
Optimal Packing of High-Precision Rectangles

Eric Huang
Palo Alto Research Center

3333 Coyote Hill Rd.
Palo Alto, CA 94304
ehuang@parc.com

Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095
korf@cs.ucla.edu

Abstract

The rectangle-packing problem consists of finding an
enclosing rectangle of smallest area that can contain a
given set of rectangles without overlap. Our new bench-
mark includes rectangles of successively higher preci-
sion, challenging the previous state-of-the-art, which
enumerates all locations for placing rectangles, as well
as all bounding box widths and heights up to the op-
timal box. We instead limit the rectangles’ coordi-
nates and bounding box dimensions to the set of sub-
set sums of the rectangles’ dimensions. We also dy-
namically prune values by learning from infeasible sub-
trees and constrain the problem by replacing rectan-
gles and empty space with larger rectangles. Compared
to the previous state-of-the-art, we test 4,500 times
fewer bounding boxes on the high-precision benchmark
and solve N=9 over two orders of magnitude faster.
We also present all optimal solutions up to N=15,
which requires 39 bits of precision to solve. Finally,
on the open problem of whether or not one can pack
a particular infinite series of rectangles into the unit
square, we pack the first 50,000 such rectangles with
a greedy heuristic and conjecture that the entire infinite
series can fit. Our open source solver is available at
http://code.google.com/p/rectpack.

Introduction

In 1968, Meir and Moser (1968) first proposed the problem
of finding the smallest square that can contain an infinite
series of rectangles of sizes 1

1
x 1

2
, 1
2

x 1

3
, 1

3
x 1

4
, ..., etc. The

rectangles cannot overlap and are unoriented, meaning that
they may be rotated 90 degrees. The unit square has exactly
enough area since the total area of the rectangles in the series
is one. On the other hand, no space can be wasted, suggest-
ing that the task is infeasible. Inspired by this problem, we
propose a new benchmark and developed several new tech-
niques improving upon the previous state-of-the-art solver
for optimal rectangle packing.

Given a set of rectangles, our problem is to find all en-
closing rectangles of minimum area that will contain them
without overlap. We refer to an enclosing rectangle as a
bounding box. The optimization problem is NP-hard, while
the problem of deciding whether a set of rectangles can be

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

packed in a given bounding box is NP-complete, via a reduc-
tion from bin-packing (Korf 2003). We introduce the unori-
ented high-precision rectangle-packing benchmark, where
the task is to find all bounding boxes of minimum area
that contain a finite set of unoriented rectangles of sizes
1

1
x 1

2
, 1

2
x 1

3
, ..., up to 1

N
x 1

N+1
.

For example, for N=4 one must pack rectangles of sizes
1

1
x 1

2
, 1

2
x 1

3
, 1

3
x 1

4
, and 1

4
x 1

5
. Alternatively, one may try to

pack rectangles of sizes 60x30, 30x20, 20x15, and 15x12,
which is just the original instance scaled up by a factor of 60,
the least common multiple of the rectangle dimensions. This
strategy is required for the broad class of recent rectangle-
packing solvers that explore the domain of integer x- and
y-coordinates for the rectangles and quickly breaks down at
higher N . For example, the optimal solution of N=15 has
over 400 billion unique coordinate pairs that rectangles can
be assigned to. Our benchmark complements rather than
replaces the current low-precision benchmarks, which until
now have neglected high-precision instances.

Rectangle packing has many practical applications. It ap-
pears when loading a set of rectangular objects on a pal-
let without stacking them. Various cutting stock and layout
problems also have rectangle packing at their core.

Rectangle packing can also model some scheduling prob-
lems where tasks require resources that are allocated in con-
tiguous chunks. For example, consider the task of schedul-
ing and allocating contiguous memory addresses to pro-
grams. The width of a rectangle represents the length of
time a program runs and the height represents the amount of
contiguous memory it needs. A rectangle-packing solution
then tells us both when programs should be run as well as
which memory addresses they should be assigned. Similar
problems include scheduling when and where ships should
berth along a single, long wharf, as well as the allocation
and scheduling of radio frequency spectra usage.

