entries in
the LDDB (e.g., for some domains rotational symmetry can
reduce the size by four). For most domains there will be
states in the LDDB that are unreachable and can be elimi-
nated. While the Block A* algorithm (described in the next
section) can handle LDDBs that do not contain all patterns,
for simplicity a full LDDB is used in this work. The focus
of this paper is on using LDDBs to improve search perfor-
mance; no effort has been made to minimize the LDDB size.

The LDDB is constructed such that for each possible pat-
tern of grid obstacles in a block, an optimal path cost will
be stored for every boundary cell of the block to every other
boundary cell on all four sides of the block. For simplic-
ity, consider a LDDB in a grid where we can only move
in four directions and each move has unit cost. The opti-
mal paths for each pattern in the LDDB can be found by
breadth-first search; for a given pattern the computation is
inexpensive because the local region is tiny (2×2 to 5×5 in
this work). For the LDDB in this search space, with blocks
of size b × b, there are at most 4(b − 1) ingress cells and
4(b − 1) − 1 egress cells. Thus, the LDDB has a total of
2b·b× 4(b− 1)× (4(b− 1)−1) entries. With only rotational
symmetry compression, a 4× 4 LDDB fits under 3MB.

Thus far, we have not discussed the values in the LDDB.
They could be calculated assuming that grid movements are
constrained to horizontal and vertical moves. However, this
is not a constraint of the LDDB; it is dictated by the appli-
cation domain. The LDDB computation can be done using
octile (8-way) movements, if that is permitted by the appli-
cation. Similarly an LDDB can be constructed to find paths
with realistic turn radiuses, as often required in robotics ap-
plications. The values stored in the LDDB do not change the
search algorithm (Block A*).

3 Block A*

Block A* is A* adapted to manipulate a block of cells in-
stead of a single cell at a time. Each entry on its OPEN list is
a block that has been reached but not yet expanded, or which
needs to be re-expanded because new or cheaper paths to it
have been found. The priority of a block on the OPEN list is
called its heap value. Like A*, the basic cycle in Block A*
is to remove the OPEN entry with the lowest heap value and
expand it. The LDDB is used during expansion to compute
g-values for the boundary cells in the block being expanded.

Algorithm 1 Expand curBlock. Y is the set of curBlock’s
ingress cells.

1: PROC: Expand(curBlock, Y)
2: for side of curBlock with neighbor nextBlock do
3: for valid egress node x on current side do
4: x′ = egress neighbor of x on current side
5: x.g = miny∈Y (y.g + LDDB(y, x), x.g)
6: x′.g = min(x′.g, x.g + cost(x, x′))
7: end for
8: newheapvalue = minupdated x′ (x′.g + x′.h)
9: if newheapvalue < nextBlock.heapvalue then

10: nextBlock.heapvalue = newheapvalue
11: if nextBlock not in OPEN then
12: insert nextBlock into OPEN
13: else
14: UpdateOPEN(nextBlock)
15: end if
16: end if
17: end for

Pseudocode for Block A* is given in two parts. Algo-
rithm 1 is the pseudocode for how Block A* expands a
block. This is the biggest difference between A* and Block
A* and will be discussed first. The main procedure for Block
A*, Algorithm 2, will then be discussed.

The operation of Algorithm 1 will be explained via the
example in Figure 1. In this example there are only unit cost
horizontal and vertical moves. In the centre of the left side of
the figure is curBlock, the 5×5 block with corners A2, A6,
E6 and E2, that is about to be expanded. The black tiles are
obstacles. curBlock is on the left edge of the search space
so has only three neighbor blocks; the grey cells are the cells
in the neighbor blocks that are immediately adjacent to cells
in curBlock (e.g., cells A1 to E1 are the topmost cells of
the neighboring block under curBlock).