Previous Work

Korf (2003) divided the rectangle-packing problem into two
subproblems: the containment problem and the minimal
bounding box problem. The former tries to pack the given
rectangles in a given bounding box, while the latter finds a
bounding box of least area that can contain a given set of
rectangles. The algorithm that solves the minimal bounding
box problem calls the algorithm that solves the containment

42

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence



problem as a subroutine.

Minimal Bounding Box Problem

A simple way to solve the minimal bounding box problem is
to find the minimum and maximum areas describing the set
of feasible and potentially optimal bounding boxes. Boxes
of all sizes are generated with areas within this range, and
then tested in non-decreasing order of area until all feasible
solutions of smallest area are found. A lower bound on the
area is the sum of the areas of the given rectangles. An upper
bound on the width is determined by the bounding box of a
greedy solution found by setting the bounding box height to
that of the tallest rectangle, and then placing the rectangles in
the first available position when scanning from left to right,
and for each column scanning from bottom to top.

Containment Problem

Korf’s (2003) absolute placement approach modeled rectan-
gles as variables and positions in the bounding box as values.
Rectangles were placed in turn with a depth-first search, and
all possible locations were tested for each rectangle. By con-
trast, Simonis and O’Sullivan’s (2008) solver assigned the
x-coordinates of the rectangles before any of the y-coordi-
nates (Clautiaux, Carlier, and Moukrim 2007) among other
techniques, improving performance by orders of magnitude.
Huang and Korf (2009) improved on this by exploring the
y-coordinates differently, modeling candidate locations as
variables, and rectangles as values, which made their solver
over an order of magnitude faster.

Each successive instance in our unoriented high-preci-
sion rectangle-packing benchmark introduces a new rectan-
gle with dimensions of higher precision. As noted in the
introduction, describing larger instances requires integers of
larger magnitude, greatly increasing the number of coordi-
nate pairs in the search space. Moffitt and Pollack (2006)
had much earlier introduced a relative placement approach
in which every pair of rectangles were chosen to either not
overlap each other vertically or to not overlap each other hor-
izontally. Determining all such pairwise relationships satis-
fies the constraints of our rectangle-packing problem.

Although the relative placement approach is immune to
the precision of the rectangles, there are many reasons to
still work with absolute placement. Almost none of the tech-
niques that make absolute placement five orders of magni-
tude faster (Huang and Korf 2009) can be applied to rela-
tive placement. Also, the methods for relative placement are
complex and apply only after the orientations of all rectan-
gles have been determined (Moffitt and Pollack 2006), so
now all possible rectangle orientations must be enumerated.

Since the source code for the competing approach is lost
(Moffitt 2010) and since the only available binary has been
hard-coded with an incomparable benchmark with low-pre-
cision rectangles, we only compare our work with the previ-
ous state-of-the-art solver (Huang and Korf 2010).

Overall Strategy

Given an instance from our high-precision benchmark de-
scribed in rational numbers, we multiply all values by the

(a) (b)

Figure 1: Examples of mapping solutions to one where rect-
angles are in their left-most, bottom-most positions.

least common multiple to get an instance of integer dimen-
sions. We then apply the absolute placement solution tech-
niques (Huang and Korf 2010), with improvements we will
subsequently explain, in order to find the optimal solutions.
Once found, we divide all x- and y-coordinates describing
the optimal solutions by the initial scaling constant in order
to obtain the optimal solutions for the original problem.

Note that we can map every packing solution to one where
all rectangles are slid over to the left and to the bottom as
much as possible (Chazelle 1983). For example, the solu-
tion in Figure 1a can be non-uniquely transformed into that
of Figure 1b. Since all rectangles are now propped up from
the left and below by other rectangles, each rectangle’s x-
coordinate is a subset sum of the widths of the other rect-
angles and each rectangle’s y-coordinate is a subset sum
of the heights of the other rectangles. Similarly, the width
and height of the bounding box must be subset sums of the
widths and heights of the rectangles, respectively.

Minimum Bounding Box Problem

Since we test bounding boxes of all pairwise combinations
of widths and heights in given ranges, limiting all values to
the subset sums helps make the problem more tractable.

Generating All Subset Sums

We compute the set of the subset sums prior to searching.
For oriented rectangles which cannot be rotated we compute
two sets: one based only on the heights of the rectangles
for the y-coordinates, and one based just on their widths for
the x-coordinates. This separation generates fewer subset
sums compared to considering both widths and heights to-
gether. Since our high-precision benchmark is unoriented
we must consider all widths and heights together. Once the
set is constructed, we choose bounding box heights from one
set while choosing bounding box widths from the other.

Excluding Pairs of Subset Sums

We can reject some bounding boxes for which certain values
of width and height are mutually exclusive. For example,
if we know a specific set of rectangles generate a particu-
lar sum for the width of the bounding box, this implies that
these rectangles will be placed horizontal to one another, and
therefore cannot be stacked vertically.

43



(a) A partial solution of packing
rectangles in a 9x5 bounding box.

(b) Two rectangles
yet to be placed.

Figure 2: Example of learning from an infeasible attempt.

For example, the integer version of N=4 consists of unori-
ented rectangles of sizes 60x30, 30x20, 20x15, and 15x12.
The bounding box width of 57 is generated by the rectangles
of {30x60, 15x20, 12x15} or of {30x20, 15x20, 12x15}. We
deduce that bounding boxes of width 57 always require the
15x20 and the 12x15 rectangles to be horizontal to one an-
other. This implies that bounding boxes of width 57 cannot
have a height of 47, because such a height requires rotat-
ing the 15x20 and stacking the rectangles {30x20, 20x15,
15x12} vertically. Two rectangles cannot be simultaneously
vertically and horizontally next to each other. Therefore we
prune the bounding box of size 57x47.

Learning From Infeasible Attempts

Recall that the algorithm for solving the minimal bounding
box problem repeatedly calls the algorithm to solve the con-
tainment problem. Potentially feasible bounding boxes are
tested in order of non-decreasing area until the first feasible
boxes are found. We can learn from the infeasible attempts.

Instead of considering the subset sums that can be cre-
ated using all rectangle heights, we consider only a subset
of them. For example, consider packing oriented rectangles
of size 3x5, 5x4, 2x4, and 2x1 in that order. At some point
we may test a 9x5 bounding box. Figure 2a shows a partial
solution for packing the rectangles into the 9x5 bounding
box, with the remaining unplaced rectangles in Figure 2b.
Clearly this bounding box is infeasible since the 3x5 and 5x4
rectangles must be arranged horizontally, and the remaining
empty space can never fit the 2x4 rectangle.

Now consider the possibility of testing some future
bounding box of the same width. Using the set of subset
sums, we might naively test a 9x6 bounding box. However,
note that from the packing attempt of Figure 2, there was
not even an arrangement for the first three rectangles, re-
gardless of the fourth rectangle of size 2x1. Therefore, the
next bounding box of width 9 should have a height of 8, a
subset sum based on the heights of only the first three rect-
angles. Note that in this particular example, increasing the
width by one solves the problem, so what we have concluded
only applies to future bounding boxes of width 9.

Intuitively, after an infeasible bounding box, we must in-
crease the height enough to allow the next attempt to search
deeper in the search tree. A height increment too small may
cause us to backtrack at all of the same partial solutions we
had explored before. We keep track for every bounding box
width the corresponding height of the last infeasible attempt,

as well as the rectangle corresponding to the deepest point
where we backtracked. This method is similar to nogoods
learning (Schiex and Verfaillie 1993) in constraint process-
ing. Although the rectangles in this example are oriented,
the same principles apply in the unoriented case, if no place-
ment can be found for a rectangle in either of its orientations.