Figure 1: Expanding a block: before (left) and after (right)

curBlock’s ingress cells (the set Y) are the boundary
cells of curBlock that have a different g-value now than
they had the previous time curBlock was expanded (if
this is the first time curBlock is being expanded then
boundary cells with a finite g-value are ingress cells). In
this example, the only ingress cell is E2 with a g-value

121

of 3. The first step in expanding curBlock is to iden-
tify its valid egress cells (line 3), which are the unob-
structed boundary cells that are adjacent to unobstructed
cells in a neighbouring block (which are called their egress
neighbors (line 4)). For example, cell B2 is a valid
egress cell but C2 and D2 are not. Then the LDDB en-
try for curBlock’s pattern of unobstructed and obstructed
cells is retrieved and g-values for all valid egress cells
(A2, A6, B2, E2, E3, E4, and E5) are calculated based on
the g-values of the ingress cells and the distance between the
ingress and egress cells given by the LDDB (line 5). For
example, A6.g = minx∈ingress(x.g+LDDB(x,A6), A6.g)
= E2.g+14 = 3+14=17. From A6’s g-value of 17, a g-
value for A6’s egress neighbor A7 is computed (A7.newg
= A6.g+1=18). The actual g-value of an egress neighbour
is only changed if the new g-value is an improvement over
the existing one (line 6). For example, E1’s existing g-value
of 2 is not improved by the g-value of 3 + 1 = 4 calculated
from the egress cell E2. The egress neighbour cells whose
g-value has changed here will be the ingress cells for their
block (nextBlock) if it is expanded.

The right side of Figure 1 shows the g-values after ex-
panding curBlock. To finish the expansion, we compute
the heap value for each neighbouring block and, if neces-
sary, insert it into OPEN (line 12) or update its priority on
OPEN (line 14). For simplicity, assume that h = 0 for all
tiles. The block to the right of curBlock will be added to
OPEN with a heap value of min(4, 5, 6, 7) = 4, the block
on top will be added with value 18, and the block below will
be added again with a value of min(13, 14) = 13. The rea-
son for the latter value is that E1’s previous g-value of 2 has
not improved, and a g-value is not used in the heap value
calculations if it was not updated (line 8). Even if a tile’s
g-value is not used in the heap value calculations, it is stored
for use later when and if its block is expanded. If the block
being put in OPEN is already there we only update OPEN if

Algorithm 2 Block A*

1: PROC: Block A* (LDDB, start, goal)
2: startBlock = init(start)
3: goalBlock = init(goal)
4: length = ∞
5: insert startBlock into OPEN
6: while (OPEN �= empty) and

((OPEN .top).heapvalue < length)) do
7: curBlock = OPEN .pop
8: Y = set of all curBlock’s ingress nodes
9: if curBlock == goalBlock then

10: length = miny∈Y (y.g+dist(y, goal), length)
11: end if
12: Expand(curBlock, Y)
13: end while
14: if length �= ∞ then
15: Reconstruct solution path
16: else
17: return Failure
18: end if

its heap value has improved (line 9).
Algorithm 2 is the main procedure for Block A*; it is sim-

ilar to A* except for the special handling of the initial pro-
cessing of the blocks containing the goal cell (goalBlock)
and the start cell (startBlock). The call to init(start)
(line 2) computes the shortest path from the start cell to ev-
ery reachable boundary cell in startBlock. Line 3 does the
same for the goal cell and goalBlock. Special care is taken
if start and goal are in the same block.

Figure 2 illustrates how Block A* works. The search
space is the 15 × 10 grid shown in #0. S and G are the
start and goal cells. Blocks are 5 × 5, using the Manhattan
heuristic. Cells that A* would visit have been shaded. In
this contrived example, A* has to visit almost all the cells.

� ��
�

�

��

�

�

�

��

����

�

�

Figure 2: Block A* example

#1 shows the results of the initialization process just de-
scribed. startBlock, with the g-values shown, is added to
OPEN. The main loop of Algorithm 2 then begins by remov-
ing startBlock from OPEN and expanding it as described
above. There is only one valid egress cell from startBlock
to block A, the top-right cell in startBlock with a g-value
of 2. Hence, block A is added to OPEN with a heapvalue of
2 + 1 + 8 = 11 (2+1 is the g-value of the egress neighbour
in A, and 8 is its h-value). There are five valid egress cells
from startBlock to block B so B is added to OPEN with a
heap value of min(2 + 1 + 10, 1 + 1 + 11, 2 + 1 + 12, 3 +

122

1 + 13, 4 + 1 + 14) = 13. At this point the LDDB entries
for A and B have not yet been queried.

A has the smallest heap value and becomes the next
curBlock. This expansion of A was described in detail
in Figure 1, and the right side of that figure shows the g-
values that are computed for cells in A and the neighbour-
ing blocks (goalBlock is above A, B is to the right of A,
and startBlock is below A). By contrast, in #2 we see
the g-values computed for A but not for the neighbouring
blocks. This is what will be shown in every part of Fig-
ure 2. A’s neighbors are now added to OPEN. There is
only one egress cell from A to goalBlock, with a g-value
of 17, so goalBlock is added to OPEN with a heap value of
17+1+5 = 23 (5 is the exact distance from this egress cell’s
neighbour in goalBlock to the goal cell, which is known
from the initialization step for goalBlock). From A one
can also go to C; C is added to OPEN with the heap value
min(6+1+6, 5+1+7, 4+1+8, 3+1+9) = 13. There are
three valid ways to go from A back to startBlock. Return-
ing through startBlock’s top-right cell does not improve
that cell’s g-value, so it is ignored. The other two paths back
to startBlock reach parts of the block that are not reach-
able from the start cell by paths wholly within startBlock.
Since one of these might conceivably be on the shortest path
to the goal, startBlock is added back onto OPEN with a
heap value of min(12 + 1 + 10, 13 + 1 + 11) = 23.

B and C both have the smallest heap value (13) on OPEN
at this point. Suppose B is chosen for expansion (#3). B
provides new ways to enter C, and therefore updates some
of the g-values in C, but the heap value calculated from these
g-values, min(3 + 1 + 9, 4 + 1 + 10, 5 + 1 + 11, 6 + 1 +
12, 7 + 1 + 13) = 13, is the same as its current heap value.

From B we can also return to startBlock but doing so
does not decrease any g-values in startBlock or add any
new ones. C is expanded next; it has ingress nodes reached
from both A and B (#4). D is added to OPEN with a heap
value of 8 + 1 + 4 = 13. A and B are not re-inserted into
OPEN because none of their cell’s g-values have improved.

Next, D is expanded (#5) and goalBlock is reached for a
second time, with an improved heap value of 9+1+3 = 13.
We know, from the initialization step, that there is no path
to the goal cell entirely within goalBlock from the cell in
goalBlock that has just been reached from D, but that does
not preclude it from being on the optimal path to goal, so it
must not be ignored.

goalBlock is now at the head of the OPEN list and is ex-
panded (#6). It has two ingress cells. No path to the goal
is found from D, but a path from A is found with a value
17 + 1 + 5 = 23. Like A*, Block A* cannot terminate im-
mediately; it must continue until it is certain that no cheaper
path exists. At the head of OPEN is startBlock (reached
from A) with a heap value of 23, therefore every remain-
ing path must be at least length 23. Thus the path we found
must be optimal. Block A* now terminates and reconstructs
the path using back pointers (#7). The path from 17 to 3
in block A is stored as a set of inflection points (circles) in
the LDDB, and these back pointers were updated during the
search. The path from G to 18 of goalBlock and 2 to S in
startBlock were found by init().

Figure 3: Any-angle search results on a vertex block

4 Any-Angle Search

Thus far we have searched only on the cells of the grid. A
slight modification is needed to be able to perform any-angle
searches which operate on the vertices of the grid (but the
obstacles are still cell-based). In Figure 3, the obstacle is the
grey box bounded by vertices C4, C5, D4, and D5. This is
a cell, but the search is on vertices. To convert Block A* to
search on vertices, one need only construct a LDDB that
takes exterior vertices of a block as input, rather than using
the exterior cells. For vertex blocks, the exterior vertices of a
block are shared with another block1 and the corner vertices
are shared with 3 other blocks. In contrast, the exterior cells
of a cell-based block are not shared. In other words, Block
A* does not change; only the database used.

In Figure 3, the shortest path from B1 to E6 using cells is
8. With an any-angle LDDB using vertices, Block A* finds
the optimal path B1−D4−E6 (dashed line) with a cost of
5.84 (it is retrieved from the 5× 5 LDDB). Theta* will find
the suboptimal path B1−E5−E6 after some computation
(open arrows; cost is 6). A* will find a zig-zag-like path
B1−C2−C3−D4−D5−E6 (filled circles; cost is 6.24).
A* is constrained to heading changes that are 45◦, resulting
in many directions changes (twice as many, in this example).