Containment Problem

We first assign x-coordinates for the rectangles, then con-
duct a perfect packing transformation, and finally work on
the y-coordinates (Huang and Korf 2010). During the search
for x-coordinates, we prune when the sum of the heights
of all rectangles overlapping an x-coordinate exceeds the
height of the bounding box (Simonis and O’Sullivan 2008).
All other techniques we introduce here are our own.

Assigning X-Coordinates

For oriented rectangles, we choose x-coordinates from the
set of subset sums of rectangle widths. Instead of precom-
puting the set as we did in the minimal bounding box prob-
lem, here we generate it dynamically at every node during
the search. The set is computed as follows:

1. Initialize the set with the value 0, as this represents plac-
ing a rectangle against the left side of the bounding box.

2. For every rectangle assigned its x-coordinate, insert into
the set the sum of its x-coordinate and its width.

3. For every rectangle with its x-coordinate still unassigned,
add its width to every element in our set, and insert the
new sums back into the set.

For unoriented rectangles, we must consider both the
width and height of the rectangle instead of just the width
by itself. Finally, just as we pruned the space of bounding
boxes by learning from infeasible search attempts, we do the
same here. After searching an infeasible subtree, we build
our subset sums by considering only the rectangles down to
the deepest point we previously backtracked.

Perfect Packing Transformation

After assigning x-coordinates, Huang and Korf (2009) cre-
ated a number of 1x1 rectangles to account for all empty
space in the original instance. The transformation resulted
in a new instance, without empty space, and consisting of the
original rectangles plus the new 1x1 rectangles. Then for a
given empty corner in a partial solution, they asked which of
the unplaced rectangles might fit there, essentially modeling
empty corners as variables and rectangles as values.

In our high-precision benchmark, solving N=15 requires
creating over 1.5 billion 1x1 rectangles because we scaled
the problem up by the least common multiple. Here their
solver simply requires too much memory and time. We
avoid this problem by creating fewer and much larger rect-
angles to account for the empty space.

Widening Existing Rectangles In the partial solution of
Figure 3a, where we have a 10x20, 20x10, and a 40x10 rect-
angle in a 60x50 bounding box, assume we have assigned

44



(a) A partial solution where
only x-coordinates are known.

(b) The result of widening the
rectangles.

Figure 3: Widening existing rectangles.

(a) A partial solution where
only x-coordinates are known.

(b) A solution without 60x1
rectangles for empty space.

Figure 4: Consolidating empty space into horizontal strips.

x-coordinates but not y-coordinates. For any assignment of
y-coordinates, the space right of the 40x10 rectangle must
always be empty. Thus, we replace the 40x10 rectangle with
a 60x10 rectangle, effectively widening the original rectan-
gle. Likewise, we replace the 20x10 rectangle with a 30x10
rectangle, and the 10x20 rectangle by a 30x20 rectangle, as
in Figure 3b. Our solver greedily attempts to widen the rect-
angles towards the right before widening them towards the
left. After solving the problem we can just return the rectan-
gles back to their original widths.

Turning Empty Space Into Large Rectangles In the par-
tial solution of Figure 4a, we have assigned only the x-coor-
dinates of the rectangles in a 60x40 bounding box. Instead
of creating three hundred 1x1 rectangles to represent the
empty space indicated by the single hash marks, we can use
ten 30x1 rectangles without losing any feasible solutions.
Similarly, we represent the doubly-hashed empty space with
twenty 30x1 rectangles instead of six hundred 1x1 rectan-
gles. Note that we cannot use 60x1 rectangles for the empty
space since we would lose the solution in Figure 4b.