To aid in recomputing the path once found by Block A*,
the inflection points used in the optimal paths can be saved
in the LDDB. For example, in Figure 3 the inflection point
D4 is stored for the (ingress, egress) pair (B1, E6). The E6
entry will point to D4, and D4 will point to B1 (assuming
they are all on the optimal path).

A* will always find the optimal path, relative to the grid
that it searches on. Similarly, Block A* will find the opti-
mal path relative to the LDDB that it uses. However, in an
any-angle sense, these “optimal paths” are not necessarily
any-angle optimal. Block A* uses optimal local (block) in-
formation to help improve its path quality, but it lacks the
global information needed for an optimal answer.

Theta* is essentially A* except that the parent of a vertex
in Theta* is not confined to its neighbor. Theta* finds paths
of any-angle while searching on a grid that is bounded by
45◦ angles. Normally for A*, when the node s′ is expanded
its child s′′ has a pointer back to its parent s′. However in
Theta*, for each expansion of vertex s′, it calls a line of sight
(LOS) check for every child s′′ of s′. If a LOS check from
the child s′′ to s, parent(s′), is successful, then this implies
that a straight line can be drawn from s′′ to s and the parent

1In Algorithm 1, line 6, cost(x,x′) = 0 for vertices.

123

Data Set Algorithm Distance Expanded Time (s)

Random A* 274.7 14957 0.00481
0% Theta* 260.8 918 0.00650

Block A* 261.8 638 0.00103

Random A* 275.3 15039 0.00489
10% Theta* 261.6 4439 0.00417

Block A* 262.5 845 0.00140

Random A* 276.4 15351 0.00499
20 % Theta* 263.3 6229 0.00494

Block A* 264.3 1159 0.00185

Random A* 277.5 15889 0.00518
30% Theta* 265.4 8536 0.00632

Block A* 266.6 1617 0.00240

Random A* 282.7 18025 0.00584
40% Theta* 271.5 12603 0.00904

Block A* 273.0 2407 0.00315

Random A* 296.9 26146 0.00825
50% Theta* 286.2 22721 0.01484

Block A* 287.8 4476 0.00468

Starcraft A* 300.2 26456 0.01268
(random) Theta* 285.7 23729 0.11304

Block A* 286.8 2890 0.00506

BG2 A* 248.7 10796 0.00334
(scenarios) Theta* 237.2 7043 0.01796

Block A* 238.0 1034 0.00147

DA:0 A* 409.0 15465 0.00478
(scenarios) Theta* 392.3 14478 0.02697

Block A* 393.9 1709 0.00226

Table 1: Comparing algorithm performance

of s′′ is now set to be s. The line from s to s′′ is never
longer than the path from s to s′ to s′′. In Figure 3, let E5
be s′ whose parent B1 is s. When E5 is expanded, it will
check if its child s′′, E6, has a straight line to B1. If it does,
then E6’s parent is set to B1. In this example, there is no
straight line and thus E6’s parent is set to E5.

5 Experimental Results

We start by comparing the competing algorithms using a
500 × 500 grid filled with randomly placed obstacles, with
the probability of a cell being an obstacle ranging from 0%
to 50%. In all our experiments, Block A* used the same
5 × 5 vertex block LDDB which took 1.2s total to com-
pute. All entries in the top part of Table 1 are averaged
over 500 randomly generated obstacle maps, each with 100
path-planning problems based on random start and goal ver-
tices, for a total of 50,000 data points. The bottom part of
Table 1 is based on game maps. All results were obtained on
a Core 2 2.8 GHz computer with 8 GB of memory.