Assigning Y-Coordinates

After the perfect packing transformation, we assign y-
coordinates by asking which rectangle can be placed in a
given empty corner (Huang and Korf 2009). Like before,
we limit the y-coordinates to subset sums of the heights of
the rectangles in the original instance. For an empty cor-
ner at a y-coordinate that is not a subset sum, we disallow
assigning any of the rectangles from the original instance.
Here only rectangles created by the perfect packing trans-
formation are assigned. We generate these subset sums for
every x-coordinate solution after the perfect packing trans-
formation. Doing so at this point results in far fewer values

Size HK10 Subsets Mutex HK11
N Boxes Boxes Boxes Boxes

1 1 1 1 1
2 1 1 1 1
3 2 2 2 2
4 30 5 4 4
5 20 7 7 7
6 1,979 59 44 29
7 4,033 151 107 46
8 39,357 693 465 124
9 13,571 1,083 755 192

10 2,682,948 7,489 4,901 585
11 31,196 22,822 1,641
12 66,425 38,827 2,366
13 289,217 162,507 5,027
14 549,135 382,059 9,548
15 1,171,765 651,041 15,334

Table 1: Number of bounding boxes tested to find the mini-
mal bounding boxes containing all unoriented rectangles of
dimensions 1

1
x 1

2
, 1

2
x 1

3
, 1

3
x 1

4
, ..., and 1

N
x 1

N+1
.

since we have already picked the rectangles’ orientations.

Experimental Results

We present two different data tables, one relating to im-
provements in the minimal bounding box problem measured
by the number of bounding boxes tested, and another one on
the overall CPU time for solving the entire rectangle-pack-
ing problem. We can separate our experiments this way be-
cause our solution schema decouples the minimal bounding
box problem from the containment problem.

Minimum Bounding Box Problem

Table 1 compares the number of bounding boxes that various
solvers test to find all optimal solutions on our unoriented
high-precision rectangle-packing benchmark. For each col-
umn, we use our optimized containment problem solver, but
add one new technique in the minimal bounding box prob-
lem with each successive column going from left to right.

The first column is the size of the problem. The sec-
ond column called HK10 is the number of bounding boxes
required by the previous state-of-the-art (Huang and Korf
2010) when simply scaling up the problem to an instance
described completely in integers. The third column called
Subsets improves upon the second by testing only those
bounding boxes whose widths and heights are subset sums
of the widths and heights of the rectangles, respectively. The
fourth column called Mutex improves upon the third by re-
jecting bounding boxes if the subset sum corresponding to
its width is mutually exclusive to the subset sum correspond-
ing to its height. The fifth column called HK11 improves
upon the fourth by using information learned from an infea-
sible attempt to reject future bounding boxes.

Using all improvements, by N=10 we test 4,500 times
fewer bounding boxes compared to the previous state-of-
the-art. On this instance HK10 ran out of memory on the

45



Size Optimal Box Bits of
N Solution Area LCM Precision

1 1/2×1 0.50 2 2
2 1/2×4/3 0.67 6 6
3 1/2×19/12 0.79 12 8
4 5/6×1, 1/2×5/3 0.83 60 12
5 1/2×17/10 0.85 60 12
6 1/2×107/60 0.89 420 18
7 1/2×107/60 0.89 840 20
8 1/2×163/90 0.91 2,520 23
9 1/2×163/90 0.91 2,520 23
10 1/2×1817/990 0.92 27,720 30
11 1/2×7367/3960 0.93 27,720 30
12 1/2×67/36 0.93 360,360 37
13 1/2×185/99 0.93 360,360 37
14 1/2×169/90 0.94 360,360 37
15 1/2×79/42 0.94 720,720 39

Table 2: The minimum-area bounding boxes containing un-
oriented rectangles 1

1
x 1

2
, 1

2
x 1

3
, 1

3
x 1

4
, ..., and 1

N
x 1

N+1
.

last bounding box. The introduction of the prime number
11 in the problem instance is responsible for the increased
difficulty between N=9 and N=10.

Containment Problem

Table 2 shows the optimal solutions for our unoriented high-
precision rectangle-packing benchmark along with various
properties of the corresponding instances. The first three
columns from left to right give the problem size, the dimen-
sions of the optimal solutions, and the area of the optimal
solutions. The fourth gives the least common multiple of the
first N+1 integers. The fifth column is the number of bits
required to represent the area of the minimal bounding box.
Note that any packer working on the minimal bounding box
problem must at least be able to compare the areas of vari-
ous bounding boxes, which is why we chose the number of
bits required to represent area as opposed to the number of
bits required to represent the largest dimension of the rect-
angle-packing instance.