For low number of obstacles, Theta* expands fewer ver-
tices than A* (top part of Table 1). This helps Theta* out-
perform A* in run time, despite Theta*’s LOS overhead. As
the percentage of obstacles increases, the Euclidean heuris-
tic decreases in effectiveness and Theta* suffers, expanding
almost as many nodes as A*. This combined with the LOS
overhead causes Theta* to become slower than A*. In con-
trast, Block A* is always faster than both A* and Theta*
(2-3-fold). Furthermore, this gain in speed is not offset by a
noticeable increase in path length (“Distance” column); the

difference between the path lengths of Theta* and Block A*
is at most 0.5%. The number of expansions done by each
algorithm (“Expanded” column) needs to be read with care.
When A* expands a node, the time cost is roughly constant.
When Theta* expands a node, it does an additional LOS call
and that cost depends on how obstructed the map is. Block
A* does not expand a single cell; it expands a block and the
cost varies depending on the block.

Maps with randomly placed obstacles are not necessar-
ily representative of search problems that arise in practice.
Hence, we also experimented with real game maps of two
different kinds (bottom half of Table 1):

1. RTS (Starcraft). These maps were used in the AI-
IDE 2010 RTS competition (five, sizes 512 × 512 and
384 × 512). They have large open areas connected with
numerous strategic choke points. This leads to computa-
tionally interesting A* behavior as the Euclidean heuristic
is far from perfect. The combination of large open areas and
a poor heuristic (caused by strategic choke points) is typical
in these maps. 50,000 random start/goal pairs were used.

2. Role-playing games (Baldur’s Gate 2 (BG2) and
Dragon Age: Origins (DA:O)). RPG maps are fundamen-
tally different than RTS maps in that they are maze-like.
There are 120 512 × 512 BG2 maps and 157 DA:O maps
varying in size from 49 × 49 to 1024 × 1024. BG2 used
93,160 start/goal pairs, stratified by their path lengths, while
DA:O used 159,465 start/goal pairs, also stratified.

Theta* is 5-10 times slower than A* for game maps (bot-
tom part of Table 1), but returns shorter paths. In con-
trast, Block A* is at least 10 times faster than Theta*, while
achieving comparable path quality (≤ 0.5% difference).

Visibility graphs (v-graphs) are commonly used in the
games industry (Lozano-Pérez and Wesley 1979). While
searching using v-graphs is known to be very fast, they are
not used in many commercial games, including Starcraft.
Starcraft can have hundreds of agents/objects being dynam-
ically placed/destroyed/moved on the map in real-time, each
leading to a different map. To use v-graphs, each map that
has a structural change must be pre-computed (takes over a
day). In contrast, a LDDB only needs to be pre-computed
once (1.2 seconds) and works for every map.

For graphs with a high percentage of random obstacles,
Block A* actually outperforms v-graphs (e.g., by almost a
factor of two with 40% obstacles). In maps with lots of open
spaces, as seen in the game maps, v-graphs are a factor of 3-
9 faster at doing an individual search. But it must be kept in
mind that v-graphs are effectively only applicable when the
map remains static; the pre-processing costs prohibit using
them for a highly dynamically changing map.

Why does Block A* perform better than both A* and
Theta*? For A* the answer is simple: Block A* benefits
from the pre-computed results in LDDB to avoid work. For
Theta*, an expensive LOS algorithm is needed during exe-
cution. For a LOS algorithm to check a line segment that
is M tiles long, it must check at least M tiles, regardless of
how efficient the LOS algorithm is. Theta* calculates a LOS
for every child of the current vertex being expanded.

Figure 4 illustrates the computational overhead of Block
A*, A* and Theta*. The darker the diagram, the more com-

124

�

� � �

� ������	
�
� �����

Figure 4: Overheads

Map (size) Algorithm Distance Expanded Time (s)

1000x1000 A* 518.3 478457 0.38
Theta* 491.3 478096 22.57

Block A* 493.1 30032 0.04

Table 2: Using a poor heuristic in a large unobstructed area.

putations. This example uses a 13 × 13 vertex grid devoid
of obstacles and zero heuristic for simplicity. When search-
ing from the start S to the goal G, Block A* with a 5 × 5
vertex LDDB calculates only the the exterior vertices of the
block, denoted by the dark circles on those vertices (left).
A* must calculate the g- and h-values for every vertex in the
grid (middle). Theta* must expand every vertex done by A*
and in addition make a LOS check from each child of the
current vertex being expanded to S (right).

Lazy Theta* (Nash, Koenig, and Tovey 2010), the most
expedient of all Theta* derivatives, calculates a LOS only
once for every vertex expanded, at the expense of more ex-
pansions. AP Theta* (Daniel et al. 2010) is another deriva-
tive that can reduce the number of LOS calls. However, the
space and time required for the extra angle maintenance re-
sults in a slower average run-times and longer paths com-
pared to Theta*. Although Theta* derivatives can reduce the
average number of LOS calls with varying degrees of suc-
cess, the results are at the expense of longer paths or longer
run-times.

Since we are using real numbers for any-angle paths, a
heap is used for OPEN. A heap costs O(NlgN) where
N is the length of the optimal path. Theta* will per-

form O(
∑N

M=1
MlgM) = O(N2lgN) heap operations.

Large open spaces spawn expensive LOS calls as these lines
lengthen; this bodes poorly for Theta*, especially for mod-
ern game maps (1000× 1000 grids).

Table 2 compares the algorithms on a 1000×1000grid us-
ing a zero heuristic with 100 random start/goal pairs. Block
A* is fastest, over 560 times faster than Theta* while giv-
ing path solutions of comparable quality. While the time
performance of Theta* can be improved by a better heuris-
tic the same improvement will also benefit A* and Block
A*. Block A* has the benefit of being less sensitive to a
bad heuristic compared to A* and Theta*. Given a perfect
heuristic, Block A* is still 5-6 times faster than both A* and
Theta* (Table 1 with 0% random obstacles). In the absence
of a good heuristic, Block A* performs even better.

Path smoothing (PS) (Millington and Funge 2009) is used

to remove unnecessary heading changes in a path to reduce
its length and make it more realistic. In Table 1 and 2, the
maximum difference of 0.5% path length between Theta*
and Block A* is reduced to 0.1% with PS.

Finally, Block A* has also been applied to traditional tile
(4-way) and octile (8-way) pathfinding on game maps. By
changing the LDDB pre-computation, different constraints
are encoded into the search. In these experiments (not
shown), Block A* was consistently 2-3-fold faster than A*.

6 Conclusions

RTS games remain a challenging domain for path planning
algorithms. Firstly, game maps are designed to be interest-
ing, so a good heuristic is hard to find. Block A* performs
well with both good and bad heuristics, and is always faster
than both A* and Theta*. Secondly, the dynamic nature of
games can significantly alter a map. A specialty algorithm
good for open areas like AP Theta* but poor for clogged ar-
eas will suffer. Theta* may be good for low obstructed areas,
but flounders in open areas. A map having open and clogged
areas (or can dynamically change) makes deciding which al-
gorithm to use difficult. Block A* is not impacted in these
situations as its LDDB contains all pattern possibilities.

From our experiments using real maps used in commer-
cial games, Block A* is consistently faster than both A* and
Theta* in both clogged and open areas. The real-time na-
ture of games demand a fast path planning algorithm; in
the industry A* is considered too slow. Theta* is always
slower than A* per vertex expansion, and much slower than
A* when the heuristic is bad, when the map is open or both.
In contrast, Block A* is always faster than A*. For all these
criteria that make path planning difficult in games—poor
heuristics, dynamic maps, and real-time constraints—Block
A* is always faster than both Theta* and A*. As well, Block
A* will always find shorter and more realistic paths com-
pared to A*; paths comparable to the slower Theta*.

7 Acknowledgments

We thank the reviewers for their comments; and Nathan
Sturtevant and Dave Churchill for the game maps. This re-
search was funded by NSERC and iCORE.

References

Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. 2010.
Theta*: Any-angle path planning on grids. JAIR 39:533–
579.

Ferguson, D., and Stentz, A. 2006. Using interpolation to
improve path planning: The field D* algorithm. Journal of
Field Robotics 23(2):79–101.

Lozano-Pérez, T., and Wesley, M. 1979. An algorithm for
planning collision-free paths among polyhedral obstacles.
Communications of the ACM 22(10):560–570.

Millington, I., and Funge, J. 2009. Path smoothing. In
Artificial Intelligence in Games: 2nd Edition, 251–256.

Nash, A.; Koenig, S.; and Tovey, C. 2010. Lazy theta*:
Any-angle path planning and path length analysis in 3d. In
AAAI.

125