It is interesting to note that nearly all of the optimal so-
lutions have a width of 1

2
, primarily due to the fact that the

first rectangle is considerably larger than any of the subse-
quent rectangles. Note that by N=12, the precision required
to solve our problem exceeds that of a 32-bit integer.

Table 3 compares the performance of various solvers us-
ing our techniques. Because we have decoupled the mini-
mum bounding box problem from the containment problem,
in this table we use all of our optimizations for the former
problem, and only compare the individual techniques ap-
plied to the latter problem. Therefore, the performance data
reported is what is required to solve the overall problem us-
ing various containment problem solvers.

The first column gives the size of the problem instance
from our high-precision rectangle-packing benchmark. As
in previous tables, each successive column from left to right
improves upon the previous column by an additional tech-

Size HK10 Empty Space Dynamic HK11
N Time Time Time Time

6 :00 :00 :00 :00
7 :02 :00 :00 :00
8 1:11 :00 :00 :00
9 1:51 :03 :00 :00

10 1:57 :02 :01
11 41:40 :57 :18
12 7:30:26 6:38 :33
13 2:20:12 16:41
14 1:05:56:14 46:56
15 4:28:20

Table 3: CPU times of various solvers to find all minimum-
area bounding boxes containing unoriented rectangles 1

1
x 1

2
,

1

2
x 1

3
, 1

3
x 1

4
, ..., and 1

N
x 1

N+1
.

nique. The column called HK10 corresponds to using the
previous state-of-the-art with our improved minimal bound-
ing box algorithm. The column called Empty Space im-
proves upon HK10 by precomputing all of the subset sums
prior to search for the x-coordinates, and uses our techniques
to consolidate empty space in the y-coordinates. The col-
umn called Dynamic improves upon the previous one by dy-
namically computing subset sums. Finally, the last column
called HK11 adds the ability to learn which unplaced rect-
angles to exclude from the subset sums computation after
exploring an infeasible subtree. This data was collected us-
ing a Linux eight core 3GHz Intel Xeon X5460 using one
process, one thread, and one core.

At N=10, the problem was scaled up 27,720 times in both
dimensions, requiring HK10 to create 6,597,361 1x1 units
of empty space during the perfect packing transformation
and causing it to run out of memory. Empty Space could
not complete N=13 within a day because of the sheer num-
ber of subset sums that must be explored for both x- and
y-coordinates, a problem avoided by Dynamic.

Packing an Infinite Series of Rectangles

Meir and Moser showed analytically that the infinite series
of rectangles could be packed into a square with sides of
length 32/31 (1968), an upper bound improved to 501/500
by Bálint (1998). More recently, there has been an effort
to approach the problem computationally. Cantrell (Cantrell
2010) reported packing 10,000 rectangles of the series into
the unit square using Mathematica. His greedy heuristic
placed rectangles in the first bottom-most left-most position
(Chazelle 1983) in which it can fit, but his methods and re-
sults were not described in sufficient detail.

We also use the same heuristic, so every rectangle must
be stacked on top of some other rectangle, and touching the
right side of another rectangle, or the bottom or left sides of
the bounding box. To prevent overlapping placements, we
index all of the placed rectangles using a four-dimensional
kd-tree (Bentley 1975), representing the coordinates of the
lower left and upper right corners of a given rectangle. Test-
ing for overlap is then a simple query for all rectangles that

46



Figure 5: A packing solution for unoriented rectangles of
sizes 1

1
x 1

2
, 1

2
x 1

3
, 1

3
x 1

4
, ..., 1

50,000
x 1

50,001
in the unit square.

fall within particular ranges in each of the four dimensions.
Figure 5 depicts a solution for the first 50,000 rectangles

of the infinite series. Interestingly, by orienting all rect-
angles wide, our heuristic had to backtrack within the first
thousand rectangles. However, orienting the second rectan-
gle tall avoids this, allowing us to place all of the remaining
rectangles oriented wide, up to 50,000 of them. We stopped
the program after two days because it had slowed down to
placing only two rectangles per second.

The main argument for this problem’s infeasibility is that
no space can be wasted, since the area of the series of rect-
angles exactly equals the area of the unit square. Due to
the unique sizes of rectangles that must be packed, it seems
likely that some space must be wasted. However, it appears
that the successive rectangles shrink faster than they are able
to break up the empty space. Furthermore, being able to
place 50,000 rectangles without backtracking means that a
counterexample to being able to pack the series must involve
more than 50,000 rectangles. Therefore, we conjecture that
packing the infinite series into the unit square is feasible.

With respect to our work in optimal rectangle packing, the
success of a greedy heuristic for packing the infinite series
suggests that the problem of rectangle packing may be easy
if one simply did not insist that the solution be optimal.

Conclusion

We have proposed a new benchmark consisting of instances
with rectangles of high-precision dimensions. We also pre-
sented techniques for dynamically using subset sums to limit
the number of positions that must be considered, rules to fil-
ter out these subset sums for both the minimal bounding box
and containment problems, methods to learn from infeasible

subtrees, and ways to reduce the rectangles created during
the perfect packing transformation. These techniques ex-
ploit no special properties of the benchmark except for the
fact that the rectangles have dimensions of high-precision.

Using all of our methods, we solved six more problems
up to N=15 on our new benchmark compared to the previ-
ous state-of-the-art on a scaled up instance. Our solver is
over two orders of magnitude faster at N=9 than the pre-
vious state-of-the-art and tests 4,500 times fewer bounding
boxes. Finally, we report our computational results on the
problem of packing an infinite series of rectangles in the unit
square, and conjecture that such a packing exists.

The source code of our optimal rectangle packer is avail-
able at http://code.google.com/p/rectpack.

Acknowledgments

This research was supported by NSF grant No. IIS-0713178
to Richard Korf.

References

Bálint, V. 1998. Two packing problems. Discrete Mathe-
matics 178(1-3):233 – 236.

Bentley, J. L. 1975. Multidimensional binary search trees
used for associative searching. Communications of the ACM
18(9):509–517.

Cantrell, D. W. 2010. Personal communication.

Chazelle, B. 1983. The bottomn-left bin-packing heuristic:
An efficient implementation. IEEE Transactions on Com-
puters C-32(8):697–707.

Clautiaux, F.; Carlier, J.; and Moukrim, A. 2007. A
new exact method for the two-dimensional orthogonal pack-
ing problem. European Journal of Operational Research
183(3):1196–1211.

Huang, E., and Korf, R. E. 2009. New improvements in
optimal rectangle packing. In Boutilier, C., ed., IJCAI, 511–
516.

Huang, E., and Korf, R. E. 2010. Optimal rectangle packing
on non-square benchmarks. In AAAI’10: Proceedings of
the 24th National Conference on Artificial intelligence, 317–
324. AAAI Press.

Korf, R. E. 2003. Optimal rectangle packing: Initial results.
In Giunchiglia, E.; Muscettola, N.; and Nau, D. S., eds.,
ICAPS, 287–295. AAAI.

Meir, A., and Moser, L. 1968. On packing of squares and
cubes. Journal of Combinatorial Theory 5(2):126–134.

Moffitt, M. D., and Pollack, M. E. 2006. Optimal rect-
angle packing: A meta-csp approach. In Long, D.; Smith,
S. F.; Borrajo, D.; and McCluskey, L., eds., ICAPS, 93–102.
AAAI.

Moffitt, M. 2010. Personal communication.

Schiex, T., and Verfaillie, G. 1993. Nogood recording for
static and dynamic constraint satisfaction problems. Inter-
national Journal of Artificial Intelligence Tools 3:48–55.

Simonis, H., and O’Sullivan, B. 2008. Search strategies for
rectangle packing. In Stuckey, P. J., ed., CP, volume 5202
of Lecture Notes in Computer Science, 52–66. Springer.

47


